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Abstract
The emergence and persistence of polymorphism within populations generally requires

specific selective regimes. Here, we develop an unifying theoretical framework to explore how
disassortative mating can generate and maintain polymorphism at the targeted loci. To this
aim, we model the dynamics of alleles at a single locus A in a population of haploid individu-
als, where reproductive success depends on the combination of alleles carried by the parents
at locus A. Our theoretical study of the model confirms that the conditions for the persis-
tence of a given level of allelic polymorphism depend on the relative reproductive advantages
among pairs of individuals. Interestingly, equilibria with unbalanced allelic frequencies were
shown to emerge from successive introduction of mutants.We then investigate the role of
the function linking allelic divergence to reproductive advantage on the evolutionary fate of
alleles within population. Our results highlight the significance of the shape of this function
on both the number of alleles maintained and their level of genetic divergence. Large num-
ber of alleles are maintained with substantial turn-over among alleles when disassortative
advantage slowly increases when allelic differentiation becomes large. In contrast, few highly
differentiated alleles are predicted to be maintained when genetic differentiation has a strong
effect on disassortative advantage. These opposite effects predicted by our model shed light
on the levels of allelic differentiation and polymorphism empirically observed in loci targeted
by disassortative mate choice.

1 Introduction
Selective mechanisms favouring the emergence and the persistence of polymorphism within populations
are scarce. Stochastic fluctuations of population densities usually limit the levels and the duration of poly-
morphism in natural populations. Classical population genetics studies investigating the relative effects
of genetic drift and selection regimes on the level of polymorphism [12] have highlighted that heterozy-
gote advantage is a powerful balancing selection mechanism allowing the persistence of elevated levels of
polymorphism within loci [17]. Such heterozygote advantage is frequently combined with disassortative
mate preferences, whereby individuals tend to reproduce with partners displaying a phenotype different
from their own. This peculiar mating behavior is promoted when heterozygous offsprings benefit from
enhanced fitness, because disassortative pairs are then more likely to produce a fitter progeny. This mate
preference generates powerful sexual selection promoting polymorphism within populations [19]. Disas-
sortative mating indeed promotes rare phenotypes, because they benefit from increased mating success,
therefore generating negative frequency-dependent selection.
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Disassortative mating can be strict, for instance between individuals having different sexes, or be-
tween mating types as observed in fungi [2]. An emblematic example is the self-incompatibility observed
in different plant families, including Brassicaceae where the S -locus prevents fertilization between indi-
viduals expressing the same allele [8]. In animals, disassortative behavior has also been reported, but is
usually not that strict [11]. The immunity-related MHC locus controlling specific recognition of peptides,
has also been documented to be associated with disassortative mate choice in humans [31] and mice [23],
with females preferring body odours associated with MHC alleles different from their own. In a recent
meta-analysis carried out on Primates, the propensity for MHC -related disassortative mating has been
estimated to be relatively mild [32]. In the mimetic butterfly Heliconius numata, strong disassortative
mating based on wing colour patterns has been documented in females, resulting in about three quarter
of crosses occurring among butterflies displaying a different wing patterns in controlled experiments [6].
Almost obligate plumage based assortative mating has been reported in the white throated sparrow [29].
Altogether, disassortative mating is a rare form of mate preference, whose strength has been shown to
substantially vary among animal species (see [11] for a review), highlighting the need to consider quan-
titative variations in the strength of disassortative preferences on the level of polymorphism maintained.

The effect of disassortative mating on the level of polymorphism has been investigated through theo-
retical approaches, focusing on specific examples. For instance, the polymorphism of self-incompatibility
alleles within populations was specifically investigated by [33], opening many research avenues on the in-
fluence of population subdivision [24] and genetic architecture of the S-locus [3] on the number of alleles
maintained at the S -locus, as well as on allelic turn-over [9]. The number of S -alleles is predicted to
be large within populations, and migration of S -alleles among populations to be facilitated by negative
FDS, therefore limiting population subdivision, consistent with empirical observations [15]. Nevertheless,
the level of polymorphism maintained assuming different levels of disassortative mating is still largely
unknown, and may depend on the fitness of offsprings produced by disassortative crosses.

The effect of the selection regime applied to the offsprings of disassortative crosses is also likely to
have a deep influence on the amount of polymorphism maintained within populations. Offsprings of
disassortative crosses are more likely to be heterozygous, and may thus benefit from increased fitness due
to heterozygote advantage. But the fitness of these heterozygous offsprings may depend on the level of
divergence between alleles. In the MHC locus for instance, empirical data provide evidence for divergent
allele advantage (DDA), whereby individuals carrying the most divergent alleles benefit from increased
fitness [22, 16]. Recent analyses highlight the joint effects of qualitative and quantitative variations in
MHC alleles on fitness [1], calling for a more general view on the effect of allelic divergence on the fitness
of heterozygotes.

Because the fitness advantages associated with different combinations of parental alleles may differ
and ultimately determine the fate of these alleles, they are likely to interfere with the effect of the sex-
ual selection generated by disassortative mate choice on the levels of polymorphism maintained within
populations. Here we thus develop a unifying theoretical framework to explore how much the strength of
disassortative preferences increases the number of alleles maintained within populations, depending on
the relative fitness advantages associated with the different combinations of alleles carried by the parents.

We thus model a population with a single locus A, where disassortative crosses between individuals
with different A-alleles are more successful than assortative ones. We first determine the fitness benefits
associated with disassortative crosses allowing to maintain allelic polymorphism, by theoretically and
numerically investigating the existence and stability (local and global) of equilibria of large dynamical
systems, as well as the convergence of the population towards these equilibria. We then investigate the
origin of such polymorphisms by successively introducing mutants in the population and studying the
impact of such introduction on the existing diversity at the locus A. Finally, we consider the genetic
differentiation among A-alleles on the persistence of polymorphism, by studying the impact of the function
linking the genetic distance between parental alleles at locus A to reproductive advantage, therefore
providing general predictions on the diversity to be expected in loci targeted by disassortative mate
choice.
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2 Level of allelic diversity maintained by disassortative mating
advantage

2.1 General model
We consider a population of haploid individuals and a single locus A. Individuals reproduce sexually:
they encounter mating partners uniformly at random and each mating event leads to the birth of a new
offspring, with a probability that depends on the genotypes of both parents at locus A. We assume that
crosses between individuals carrying different alleles at locus A (disassortative matings) have a greater
reproductive success than crosses between individuals sharing the same A-allele (assortative matings).
This may represent two different mechanisms: either individuals have disassortative sexual preferences,
or the survival probability of an offspring produced by parents with different alleles at the A locus is
higher (akin to an heterozygote advantage benefiting to the offspring).
We also assume k possible alleles at locus A in the population (denoted 1, 2, ..., k) and no mutation. We
then consider Mendelian segregation of alleles during the crosses, so that the haploid offspring inherits
one allele of either parents, chosen uniformly at random.
All individuals have the same natural death rate d, and may also die from competition with other
individuals, at a rate proportional to a competition parameter c > 0 and to the population density. The
population is characterized at each time t by the respective density of individuals carrying each allele.
We use an infinite population size assumption (as in [25]): we then model the dynamics of this population
using a deterministic dynamical system, that can be obtained as the large population limit of a stochastic
birth-and-death process, as explained in Appendix A. Let us then denote by zi(t) the mass represented
by allele i in the population at time t ≥ 0. Then, the vector of functions (z1(t), z2(t), ..., zk(t))t≥0 is the
unique solution of the following differential equation

żi(t) = zi(t)

 k∑
j=1

βipij + βjpji
2

zj(t)

z(t)
− d− cz(t)

 , i ∈ {1, ..., k}, t ≥ 0 (1)

starting from (z1(0), ..., zk(0)) ∈ Rk+, where for each t > 0, z(t) =
∑k
i=1 zi(t) is the total population mass

at time t. The parameter βi for i ∈ {1, ..., k} is the rate at which an individual of type i (called first
parent) reproduces, the second parent being chosen uniformly in the population. Each reproduction leads
to the birth of a new individual with probability pij , where i is the allele carried by the first parent and
j the allele carried by the second parent.

We introduce
b := inf

1≤i,j≤k

βipij + βjpji
2

and assume that b > 0, implying the impossibility of having strict genetic incompatibilities between some
pair of individuals. Introducing incompatibilities may however be possible and studies could be done
using similar computations. For (i, j) ∈ {1, ..., k}2, we also introduce

sij :=
βipij + βjpji

2b
− 1,

then
sij = sji ≥ 0

and we may rewrite (1) as

żi(t) = zi(t)

b k∑
j=1

(1 + sij)
zj(t)

z(t)
− d− cz(t)

 . (2)

For each i, j ∈ {1, .., k} the parameter sij may thus be interpreted as the selective advantage of a pair of
parents with genotypes i and j respectively.

To maintain the population, we then always assume that

b ≥ d > 0. (3)

Table 1 summarizes all parameters.
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2.2 Conditions for maintaining allelic polymorphism
In this section, we give conditions on the selective advantage of each pair of genotypes under which allelic
diversity is maintained. Mathematically speaking, this diversity is preserved when the System (2) admits
a positive equilibrium, and when the population converges towards this equilibrium. Our conditions
depend on the matrix M of selective advantage:

M :=


s11 s12 s13 ... s1k

s12 s22 s23 ... s2k

... ... ... ... ...
s1k s2k ... sk−1,k skk

 . (4)

Proofs and precise mathematical results can be found in Appendix B.

Proposition 2.1. Assume that det(M) 6= 0 and

M−11 > 0, where 1 =

 1
...
1

 . (5)

The System (2) admits a unique positive equilibrium

Z∗ :=
1

c

(
b+

b

1TM−11
− d
)

M−11

1TM−11
(6)

where 1T is the transpose of vector 1.
Furthermore, starting from any positive initial allelic distribution, the population will stabilize around this
equilibrium if and only if the matrix M has exactly 1 positive eigenvalue and k − 1 negative eigenvalues.

This proposition gives a condition on the selective advantage parameters sij , under which allelic di-
versity will be maintained. Note that this condition depends neither on the birth rate b, nor on the death
rate d, nor on the competition term c, but only on the disassortative advantage parameters sij , ultimately
modulating the reproductive success associated with the different allelic pairs (this is true because we
assume that b > d). Note that given a matrix M of selective advantages, Condition (5) can be easily ver-
ified numerically. Therefore, considering a specific model for the distribution of selective advantages, one
might explore how many different alleles can be maintained in the long term (see Section 3 for an example).

We then investigate more precisely this general result by studying contrasted situations, matching
classical cases of overdominance. We specifically test (1) the persistence of small (n = 2) vs. large number
(n ≥ 3) of alleles at locus A, (2) the effect of strict disassortative advantage (i.e. assuming sij = 0 when
i = j) and (3) the effect of equal disassortative advantages (i.e. assuming all sij are equal when i 6= j).

Maintaining two alleles at locus A Here, the condition given in Proposition 2.1 recovers a well-
documented result obtained in loci with overdominance (see [13] for instance) : two alleles A1 and A2

can be maintained in a population if and only if s11 − s12 and s22 − s12 are both negative, i.e. when
disassortative matings produce more offspring than both assortative combinations.

Maintaining three alleles, with strict disassortative advantage (sij = 0 when i = j).
Let us now consider the case where three alleles can coexist at locus A within a population. In this case,
the selection pattern is thus described by a triplet (s12, s13, s23) and the selection matrix is

M =

 0 s12 s13

s12 0 s23

s13 s23 0

 . (7)

Proposition 2.1 states that the three alleles are maintained as soon as

s12 < s13 + s23 , s13 < s12 + s23 , s23 < s12 + s13. (8)

This result highlights that the three alleles are maintained when none of parental pairs has a greater
advantage than the sum of the advantages of the two other possible pairs of parental alleles. This condition
is for instance achieved when all disassortative pairs are similarly advantaged (s12 = s13 = s23 = s > 0),
but can also be true for different patterns. A precise result is given in Appendix B.3.

Interestingly, this circular condition (8) was identified in [17] as a necessary condition for the main-
tenance of allelic diversity, in a general model of heterozygote advantage where k alleles are maintained.
Here we demonstrate that it is not only a necessary but also a sufficient condition for the maintenance
of allelic diversity in the case of three alleles.
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Maintaining k alleles, when all disassortative crosses have the same reproductive
advantage: We then investigate the persistence of a larger number of alleles (k alleles), focusing on
the specific example where all disassortative pairs have the same reproductive success, i.e. when the
matrix of interaction is given by

M =


ρ s .. s
s ρ .. s
.. .. .. ..
s .. s ρ

 .

Proposition 2.1 states that allelic diversity is then maintained, as soon as s > ρ and whatever the number
of alleles k, meaning that a large number of alleles can be maintained, when disassortative mating is
favored and all disassortative pairs have equally reproductive advantages.

Our study highlights that the conditions for the persistence of a given level of allelic polymorphism
at locus A depend on the relative reproductive advantages of disassortative vs. assortative crosses, but
also on the relative reproductive success of the different disassortative pairs. Some conditions might allow
a large number of alleles to persist, but the actual levels of polymorphism observed within population
where disassortative mating is observed is also likely to crucially depend on the order of arrival of the
different alleles. In particular, in cases where the reproductive advantages among disassortative pairs are
not strictly equal (as in (8)), the number of alleles maintained may be strongly modified depending on
the order of appearance of the different alleles.

2.3 Investigating the origin of polymorphism using successive introductions
of mutants

To investigate the impact of the order of appearance of the mutations on the level of polymorphism, we
assume that new alleles can arise in a population where one or several alleles already coexist. We thus
refer to the new arising allele as a mutant and to the pre-existing alleles as resident alleles. We consider
that mutations are rare enough, so that the population dynamics of the resident population reaches its
equilibrium between two mutational events. We therefore aim at studying the fate of successive and non-
simultaneous mutations in the population. This classical framework is close to the adaptive dynamics
framework [20], because we consider rare mutation events. However, we do not assume that mutations
are necessarily of small effects. We foster conditions on the mating success of the mutant allele when
paired with the different resident alleles, that allow its successful invasion (i.e. its long-term persistence
in the population).

We thus consider a population with k alleles, and disassortative advantage matrix is denoted by M
as previously. We assume that M satisfies the conditions of Proposition 2.1, which ensure that the k
alleles remain in the population for all times, as long as no mutation appears.
A mutant is characterized by new disassortative advantages ST = (sk+1,1, sk+1,2, ..., sk+1,k) and σ =
sk+1,k+1. We obtain (details are given in Appendix B.4) that this mutant invades if and only if

1− STM−11 < 0. (9)

When the mutant invades the population, it can then modify the evolutionary fate of the resident
alleles. We thus investigate the effect of the mutant invasion on the number of alternative alleles main-
tained. We are able to give a necessary and sufficient condition under which a mutant invasion leads to
a population with k + 1 alleles maintained, i.e. to an increased allelic diversity after the invasion of the
mutant. Let us consider the new selective matrix

M̄ =

(
M S
ST σ

)
,

with S is the transpose of the line vector ST , that characterizes the population with k + 1 alleles. We
have seen that there exists a (k+ 1)-alleles equilibrium if M̄−11 > 0. If the mutant satisfies the invasion
condition (9), this is actually sufficient to ensure that this (k + 1)-types equilibrium is also globally
asymptotically stable (see Proposition B.4 for a proof).

In the general case, we do not know the long time behavior of the population when the equilibrium
with all k + 1 alleles does not exist; however it can be detailed in the simple case of two resident alleles
or it can be studied using numerical simulations.
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Introduction of a third allele in a resident population with two alleles In the particular
case of the introduction of a third allele in a population such that sii = 0 for all i, we can determine
all possible long-term behaviors of the population. Let us consider two resident alleles named 1 and 2,
characterized by a disassortative advantage s12, and introduce a third allele, named 3, characterized by
two new disassortative advantages s13 and s23 (the total selection matrix being then as defined in (7)).
Our theoretical study leads to different cases showing that the invasion of the mutant may lead either to
the coexistence of three alleles or to the extinction of one of the resident allele depending on the values
of the selective advantage of the mutant, as detailed below:

• Either condition (8) holds, and the three alleles will always coexist, whatever the order of appear-
ance of the different alleles.

• or for a given pair i, j ∈ {1, 2, 3}, sij ≥ sik + skj . Then a further analysis of the dynamical System
(2) in Proposition B.3 shows that this condition prevents the increase of polymorphism. More
precisely it entails that both alleles i and j will be maintained, while allele k becomes extinct,
regardless of whether the indices i, j and k represent the mutant or the residents.

Increase of polymorphism in populations where all disassortative pairs are similarly
advantaged To investigate whether high levels of polymorphism can easily be reached in populations
in the favoring conditions where all disassortative pairs benefit from the same reproductive success, we
study the impact of the introduction of a fourth allele in a population where three alleles are initially
present and stably maintained in the population. We assume that the three resident alleles have equal
interactions: s12 = s13 = s23 = s > 0 and that assortative mating is strictly disadvantaged, i.e. s11 =
s22 = s33 = 0. We have seen that the three alleles coexist in such a case.

We then consider a mutant allele with (s41, s42, s43, s44) = (x, y, z, 0) such that the extended selection
matrix is

M =


0 s s x
s 0 s y
s s 0 z
x y z 0

 .

The condition for invasion of the mutant stated in (9) reads x+ y + z > 2s. Depending on the values of
(x, y, z), we investigate the number of alleles maintained in the stable equilibrium of (2) for the population.
The four alleles are maintained in the population when the disassortative mating advantages associated
with the different mutant/resident pairs are similar, i.e. when the values of x, y and z are close. When a
mutant/resident pair has a strikingly higher advantage than the other pairs, then a resident allele is likely
to get eliminated from the population. Interestingly, coexistence is possible even for large values of the
three selective parameters x, y and z (light green area in the figure). This suggests that mutations with
strong effects may invade. Highly-differentiated mutant alleles with greater disassortative advantages
may then coexist with resident alleles with equal disassortative advantages. In contrast, in some cases,
the equilibrium consists only in two coexisting alleles: the invasion of a new mutant may thus entail the
decrease of the number of coexisting alleles.

We have given general conditions for the maintenance of allelic polymorphism within a population.
This maintenance highly depends on the selective advantages associated with the different parental pairs,
summarized in the matrix M . Interestingly, we identified some specific conditions (7) enabling the
increase of polymorphism and allowing the persistence of a large number of alleles, without satisfying the
restricted condition of strictly equal reproductive success in the different allelic pairs.

Because the distribution of disassortative advantages may strongly depend on the level of genetic
differentiation among alleles, we then propose to study a general function linking genetic variation to
selective advantages sij and investigate the impact of this function on the emergence and polymorphism
within population.

3 Investigating the levels of allelic differentiation maintained within
population

In natural populations, the level of genetic divergence between alleles is likely to shape disassortative
advantage associated with the different allelic pairs. In this second part of our study, we thus explicitly
consider the effect of genetic differenciation on the selective advantages parameters, by assuming that the
advantage associated with a disassortative pair is defined as an increasing function of the genetic distance
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Figure 1: Level of polymorphism maintained in the population after the introduction of a mutant
allele, depending on the selective advantage parameters associated with the pairs of parents
composed of the mutant and either of the three different resident alleles (x, y and z respectively).
In white, the mutant does not invade, in red the four alleles persist in the population, in yellow
only three alleles are maintained and in blue, only two alleles are maintained. Parameters are
b = 1, d = 0, c = 1, s = 1.

between the two parental alleles. We specifically test different shapes of this function, and investigate
their impact on the level of polymorphism maintained at locus A.

3.1 Modeling the link between genetic distance among alleles and their dis-
assortative mating success

To investigate the levels of differentiation among alleles that can be maintained within population, we
then consider an extension of the previous model: we assume that the allelic dissimilarity has a positive
effect on the selective advantages of the different disassortative mating pairs.
In this framework, the set of possible alleles at locus A is {0, 1}L, where L is the number of sites where
mutations can occur in locus A (fig. 2). This hypothesis is relevant to model actual loci targeted by
disassortative mate choice, such as the MHC in vertebrates [26].
We assume that the genetic distance between alleles carried by the parents modifies the reproductive
success of disassortative pairs (fig. 2). We assume that the distance d(x, y) between two alleles x =

(x1, ..., xL) ∈ {0, 1}L and y = (y1, ..., yL) ∈ {0, 1}L is defined by d(x, y) =
∑L
i=1 1xi 6=yi . The higher

the distance between x and y, the higher the reproductive success of pairs of individuals with respective
alleles x and y. We introduce an increasing non-negative function f on R+, such that sxy = f(d(x, y)),
where we recall that sxy ≥ 0 is the selective advantage associated to pairs of parents with alleles x and
y respectively and that it quantifies the probability for this pair of individuals to mate and produce a
viable progeny. Here, we assume that the function f is a power function (f(x) = xα with α > 0). In
particular the selection coefficient increases with the genetic distance, and the power α modulates this
relationship.

We first investigate the stability of two specific final population states, chosen as the two most extreme
levels of polymorphism: (1) Final population with all possible alleles maintained and (2) Final population
with only the two most differentiated alleles maintained.
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Locus A

site

L=9

Allele 1
point

mutation
Allele 2

Allele 3

large
mutation

...

Allele x

(a) (b)

Figure 2: Mutation sizes and their effects on the disassortative advantage. Panel (a):
The locus A contains L sites where mutations can occur. We model either point mutations,
whereby one mutation leads to a change at a single site or other mutation kernels, where a
mutation event can simultaneously affect several sites within the locus A. Panel (b): the number
of sites differing between alleles in a parental pair will influence the disassortative advantage in
reproduction for this pair. The parameter α then determines the shape of the function, i.e. how
much the distance between alleles enhances the reproductive success of the pair. Note that in
our model, we thus distinguished the size of the mutation (i.e. number of differing sites) from
the effect of the mutations on fitness (i.e. the effect of genetic distance between alleles on the
reproductive success).

Existence and stability of a final population with all possible alleles maintained We
numerically explore the existence and stability conditions of a population state where the number of alleles
maintained is 2L. Whatever the number of possible sites L at locus A, we find that the equilibrium with
all possible alleles maintained in the population always exists. Indeed, each allele has the same number
of alleles at distance 1, 2, · · · , L and thus the condition M−11 > 0 reduces to a single condition, which
is always satisfied. However, using numerical simulations (see Figure 3), we show that this equilibrium
is locally and globally stable only when α < 1. Indeed, according to Proposition 2.1, the global stability
depends on the sign of the second greatest eigenvalues of the matrix M , which can be computed easily
numerically, even if it cannot be studied using theoretical arguments. When α < 1, the shape of the
genotype-to-reproductive advantage function f entails that any divergent allele gains a great disassortative
advantage, as soon as it slightly from the other ones, but that this advantage does not increase much
when accumulating more genetic differences. This specific shape of the function may thus stabilize
the polymorphism, by preventing large variations in disassortative advantages among co-existing alleles,
consistent with the predictions illustrated in Fig. 1.

Figure 3: Stability of the population with all possible alleles maintained, explored using
the second eigenvalue of the selection matrix M for different numbers of possible sites L at locus
A, and depending on the shape α of the genotype-to-reproductive advantage function f . Note
that this eigenvalue becomes positive as soon as α ≥ 1, therefore preventing convergence toward
the polymorphic equilibrium.
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Table 1: Description of parameters used in the models

Model Parameter Description

General
model

b Birth rate
d Death rate
c Competition rate
k Number of alleles in the population

zi(t) Number of individuals carrying allele i at time t in the population
z(t) Total population size at time t
βi Basal reproduction rate of individuals of genotype i mating uni-

formly at random
pij Probability of successful reproduction of a pair of parents of geno-

type i and j respectively
sij or sxy Reproductive advantage associated with pairs of parents of alle-

les i and j (general model) or alleles x and y (model of genetic
differentiation)

M Selection matrix summarizing the reproductive advantage (sij) as-
sociated with each possible pair (i, j) of alleles in the parents

Model of
genetic
differentiation

L Number of sites where mutations can occur in locus A
d(x, y) Distance between alleles x and y at locus A
f genotype-to-reproductive advantage function, determining the ef-

fect of the distance between parental alleles (d(x, y)) on their re-
productive advantage

α Shaping parameter of the genotype-to-reproductive advantage
power function f

Stability of the population state with only the two most-differentiated alleles main-
tained We then explore the conditions leading to a final population composed of two alleles at maximal
genetic distance L, i.e. A1 = (0, · · · , 0) and A2 = (1, · · · , 1). The selective advantage enjoyed in crosses
between parents carrying these two alleles is s = f(L).

We then investigate whether a third allele might invade this population and modify the distribution
of alleles. We introduce a third allele A3 ∈ {0, 1}L \ {A1, A2}. This allele is at distance x from A1 and
L− x from A2 for some x ∈ {1, · · ·L− 1}. Therefore, the selection matrix reads 0 f(L) f(x)

f(L) 0 f(L− x)
f(x) f(L− x) 0

 .

According to Proposition B.3 and using the monotony of f , we deduce that the invasion condition of
the mutant A3 and the condition for existence and stability of a population with the three alleles can be
reduced to

f(L) < f(x) + f(L− x). (10)

The mutant A3 will thus invade if and only if (10) holds and the final population will then be composed
of the three alleles A1, A2 and A3.
In the specific case where f(x) = xα, the condition (10) is equivalent to α < 1. As a consequence, for
α ≥ 1 the population with the two most differentiated alleles cannot be invaded by any new allele.

These highly-contrasted case-studies illustrate a phase transition in stability that occurs at α = 1,
which enlightens the role of the form of the genotype-to-reproductive advantage function f in stability
patterns. When α < 1, all alleles can be maintained simultaneously, while for α ≥ 1 a population with
the two most differentiated alleles corresponds to an evolutionary stable equilibrium. When α < 1, the
genotype-to-reproductive advantage function f has an asymptotic shape (see fig.2). This may corresponds
to loci where point mutations will trigger large disassortative advantage, while highly differentiated
variants have little advantages as compared to slightly divergent ones. This is likely to promote the
emergence of a large diversity of alleles with similar levels of disassortative advantages. On the contrary,
when α > 1, each mutation accumulating in the locus A induces a supplementary advantage and might
therefore replace less differentiated resident alleles.
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(b) Shape parameter α = 0.6

Figure 4: Probability of persistence of 10 randomly chosen alleles in the population (in
blue) and departure in the actual distribution of these alleles in the population, from
an even distribution of alleles (in black), for different values of the number of sites within
locus (L) and of the parameter α, tuning the shape of the genotype-to-reproductive advantage
function. The red lines corresponds to the 95% confidence intervals computed over the stochastic
simulations. On panel (a), the number of sites L is fixed to 6. The distribution departs further
away from an uniform distribution when α increases, while the probability of maintaining 10
alleles drops. On panel (b), the shape parameter α is fixed to 0.6. The departure from even
distribution first increases with the number of sites, and then decreases when the number of sites
is high. The probability of choosing 10 alleles that can be maintained decreases slowly when the
number of sites increases.

Diversity of allelic distribution The analytical study of other cases of persistence of any given
sample of the 2L different alleles is highly challenging. However, using our criteria, we numerically
explore the conditions of emergence of populations with a large number of alleles. When several alleles
are maintained within populations, we can then explore the number of individuals carrying each of the
different alleles maintained in the population. (See Figures 4).

To this aim, we draw uniformly at random populations of 10 alleles among the 2L possible alleles,
we then check whether these alleles can coexist. This stochastic procedure was repeated in order to
obtain 5000 possible populations and allows to estimate the probability that 10 randomly chosen alleles
are maintained in the population, that is when the associated matrix of selective advantage satisfies
(5). Note that for the rest of the study, we thus only consider the populations in which the 10 alleles
are maintained. For each population of 10 alleles obtained, we then compute the number of individuals
carrying each allele. Finally, we measure the difference between these numbers and the numbers obtained
when alleles are equally distributed in the population. Figure 4 shows the empirical mean of this measure
for a large number of replicates, for different values of L and α ≤ 1, as well as the probability of
maintaining 10 alleles chosen uniformly at random within the population.
On Figure 4a, the number of sites L is fixed to 6 such that we select randomly 10 alleles among the
26 = 64. We observe that the probability of choosing 10 alleles that will be stably maintained in the
population drops when α increases. This is consistent with previous conclusions stating that for α ≥ 1
only small numbers of alleles can stably persist in the population. Furthermore, we notice that in the
population where ten alleles are stably maintained in the populations, the distribution of allele frequencies
departs further from a uniform distribution, when α increases. Larger values of α are indeed likely to
increase variation in the reproductive success of the different allelic pairs. Fr a given set of alleles, their
associated selective advantages indeed depart further away from the constant case as α increases (see fig.
2).
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On Figure 4b, the shape parameter α is fixed to 0.6 and we modify the number L of sites and therefore
the number of possible alleles 2L. We observe that the departure from even distribution first increases
with the number of sites (up to L = 7), and then slightly decreases when the number of sites is high.
The initial growth in the departure from the even distribution may stem from the increased number of
possible alleles 2L, enhancing the diversity in the selected alleles. Nevertheless, when L is large enough,
the increase in the number of possible alleles no longer impacts the diversity in the chosen alleles because
the selected alleles are then very likely to be quite differentiated. When L is getting higher, the matrix
of selective advantages may then approach a matrix with equal disassortative advantages. Note that for
large values of L the choice of 10 alleles among a large panel will create very diverse selection patterns
strongly differing from the simple case where sij = s for all pairs. This then leads to population structure
with various allele frequencies.

3.2 Emergence of allelic diversity
We aim at exploring how allelic diversity might emerge from multiple rounds of mutant invasions. We first
assume that each mutation affects only one site within locus A, which is then shifted towards the opposite
value. When an offspring is born, it is either similar to one of its parents, or it has only one site different
from one of its parental alleles. The mutant allele is then at a distance one from this parental allele.
We observe two different evolutionary outcomes depending on the shape of the genotype-to-reproductive
advantage function f , determined by the value of α, as detailed below.

3.2.1 Genotype-to-reproductive advantage function where disassortative advantage
saturates when differentiation between allele increases (α < 1).

From our theoretical study described above, we recall that:

1. Any resident population with two alleles A1 and A2 can be invaded by any new mutant B at
distance 1 of either A1 or A2 and will lead to a population with 3 alleles.

2. The population with all possible alleles maintained then exists and is stable.

However, we have no theoretical evidence that the successive introductions of mutants will lead to the
population maintaining a large number of alleles at distant 1 from each other. We thus numerically
explore the successive invasions of mutations, using simulations encoded in Python.
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Figure 5: Evolution of the number of alleles maintained in the population, assuming
point mutations and convex shape of function determining the fitness of allelic pairs
(α ≤ 1). From an initial population with two alleles, we numerically induce successive mutations
and track down their invasion success through time. Panel (a) shows the distribution of alleles
in the population through time. Each color corresponds to a given allele and the height of the
bar is the number of individuals carrying each allele within the population at a each time. Panel
(b) gives number of alleles maintained at equilibrium after each mutation until the total number
of alleles is reached. Each line corresponds to a different numerical simulation (n = 6). Here
L = 6 and α = 0.6 such that there are 26 = 64 possible alleles.
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Figure 5 illustrates the contrasted evolutionary fates followed by the introduced mutants: the mutant
can either go extinct rapidly if its fitness is negative, or it can invade the population. If it invades, it
either co-exists with all resident alleles or triggers the loss of one or several resident alleles. The right
panel (Fig. 5a) explicitly shows the allelic turn-over through time, suggesting that the number of alleles
can be high but may also strongly vary through time in natural populations. Note that the different
alleles do not have the same frequency in the population, even when the number of alleles maintained is
large.

Figure 5b then highlights that, after a sufficiently large number of mutations, all possible alleles are
maintained in the population. We furthermore observe that when the number of coexisting alleles reaches
a sufficiently high level, any new mutant invades and increases the allelic diversity.

3.2.2 Genotype-to-reproductive advantage function where disassortative advantage
is always enhanced when differentiation between allele increases (α ≥ 1)

. We prove that in this case, only two alleles can coexist in the population through time, meaning that
any mutant invasion leads to the extinction of one out of the two resident alleles. We assume that the
initial population is composed of two alleles A1 and A2 at distance x. When a mutant A3 arises, it is at
distance 1 of its parental allele (say A1 by symmetry) and at distance x+ 1 or x− 1 of the other parental
allele A2. This particular property arises from the choice of the mutation kernel (see the section below
on the influence of the mutation kernel).

When assuming that the mutant is at distance x − 1 of A2, the invasion condition reads 1 + (x −
1)α − xα > 0, and is thus never true for α ≥ 1. Therefore, a mutant allele closer from the resident
allele A2 than the resident allele A1, can never invade the population. In contrast, when assuming that
the mutant is at distance x + 1 of A2, then the invasion condition reads 1 + (x + 1)α − xα > 0 and is
true, since x 7→ xα is increasing for α > 0. By applying Proposition B.3, we can deduce that, when
the mutant allele invades, the allele A1 is eliminated from the population. The resulting population is
then composed of the two most differentiated alleles A2 and A3, at distance x+ 1. In case of successive
emergence of new alleles by point mutations, we thus observe increasing distances between the pairs of
alleles maintained in the evolving population. This result goes further than the global stability of the
population formed of the two most differentiated alleles: it proves that starting from any initial couple of
alleles, the successive mutations always increase the genetic distances between the two surviving alleles.
As a consequence, after a sufficient number of mutations, the population will be composed of two alleles
at distance L. However, this general fate of the populations can be modified when mutations affecting
several sites together arise.

Importance of the mutation kernel. We then investigate the effect of the number of sites within
the locus A affected by a mutational event. In this section, we develop an example showing that, with
this kind of mutation kernels, coexistence of more than two alleles can be observed, even if α ≥ 1.

We now assume that the mutants are chosen uniformly at random among the possible alleles and
that these new mutants are introduced successively in the population. These introductions are repeated
until we obtain a set of alleles which cannot be invaded by any new mutant allele. The following result
gives the law of the final number of co-existing alleles in the population for a particular example ( i.e.
assuming L = 3 and α ≥ 1). In particular, we obtain from a mathematical reasoning that the number of
alleles maintained is not always equal to 2 and depends on the order of mutant introductions.

Proposition 3.1. If α ∈ [1, 2] and L = 3 then the final number of co-existing alleles is equal to 2 (with
probability 51/56), or to 4 (with probability 5/56).

This proposition illustrates the importance of the mutation kernel on the final number of alleles and
on the distribution of their genetic distances. The proof of Proposition 3.1 is given in Appendix C.2.

We then use numerical simulations to observe the evolution of the number of coexisting alleles for
α ≥ 1, when the number of sites L at locus A increases. We use a Monte Carlo procedure: we repeated
5000 times the evolution of the population, for uniform mutations on all the possible alleles at locus A,
until we obtain a stable population. This allowed us to obtain a vector containing the number of alleles
maintained in the final population within each repetition. Figure 7 represents the histogram obtained for
different values of L and α ≥ 1. Consistent with the theoretical results obtained above for L = 3, that
for α ≥ 2 the limiting population is always composed of 2 alleles, while for 1 ≤ α < 2 it can be composed
of 4 alleles (Figure 7a). A similar pattern is observed for L = 4 on figure 7b. Larger number of alleles are
maintained from the successive introductions of uniform mutations when L = 5 or L = 6 (see Figure 7c
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(0, 1, 1) (1, 1, 1)

(0, 1, 0) (1, 1, 0)

(0, 0, 1) (1, 0, 1)

(0, 0, 0) (1, 0, 0)

(0, 1, 1) (1, 1, 1)

(0, 1, 0) (1, 1, 0)

(0, 0, 1) (1, 0, 1)

(0, 0, 0) (1, 0, 0)

Figure 1: Examples of stable communities for L = 3. Left : 2 opposite types,
Right : 4 types at distance 2 of each other.

Figure 6: Distances between alleles when assuming 3 sites within the locus A, with
all possible distances on the edges of the cube, and edges in red showing the alleles
maintained at stable state of the population. An example of a population with two most-
differentiated alleles is shown on the left (stable population 2), while a example of a stable
population with 4 equidistant alleles is represented on the right (stable population 2).

and 7d). These populations with larger numbers of alleles arise with a small probability (of order 10−3)
and are more frequent for small values of α. This highlights that stable co-existence of more than 2 alleles
within population exists even in the case where α > 1. They arise more frequently for large values of L,
possibly because the number of allelic combinations fitting the coexistence condition increases.

(a) Number of sites L = 3 (b) Number of sites L = 4

(c) Number of sites L = 5 (d) Number of sites L = 6

Figure 7: Number of alleles maintained after successive mutations, for different
numbers of sites L within the locus A, and different shapes α of the Genotype-
to-reproductive advantage function. Each graph corresponds to a different number of sites
L and the color gradient from blue to red indicates increasing values of α.
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4 Discussion

4.1 A general model predicting balanced as well as unbalanced polymorphism
in loci under disassortative and/or heterozgote advantage.

In this article, we explored the conditions of emergence and persistence of allelic diversity at a locus
where disassortative pairs of parents benefit from increased reproductive success. Our haploid model
can therefore cover the cases explored in models exploring persistence of polymorphism in either (1)
loci where heterozygote advantage occurs [17] or (2) loci where disassortative mating happens, such as
the self-incompatibility locus in plants [33]. From our general model, we retrieve classical conditions of
maintenance of large number of alleles at these loci: we indeed confirm that a large number of alleles can
be maintained within population when the advantages associated with the different dissassortative pairs
(akin to the different heterozygote advantages in diploid models exploring overdominance) are close to
each other. Our disassortative advantage sij corresponds to the fitness of the genotype AiAj denoted by
Wij in [17]. However, the main difference is that we do not consider the dynamics of allele frequencies
within a population with fixed size, but instead, we modeled the dynamics of both the alleles and the
total population size. In our case, the dynamics of allele frequencies solves:

dzi(t)

dz(t)
= b

zi(t)

z(t)

∑
j

sij
zj(t)

z(t)
−
∑
j,l

sjl
zj(t)zl(t)

z(t)2


=: b

zi(t)

z(t)

(
S̄i − S̄

)
.

As a consequence, if an equilibrium exists, it will satisfy S̄i = S̄ similarly as Equation (2) in [17]. We
then provide the sufficient and necessary conditions for the convergence of solutions of the dynamical
system to the equilibria. Our mathematical analyses thus reinforce the necessary conditions for existence
and local stability obtained in [17].

In these classical models where the advantages associated with all allelic pairs are equal, even distri-
bution of the frequencies is predicted. However, here we observed equilibria with unbalanced frequencies
within populations, depending on the genetic distances among alleles and their respective effect on the
fitness of the different pairs. Such uneven frequencies are frequently observed in natural populations at
the self-incompatibility locus in plants [18]. The effect of the dominance relationships among alleles at
the S -locus has for instance been documented as a major effect tuning allelic frequencies in loci under
disassortative mating [30]. Here we propose a general framework allowing to investigate the effect of (1)
each mutational event on the genetic distance between alleles as well as (2) the function linking genetic
distance to fitness advantage associated with each allelic pair (Section 3.1). This general framework
provides general expectation on the level of polymorphism, the evolution of the allelic divergence as well
as on the allelic turnover.

4.2 Allelic diversity and turn-over
By explicitly considering the successive introductions of mutants (Section 2.3), our model provides general
predictions on the emergence of genetic diversity in the population. We obtain a simple criterion on the
disassortative mating parameters, under which a new mutant can invade. The final genetic diversity of
the population is however difficult to determine from the general model. We nevertheless obtained a
simple matricial criterion enabling the co-existence of both the mutant and all resident alleles. Besides,
the behavior of the population with two resident alleles after the introduction of a third allele was also
fully characterized in the general model.

When considering explicitly the genetic distance among alleles and its effect on the fitness of disas-
sortative pairs (Section 3.1), we highlight the strong effect of the number of sites affected by a single
mutational event. The genetic diversity maintained within population is maximal when only mutations
between close genotypes are possible. Such mutational events may correspond to point mutation of small
phenotypic effect appearing by de novo within natural populations. However, in loci under disassortative
mating or heterozygotes advantage, the migration of alleles from different populations [15], as well as
the introgression [4] from closely-related species is frequently observed. Such immigrants or introgressed
alleles are likely to be quite different from the resident alleles and to unbalance the populations of res-
ident alleles and limit the polymorphism maintained. In natural populations, variants with few genetic
differences are shown to co-exist with highly differentiated variants stemming from migration between
populations or species [5], therefore complexifying the dynamics of polymorphism predicted by our model.
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4.3 Allelic differentation
By explicitly testing the effect of the shape of the function linking genetic distances among alleles to
associated disassortative advantages (Section 3.1), we show the significance of the shape of the genotype-
to-reproductive advantage function on both the number of alleles maintained and their level of genetic
divergence.

Our model indeed shows that, when disassortative advantage only poorly increases when allelic dif-
ferentiation becomes large, then great number of alleles can be maintained within population, with
substantial turn-over among alleles. This may correspond to the situations observed at several mating
types loci or at the self-incompatibility locus or as the MHC loci, where large number of alleles are
maintained. At these loci, few mutations already have a significant functional effect, thus promoting
their maintenance. On the contrary, when the reproductive advantage still increases when differentia-
tion levels between alleles become larger, few highly differentiated alleles are predicted to be maintained
within the population. This would correspond to the large differences observed between haplotypes at the
supergene controlling color patterns submitted to disassortative mating in the butterfly H. numata [10]
or in the loci controlling plumage coloration in the Z. albicollis sparrow [28]. While other shapes of the
genotype-to-reproductive advantage function may exist, our model still offers a mechanistic explanation for
strikingly different levels of polymorphism and allelic differentiation observed in different mating systems.

We now hope that our theoretical predictions will simulate empirical efforts in characterizing the
respective fitness advantages associated with the different heterozygotes or disassortative crosses, enabling
to better understand the evolution of differentiation among alleles in these systems.

Numerical simulations
The code for this article is available at https://plmlab.math.cnrs.fr/costa2150/heterozygote_
advantage
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A Birth-and-death model and convergence to dynamical system
The dynamical system (1) governing the population dynamics can be obtained as a large population limit
of a stochastic individual based model (similarly as in [7, 25] for instance).

More precisely, letK be a large parameter that gives the order size of the population. The microscopic
population is represented by the process (ZKi (t))i∈{1,...,k} where ZKi (t) gives the size, divided by K, of
the population of type i individuals at time t. Each individual of type i reproduces with rate βi, that is to
say after a time distributed as an exponential random variable of parameter βi. As explained in the main
text, the second parent is chosen uniformly at random among all individuals alive in the population.
If the second parent is of type j, with probability pij this mating event leads to the birth of a new
individual, being of type i with probability one half, and of type j with probability one half when there
is no mutation (otherwise the mutation is applied to the genotype i or j with the same probability). All
the indivivuals have the same death rate, which is given by

d+ c

k∑
i=1

ZKi (t)

at time t. Under the assumption that the sequence of initial conditions
(
(ZKi (0))i∈{1,...,k}

)
K∈N converges

(in probability) when K goes to infinity, the sequence of stochastic functions
(
(ZKi (t)),i∈{1,...,k}, t ∈

[0, T ]
)
K∈N also converges (in probability for the uniform convergence) to the trajectory of the deterministic

system (1).
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B Proof of the main results
This section gathers the theoretical results on the behavior of the solutions to system (2):

żi(t) = zi(t)

b k∑
j=1

(1 + sij)
zj(t)

z(t)
− d− cz(t)

 , ∀1 ≤ i ≤ k.

Recall the matrix M = (sij)1≤i,j,≤k

B.1 Existence of positive equilibria
Our first result states conditions for a positive equilibrium to exist, meaning that each coordinate of the
vector is strictly positive.

Proposition B.1. If det(M) 6= 0, the system admits a positive equilibrium if and only if M−11 > 0. In
this case, the equilibrium is unique and is given by

Z∗ =
1

c1TM−11

(
b+

b

1TM−11
− d
)
M−11. (11)

If det(M) = 0, the system may have no equilibrium or a infinite number of equilibria, whose space
corresponds to the intersection of an affine space of direction the kernel of M with the cone of positive
coordinates.

Proof of Proposition B.1.
Case det(M) 6= 0: Firstly, we assume that there exists a positive equilibrium Z∗ = (z∗i )i=1,..,k. From (2),
the following equality holds for every i ∈ {1, .., k},

k∑
j=1

sijz
∗
j =

z∗(cz∗ − b+ d)

b
> 0, (12)

with z∗ =
∑k
i=1 z

∗
i . Note that this equation implies that cz∗ > b − d, since sij > 0. Using a matrix

formulation, we have the following linear system:

MZ∗ =
z∗(cz∗ − b+ d)

b
1. (13)

As det(M) 6= 0, the matrix M has an inverse and

Z∗ =
z∗(cz∗ − b+ d)

b
M−11 > 0.

Since z∗(cz∗−b+d)
b > 0, we thus deduce that M−11 > 0.

Moreover by summing all coordinates, we find

z∗ =
z∗(cz∗ − b+ d)

b
1TM−11 ⇔ z∗ =

1

c

(
b+

b

1TM−11
− d
)
,

and finally, the equilibrium is unique and defined by (6).
On the other way, if we assume that M−11 > 0, then we can define Z∗ by (6) and, using the above

computation, it is straightforward to verify that it is a positive equilibrium of (2). This ends the proof
for the case det(M) 6= 0.

Case det(M) = 0:
Let us verify whether there exists a vector X with positive coordinates such that MX = 1.
Indeed, if such a vector X does not exist, then (12) can never be satisfied and there is no equilibrium

to (2).
On the contrary, if we can find such a vector X, we set

Z∗ =
X

c 1TX

(
b+

b

1TX
− d
)
.
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Then it is straightforward to verify that MZ∗ = z∗ cz
∗+d−b
b 1, with z∗ = 1TZ∗. Hence, Z∗ satisfies (12)

and is a positive equilibrium to (2). However, this equilibrium is not unique. Indeed, 1 belongs to the
image of M , and since M is a symmetric matrix, any vector Y in the kernel of M is orthogonal to 1, i.e.
1TY = 0. Then, for all vector Y ∈ Ker(M), M(Z∗ + Y ) = z∗ cz

∗+d−b
b 1, with z∗ = 1TZ∗ = 1T (Z∗ + Y ),

and Z∗ + Y is also an equilibrium to (2).

We now construct examples for the two possibilities. Assume that M can be written as

M =

(
A C
CT 0

)
, with C =

 s1k

..
sk−1k

 ,

det(A) 6= 0 and such that A−11 > 0. Since A is a symmetric matrix, there exists an orthonormal basis
(Vi)i=1,..,k−1 of Rk−1 where Vi is an eigenvector of A associated to its non-null eigenvalue λi for all
i ∈ {1, .., k − 1}. Let us decompose C in this basis C =

∑k−1
i=1 αiVi.

Our aim is to construct C, and thus to select (αi)i=1,..,k−1, to find the examples. First, we have
to select (αi)i=1,..,k−1 such that C =

∑k−1
i=1 αiVi > 0. Then using the Schur complement, we have that

det(M) = −(CTA−1C)× det(A) and thus det(M) = 0 if and only if

CTA−1C =

k−1∑
i=1

α2
i

λi
= 0.

This gives us a way to construct a matrix M with det(M) = 0.
Finally, to ensure that there exists Y > 0 with MY = 1. Let us consider vectors depending on a

parameter η ∈ R such that

Y (η) =

(
A−11

0

)
+ η

(
−A−1C

1

)
.

Let us study the image by M of this vector

MY (η) =

(
1

CTA−11

)
.

Thus if CTA−11 =
∑k−1
i=1

αiωi

λi
= 1 where 1 =

∑k−1
i=1 ωiVi, then we can find η > 0 sufficiently small, such

that MY (η) = 1 with Y (η) > 0.
With this in mind, we can explicit an example for each possibility. Let

M =


0 1 1 2

√
2+
√

3+1
3
√

2

1 0 1 2
√

2−
√

3+1
3
√

2

1 1 0 2
√

2−2
3
√

2
2
√

2+
√

3+1
3
√

2
2
√

2−
√

3+1
3
√

2
2
√

2−2
3
√

2
0

 and X =


1
12

(√
2 +
√

6 + 4
)

1
12

(√
2−
√

6 + 4
)

1
6

(
2−
√

2
)

1
2

 .

M andX have non-negative coordinates, det(M) = 0 andMX = 1. Thus, in this example, the associated
system of equations (2) has an infinite number of positive stationary states.

Now, let a > 0 and

M =


0 a a a
a 0 a a
a a 0 4a
a a 4a 0

 and X0 =


−2
−2
1
1

 .

In this example, det(M) = 0, Ker(M) = V ect(X0) = Im(M)T , however 1TX0 6= 0 hence 1 does
not belong to the image of M . In other words, the associated system of equations (2) has no positive
stationary state.

B.2 Convergence toward the positive equilibria
We now aim at describing the dynamics of the population described by system (2). The following
proposition gives conditions for a positive equilibrium to be stable. Moreover, it states that conditions
for local stability and global stability are identical, i.e. a locally stable equilibrium attracts all trajectories
starting with positive initial conditions.
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Proposition B.2. Assume that det(M) 6= 0 and M−11 > 0, and denote the unique positive equilibrium
to (2) by Z∗, whose expression is given in (6).

i) Z∗ is locally stable if and only if M has 1 positive eigenvalue and k − 1 negative eigenvalues.

ii) Z∗ is locally stable if and only if it is globally stable on (R∗+)k.

Our proof relies on a study of the Jacobian matrix of the system computed at the positive equilibria
and on the construction of a Lyapunov function. Actually, we prove that the criterion on the eigenvalues
of M is equivalent to the fact that the Jacobian matrix of the system admits only negative eigenvalues.
The second point of the proposition will be proved using the following function

V (z) :=

k∑
`=1

(
z`
z
− z∗`
z∗

ln
(z`
z

))
= 1−

k∑
`=1

z∗`
z∗

ln
(z`
z

)
, (14)

which is a Lyapunov function for the dynamical system (2).

Proof. Proof of i): Let us first give the Jacobian matrix of the system (2) around equilibrium Z∗. For
all i ∈ {1, .., k}, let

Fi(z) = zi

(
b

[
1 +

∑k
j=1 sijzj

z

]
− d− cz

)
, with z =

k∑
i=1

zi.

Recall that Fi(z∗)/z∗i = 0. Then by differentiating the function Fi w.r.t zi and zj for j 6= i, we find

∂Fi
∂zi

(z∗) = z∗i

(
b
sii
z∗
− b
∑k
`=1 si`z

∗
`

(z∗)2
− c

)
=
z∗i
z∗

(b− d− 2cz∗ + bsii)

∂Fi
∂zj

(z∗) = z∗i

(
b
sij
z∗
− b
∑k
`=1 si`z

∗
`

(z∗)2
− c

)
=
z∗i
z∗

(b− d− 2cz∗ + bsij).

Hence the jacobian Matrix of the system can be written

J∗ := D2((b−d−2cz∗)I+bM), with D :=



√
z∗1
z∗ 0 ... 0

0
√

z∗2
z∗ ... 0

... ... ... ...

0 ... 0
√

z∗k
z∗

 and I :=


1 1 .. 1
1 1 .. 1
.. .. .. ..
1 1 .. 1

 . (15)

Then since for any (A,B) ∈Mk(R), det(AB) = det(BA), we have

det(J∗ − λId) = det(D2((b− d− 2cz∗)I + bM)− λId)

= det(D((b− d− 2cz∗)I + bM)D − λId).

In other words, the eigenvalues of J∗ are the same as the ones of

B := D((b− d− 2cz∗)I + bM)D (16)

which is symmetric and has real eigenvalues. According to Proposition 2.1,

b− d− 2cz∗ = −(b− d)− 2b/(1TM−11) < 0.

Hence, we can write the matrix B as

B = bDMD − b
(

2

1TM−11
+
b− d
b

)
DID.

Let us prove that B has negative eigenvalues ifM has only 1 positive eigenvalue. To this aim, notice that
as M and DMD are congruent, according to Sylvester’s law of inertia [27], they have the same numbers
of positive/negative eigenvalues.

Let us first assume that M as well as DMD have only 1 positive eigenvalue. As DMD is symmetric,
there exists an orthonormal basis (Vi)i=1,..,k of Rk formed with eigenvectors of DMD, associated to its
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eigenvalues (λi)i=1,..,k. In the sequel we denote by λ1 > 0 the positive eigenvalue. Using the definition
of D in (15), we obtain that

D21 =
Z∗

z∗
=

(
1

1TM−11
M−11

)
combining (13) and (6). Then

DMD(D1) = DM(D21) = DM

(
1

1TM−11
M−11

)
=

1

1TM−11
D1. (17)

Since by assumption 1
1TM−11

> 0, we deduce that it is the unique positive eigenvalue of DMD and that
D1 is a positive eigenvector associated to the positive eigenvalue of DMD.

From (17), we have

V1 = D1 and λ1 =
1

1TM−11
.

Now, let us consider any Y ∈ Rk and its decomposition in the eigenvectors’ basis: there exist (γ1, .., γk) ∈
Rk such that Y =

∑k
i=1 γiVi, and

Y TBY = bY T (DMD)Y − b
(

2

1TM−11
+
b− d
b

)
Y T (DID)Y

= b

k∑
i=1

λiγ
2
i − b

(
2

1TM−11
+
b− d
b

)
Y T (D1)(D1)TY

= γ2
1

(
bλ1 − b

(
2

1TM−11
+
b− d
b

))
+ b

k∑
i=2

γ2
i λi

= −bγ2
1

(
1

1TM−11
+
b− d
b

)
+ b

k∑
i=2

γ2
i λi < 0,

(18)

since the eigenvalues λ2, .., λk of DMD are negative by assumption. In other words, B is a symmetric
definite negative matrix. Recalling that B and the jacobian matrix J∗ have the same eigenvalues, we
deduce that the equilibrium is locally stable.

Conversely, if M has more than 1 positive eigenvalue, it is also the case of DMD. Then, assuming
for example that λ2 > 0, we have, by an application of (18) with Y = V2,

V T2 BV2 = bλ2 > 0.

Hence B has at least 1 positive eigenvalue. The stationary state is unstable.

Proof of ii): We are now ready to prove the second point of the proposition. We only have to prove
the direct implication, as the other one is obvious. To this aim, let us assume that the equilibrium is
locally stable and thus all eigenvalues of J∗ are negative. Recall the definition of the function V in (14).
By differentiating, we find

d

dt
V (z(t)) =

∑
`

ż`
z
− z∗`
z∗
ż`
z`
− z`
z2
ż +

z∗`
z∗
ż

z

=
∑
`

(
z`
z
− z∗`
z∗

)(
b

[
1 +

∑k
j=1 s`jzj

z

]
− d− cz

)
− ż

z

∑
`

(
z`
z
− z∗`
z∗

)

= b
∑
`

(
z`
z
− z∗`
z∗

) k∑
j=1

s`j
zj
z
,

since
∑
` z`/z =

∑
` z
∗
` /z
∗ = 1. In addition with the fact that

∑k
j=1 s`j

z∗j
z∗ is a constant, we find

d

dt
V (z(t)) = b

∑
`

(
z`
z
− z∗`
z∗

) k∑
j=1

s`j

(
zj
z
−
z∗j
z∗

)
= bY TMY,
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with

Y =


z1
z −

z∗1
z∗

z2
z −

z∗2
z∗

..
zk
z −

z∗k
z∗

 .

Now, we recall that the stationary state is assumed to be locally stable, i.e. all eigenvalues of J∗ (or B)
are negative. Since B and (b−d−2cz∗)I+ bM are congruent, these matrices are both symmetric definite
negative. Furthermore, for all X ∈ Rk \ {0}, XT ((b− d− 2cz∗)I + bM)X < 0. Since 1TY = 0, we find

d

dt
V (z(t)) = bY TMY = Y T ((b− d− 2cz∗)I + bM)Y < 0,

as soon as Y 6= 0, and d
dtV (z(t)) = 0 if and only if Y = 0, i.e. zi/z = z∗i /z

∗ for all 1 ≤ i ≤ k. Moreover,
we can prove that the set {z ∈ Rk, Y = 0} is a positive invariant set for the dynamical system (2). Indeed,
for all i ∈ {1, .., k},

d

dt

(zi
z

) ∣∣
Y=0

=
Fi(z)

z
−

k∑
j=1

Fj(z)

z2

∣∣
Y=0

= b
zi
z

 k∑
j=1

sij
zj
z
−
∑
(j,l)

sj`
zj
z

z`
z

∣∣
Y=0

= 0,

where we used (12). Theorem 1 of [14] then ensures that any bounded positive solution to (2) converges
toward this invariant set. Finally, we prove that the solutions of (2) remain bounded by studying the
dynamics of the total population size z, which satisfies

d

dt
z = z

b+ b
∑
(i,j)

sij
zi
z

zj
z
− d− cz

 .

We easily obtain that

d

dt
z ≤ z

b+ b
∑
(i,j)

sij − d− cz

 .

and thus classical results on logistic equation ensure that the total population size remains bounded
through time.

Lasalle Theorem then ensures that zi(t)
z(t) converges to z∗i

z∗ . To conclude the proof it remains to prove

that z(t) converges to z∗. Let us write zi(t)
z(t) =

z∗i
z∗ + εi(t) and according to (12)

d

dt
z = z(cz∗ + bE(t)− cz),

with
E(t) =

∑
i

(cz∗ − b+ d)εi(t) +
∑
i,j

sijεi(t)εj(t) →
t→∞

0.

For any ε > 0, as soon as t is large enough, we deduce that

z(cz∗ − ε− cz) ≤ d

dt
z ≤ z(cz∗ + ε− cz).

Using classical results on logistic equations, we deduce that z(t) converges to z∗. This ends the proof of
Proposition 2.1.

B.3 Complete study of the three allele case
Consider three alleles A1, A2, and A3 whose selection matrix is given by

M =

 0 s12 s13

s12 0 s23

s13 s23 0

 with s12 > 0, s13 > 0 and s23 > 0. (19)
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Since the selective advantage parameters are positive, det(M) > 0 and one obtains with a simple com-
putation that the condition for existence of a three-allele positive equilibrium M−11 > 0 can be written
as (8). Moreover, the three-alleles equilibrium equalsz∗1z∗2

z∗3

 =
z∗

1TM−11
M−11 =

z∗

1TM−11

1

2s12s13s23

s23(s12 + s13 − s23)
s13(s12 + s23 − s13)
s12(s13 + s23 − s12)

 ,

where

z∗ =
1

c

(
b− d+

b

1TM−11

)
and 1TM−11 =

1

2s12s13s23

∑
(i,j,k)∈{1,2,3}3

sij(sik + sjk − sij).

In this case, the behavior of the dynamical system (2) can be fully characterized.

Proposition B.3. Let us consider a system of three alleles, whose interactions are characterized by
matrix (19).

• Assume (8), then the co-existence equilibrium given above is globally stable on (R∗+)3.

• otherwise, assume for example that s23 ≥ s12 + s13, then the two-alleles equilibrium(
0,
b− d+ bs23/2

2c
,
b− d+ bs23/2

2c

)
,

is globally stable on (R∗+)3.

Proof. The first point easily derives from Proposition 2.1.
For the second point, we exhibit a Lyapunov function, which is similar to the one of the previous proof.
Let us consider

V (z) =

3∑
`=1

(
z`
z
− z∗`
z∗

ln
(z`
z

))
, with z∗ =

(
0,
b− d+ bs23/2

2c
,
b− d+ bs23/2

2c

)
.

Then, by a direct computation, we find

V̇ (z) = − b

2z2
[s12z1z + s23z3z + s13z1z + s23z2z − 4s12z1z2 − 4s13z1z3 − 4s23z2z3]

= − b

2z2

[
(s12 + s13)z2

1 + s23(z2 − z3)2 + z1(z2 + z3)(s23 − s12 − s13)

+2z1(−s13z3 + s12z3 − s12z2 + s13z2)] .

Recall that s23 ≥ s12 + s13, and without loss of generality, we may assume that s12 ≤ s13 (otherwise,
exchange the roles of z2 and z3 in the computations). Then

V̇ (z) ≤ − b

2z2

[
(s13 − s12)(z1 + z2 − z3)2 + 2s12z

2
1 + (s23 − s13 + s12)(z2 − z3)2

]
≤ 0.

Therefore V is a Lyapunov function and V̇ (z) = 0 if and only if z1 = 0 and z2 = z3. We then conclude
with Lasalle Theorem (Theorem 1 of [14]) and an argument similar to the one at the end of the previous
proof.

B.4 Successive introductions of types
Assume that k types coexist. In view of previous sections, if det(M) 6= 0, there is coexistence of the k
types if and only ifM−11 > 0 and the second eigenvalue ofM is negative (or equivalently the eigenvalues
of J∗ are all negative).

If a mutant characterized by parameters S = (sk+1,i)i=1,..,k and σ = sk+1,k+1 appears, this mutant
may invade if the Jacobian matrix of (2) around equilibrium (z∗, 0) is unstable. This Jacobian matrix
can be written

J(z∗,0) =

(
J∗ ?

0 .. 0 ∂Fk+1

∂zk+1
(z∗, 0)

)
.
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As previously written, the matrix J∗ is the jacobian matrix of the resident system of size k at equilibrium
z∗ and its eigenvalues are all negative, thus the equilibrium (z∗, 0) is unstable if the last eigenvalue is
positive, i.e.

∂Fk+1

∂zk+1
(z∗, 0) = b− d− cz∗ +

b

z∗

k∑
i=1

si,k+1z
∗
i = − b

1TM−11
(1− STM−11) > 0, (20)

which gives (9).

In what follows, we will be interested in proving the following lemma which states that if the mutant
may invade, the new community will be composed of k+ 1 types if and only if the coexistence state with
k + 1 types exists.

Proposition B.4. Let us consider a stable resident population with k types given by a matrix M , i.e M
satisfies M−11 > 0 and its second eigenvalue is negative.
Let us consider a mutant type arising in this resident population characterized by S and σ. Denote the
new fitness matrix by

M̄ =

(
M S
ST σ

)
.

If M̄−11 > 0, i.e. the equilibrium with k + 1 species exists, then it is globally asymptotically stable.

Proof. Let us first give conditions under which the second eigenvalue of M̄ is positive. As M̄ is a
symmetric matrix and M a principal sub-matrix of M̄ , Proposition D.1 implies that

λM̄1 ≥ λM1 ≥ λM̄2 ≥ λM2 ≥ ... ≥ λMk ≥ λM̄k+1, (21)

where (λMi )i=1,..,k denote the eigenvalues of M and (λM̄i )i=1,..,k+1 the ones of M̄ . Since λM2 < 0, M̄ can
have at most 2 positive eigenvalues. On the other hand, using Proposition D.2, we compute

det(M̄) = (σ − STM−1S) det(M).

Since det(M) has the sign of (−1)k−1, we deduce the following equivalences:

λM̄2 < 0 ⇐⇒ det(M̄) has the sign of (−1)k ⇐⇒ σ − STM−1S < 0. (22)

Let us now prove that this last condition holds as soon as M̄−11 > 0. For all i ∈ {1, .., k + 1} we
denote by Mi the matrix resulting from the suppresion of the ith column and the ith line of M̄ , by Si
the ith column of M̄ without the ith coefficient, and by σi the coefficient M̄ii. Notice that Mk+1 = M ,
Sk+1 = S and σk+1 = σ. Using these notations and Proposition D.2, we notice that for all i

det(M̄) = (σi − STi M−1
i Si) det(Mi), (23)

Let us now denote M̄−11 by (ui)i=1,..,k+1. Then using Cramer’s rule along with (23), we have for all
i ∈ {1, .., k + 1}

ui =
1− STi M

−1
i 1

σi − STi M
−1
i Si

. (24)

Hence, we deduce that if M̄−11 > 0, then uk+1 > 0, and since 1−STM−11 < 0, then σ−STM−1S < 0.
Therefore according to (22) and Proposition 2.1, the equilibrium with k + 1 species is globally stable.
This ends the proof.

Now, let us study the case where the equilibrium with k + 1 species does not exist, i.e. there exists
i ∈ {1, .., k + 1} such that ui < 0. We are not capable of deciphering which alleles will go extinct due
to mutant invasion. Numerical simulations reveal that alleles 1 ≤ i ≤ k that verify uiuk+1 > 0 might
go extinct in the equilibrium. Notice that in some cases, all these alleles disappear, while in other cases,
only a subset does.

C Proofs concerning the genetic model
This section gathers theoretical results associated with the specific model in Section 3.1.
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C.1 Globally stable equilibrium in a particular case
In this section we focus on the case where L = 3, such that there are 8 possible alleles (see Figure 6 for
a representation).
We first prove the convergence of the population state in a particular case for which there is no positive
stable equilibrium. This example will be important for the proof of Proposition 3.1 below.

Assume that 4 alleles are present in the population :

(0, 1, 1) (1, 0, 1) (0, 0, 0) (1, 1, 1)

up to permutation of the sites. Then, the selection matrix M equals

M =


0 2α 2α 1

2α 0 2α 1
2α 2α 0 3α

1 1 3α 0

 .

Our aim is to prove that the equilibrium(
0, 0,

b− d+ 3αb

2c
,
b− d+ 3αb

2c

)
(25)

is globally positively stable in (R+)4, i.e. all trajectories starting from (R+)4 converge to this equilibrium.
To this aim, let us compute the function V defined in Equation (14) with z∗ defined by (25), i.e. V (z) =
1− 1

2 ln
(
z3
z

)
− 1

2 ln
(
z4
z

)
. We get

V̇ (z1, z2, z3, z4) = − b

2z2

[
2α(z1 − z2)2 + (z1 + z2)z3(1 + 3α − 2α+1) + (z1 + z2)z4(3α − 3)

+ (z1 + z2)2 + 3α(z3 − z4)2 + 2α(z1 + z2)(z4 − z3)
]

≤ − b

2z2

[
(z1 + z2)2 + 3α(z3 − z4)2 + 2α(z1 + z2)(z4 − z3)

]
. (26)

Finally, note that if α ≤ 2 then α ≤ ln(4)
ln(4/3) , and then the two dimensional function (x, y) 7→ x2 +

3αy2+2αxy is positive on R2. So V is a Lyapunov function and its derivative is null only if z1 = z2 = 0 and
z3 = z4. We then conclude by using an argument similar to the one of the end of proof of Proposition B.2.
This finally proves the convergence of all positive trajectories to Equilibrium (25).

C.2 Proof of Proposition 3.1
Proposition 3.1 arises from two facts: we are able to exhibit stable set of alleles (see Figure 6) and we
can characterize the impact of mutations on the number of coexisting alleles in the population.

In fact, we obtain a stochastic process which jumps across stable states of the population depending
on the arrival of mutant alleles. This process is characterized by a transition matrix which explicits the
possible transitions and is represented on Figure 8.

Proof. The set of possible alleles is {0, 1}3. We first prove that the two following types of genetic
compositions are stable: (Stable population 1) Only the two most-differentiated alleles, (Stable population
2) four alleles that are all at distance 2 from each other.

We already know that (stable population 1) is stable from the end of Section 3.1. For (stable popu-
lation 2), we study the conditions for invasion of a mutant in a population composed of four alleles all at
distance 2 from each other. The new mutant will necessary be at distance 1 from 3 of the resident types,
and at distance 3 from the forth one. Then following the notations of Equation (9) in Section 2.3, we get
that S = (1, 1, 1, 3α)T . Therefore the new mutant can invade only if

1− STM−11

1TM−11
= 3× 2α−2

(
1− 1 + 3α−1

2α

)
< 0.

In particular for α ∈ [1, 2], this gives that the mutant cannot invade, hence the population with four
equidistant alleles is stable.
Now, we consider the different possible orders of mutations arising in the population to prove the propo-
sition. Let us assume without loss of generality, that the population starts with only individuals with

25



2 types at
distance 1

2 types at
distance 2

2 types at
distance 3

3 equidistant types

4 equidistant types

2/3

1/3

1/3

1/3

1/3

3/5

1/5

1/5

initial distribution

3/7 3/7

1/7

Figure 8: Transition matrix for the allelic composition of the population. The red color corre-
sponds to stable population states. Blue dashed arrows show the initial distribution after the
first mutation.

allele (0, 0, 0). The second arising allele in the population can be at distance 1 (with probability 3/7), 2
(with probability (3/7), or 3 (with probability 1/7), from (0, 0, 0). In any case, Proposition B.3 implies
that this mutant will invade and the population will then exhibit two different alleles at equilibrium.
- If this first mutant is at distance 3 from the resident allele (0, 0, 0), then the population has reached the
configuration (Stable population 1) and no new mutation will be able to invade.
- If the first mutant is at distance 2 from the resident allele (0, 0, 0), then there are 3 possibilities for the
second mutant (each arising with probability 1/3):

(i) The second mutant can be at distance 1 from each of the two pre-existing alleles. Then Equation
(9) shows that it cannot invade, if α > 1. The population thus stays with the two resident alleles,
at a distance 2 from each other.

(ii) it can be at distances 1 and 3 from the two first alleles, in which case only the mutant and its
opposite type will remain in the population (according to Proposition B.3 and since 3α > 2α + 1),
which corresponds to a configuration (Stable population 1).

(iii) The second mutant can be at distance 2 from the two pre-existing alleles. From Equation (8), the
population will then converge to an equilibrium with the three first alleles.
If the third mutant is in the fourth position at distance 2 from the three pre-existing alleles then
it will also invade (see Section 2.3). This mutant arises with probability 1/5 and brings the popu-
lation to (Stable population 2) (as illustrated in Fig. 6).
If the third mutant is in a position such that two most-differentiated alleles co-exist in the pop-
ulation then only these two alleles will remain (see Section C.1 for details). This occurs with
probability 3/5.
Lastly, if (with probability 1/5) the third mutant is at distance 1 from the three first types then it
cannot invade, according to Equation (9).

- Finally, if the first mutant is at distance 1 from (0, 0, 0), then there are two possibilities for the second
mutant :

(i) The second mutant is at distance 2 and 3 from the two resident alleles, respectively (with probability
1/3). Only the two most-differentiated alleles will then remain from Proposition B.3 and this
population state is stable.
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(ii) The second mutant is at distances 1 and 2 (with probability 2/3) from the pre-existing alleles,
respectively. Thus, one of the two pre-existing alleles will disappear and the population will exhibit
only two alleles, at distance 2 from each other, as already proved by Proposition B.3.

Finally, the transition graph of the genetic composition of the population is given in Figure 8. This gives
that the probability that the population ends up with 4 equidistant genotypes is equal to

3

7
×

1
3
2
3

×
1
5
4
5

+
3

7
× 2

3
×

1
3
2
3

×
1
5
4
5

=
5

56
.

D Complements of linear algebra
Proposition D.1 (Eigenvalue Interlacing Theorem). Let A ∈ Rn×n be a symmetric matrix and B be a
principal sub-matrix of size m < n. If λA1 ≥ λA2 ≥ · · · ≥ λAn the eigenvalues of A and λB1 ≥ · · · ≥ λBm the
eigenvalues of B. Then for any 1 ≤ k ≤ m

λAk ≥ λBk ≥ λAk+n−m.

In particular if m = n− 1 then

λA1 ≥ λB1 ≥ λA2 ≥ λB2 ≥ · · · ≥ λAn−1 ≥ λBn−1 ≥ λAn .

Proposition D.2 (Schur complement). Let M a matrix defined by blocs as M =

(
A B
C D

)
If D is

invertible then the complement of schur of D is defined by A−BD−1C. Moreover

det(M) = det(A)det(A−BD−1C)

For proof of these two results, see Example 7.5.3 and Section 6.2 in [21].
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