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Concentration in Lotka-Volterra parabolic equations: an
asymptotic-preserving scheme

Vincent Calvez∗, Hélène Hivert†, Havva Yoldaş‡

Abstract

In this paper, we introduce and analyze an asymptotic-preserving scheme for Lotka-Volterra parabolic
equations. It is a class of nonlinear and nonlocal stiff equations, which describes the evolution of a pop-
ulation structured with phenotypic trait. In a regime of long time and small mutations, the population
concentrates at a set of dominant traits. The dynamics of this concentration is described by a constrained
Hamilton-Jacobi equation, which is a system coupling a Hamilton-Jacobi equation with a Lagrange mul-
tiplier determined by a constraint. This coupling makes the equation nonlocal. Moreover, the constraint
does not enjoy much regularity, since it can have jumps.

The scheme we propose is convergent in all the regimes, and enjoys stability in the long time and small
mutations limit. Moreover, we prove that the limiting scheme converges towards the viscosity solution of
the constrained Hamilton-Jacobi equation, despite the lack of regularity of the constraint. The theoretical
analysis of the schemes is illustrated and complemented with numerical simulations.

1 Introduction
We are interested in the numerical analysis of a Lotka-Volterra parabolic equation ∂tnε(t, x)− ε∆xnε(t, x) =

nε(t, x)

ε
R(x, Iε(t)), x ∈ Rd, t > 0

Iε(t) =
∫
Rd ψ(x)nε(t, x)dx, t > 0,

(1)

supplemented with the initial condition nε(t = 0, x) = nin
ε (x) ∈ L1(Rd), such that nin

ε > 0. It is a particular
case of models arising in the theory of adaptative evolution [30, 18, 17, 29, 13]. It describes the evolution of
a population structured with phenotypic trait, where nε(t, x) denotes the amount of individuals with trait
x ∈ Rd at time t > 0. The evolution of the population is driven by births and deaths, synthesized in the
net growth rate R. Note that the birth and death rates depend on the phenotypic trait, meaning that some
individuals may be advantaged, because they are better adapted. The function R also depends on Iε, defined
in (1), accounting for the total population burden on each individual growth rate. Mutations in the model
are represented by unbiased random changes of phenotypes, with the Laplacian term in the left-hand side of
(1). The parameter ε ∈ (0, 1] in (1) is a scaling parameter, so that considering the limit ε→ 0 stands for the
study of the population in an asymptotic regime of long time and small mutations. This is usually referred
to as the separation of ecological and evolutionary time scales.

The asymptotic analysis of phenotype-structured population models has been carried out for various
situations, we refer for instance to [14, 33, 9, 12, 32, 27, 26]. The particular case of (1) was studied in
[34, 4, 28], and more general mutation operators than the one in (1) were considered in [5, 4]. Generally
speaking, because of the selection and the dynamics of adaptation, the population density is expected to
concentrate on a set of dominant traits, meaning that it degenerates to a Dirac mass, or a sum of Dirac
masses, located at the dominant trait(s). In particular, in the asymptotic regime ε → 0, the solution is
expected to enjoy no better than measure regularity, requiring dedicated analytical methods. The Hopf-Cole
transform, a logarithmic transformation of the unknown, is introduced to circumvent the regularity issues and
study the dynamics of the concentration points. Coming back to (1), the Hopf-Cole transform uε of nε is
introduced

∀ t > 0, ∀ x ∈ Rd, nε(t, x) = e−uε(t,x)/ε, (2)
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such that uε satisfies the following problem
∂tuε(t, x) + |∇xuε(t, x)|2 = ε∆xuε(t, x)−R(x, Iε(t)), x ∈ Rd, t > 0,

Iε(t) =

∫
Rd

ψ(x)e−uε(t,x)/εdx, t > 0,
(Pε)

with the initial data uε(t = 0, x) = uin
ε (x) = −ε lnnin

ε (x).
The asymptotic behavior of uε when ε→ 0 is studied in [4], under suitable assumptions on the parameters.

Following [4], we will suppose that there are two constants ψm, ψM such that

∀ x ∈ Rd, 0 < ψm 6 ψ(x) 6 ψM < +∞, and ψ ∈W 2,∞(Rd). (A1)

It is also assumed that there exist two constants 0 < Im 6 IM < +∞ satisfying

min
x∈Rd

R(x, Im) = 0, max
x∈Rd

R(x, IM ) = 0, (A2)

that R is decreasing with respect to its second variable, and that there exists a constant K > 0 such that

∀x ∈ Rd, ∀I ∈ R, −K 6 ∂IR(x, I) 6 −1/K < 0, and sup
Im/26I62IM

‖R(·, I)‖W 2,∞(Rd) 6 K. (A3)

In section 5, we will also use slightly stronger assumptions for R, namely that I 7→ ‖R(·, I)‖W 2,∞(R) is bounded
on all compact sets of R+. The initial data uin

ε in (Pε) is chosen such that

e−u
in
ε /ε ∈ L∞(Rd), Im 6

∫
Rd

ψ(x)e−u
in
ε (x)/εdx 6 IM . (A4)

Because of assumption (A4), uin
ε has to be large at infinity. However, in what follows, a quantitative estimate

of this behavior will be needed. Still following [4], we will then rather suppose that

∃ a, a > 0, ∃ b, b ∈ R, ∀ ε > 0, ∀x ∈ Rd, a|x− x0|+ b 6 uin
ε (x) 6 a|x− x0|+ b, (A5)

where the upper bound is introduced for technical reasons, see Section 4. Moreover, we will supose that uin
ε

enjoys Lipschitz regularity, uniformly with respect to ε > 0. Its Lipschitz constant is denoted by L0,

∀x, y ∈ Rd, |uin
ε (x)− uin

ε (y)| 6 L0|x− y|. (A6)

Eventually, a refined assumption is made on the minimum of uin
ε , as we suppose that there exist two constants

cinm and cinM such that
cinmε 6 minuin

ε 6 cinMε. (A7)

Under these assumptions, the following theorem holds

Theorem 1.1 ([4, 8]). Suppose that assumptions (A1)-(A2)-(A3)-(A4)-(A5)-(A6)-(A7) are satisfied. Let
uε be the solution of (Pε) and Iε be defined in (Pε). Suppose also that (uin

ε )ε is a sequence of uniformly
continuous functions which converges locally uniformly to vin. Then, (uε)ε converges locally uniformly to a
function v ∈ C([0,+∞[×Rd), and (Iε)ε converges almost everywhere to a function J , such that J ∈ BV (0, T )
for all T > 0, and that (v, J) is the unique viscosity solution of the following equation ∂tv(t, x) + |∇xv(t, x)|2 = −R(x, J(t)), x ∈ Rd, t > 0

min
x∈Rd

v(t, x) = 0 t > 0,
(P0)

with initial data vin.

Equation (P0) is a constrained Hamilton-Jacobi equation, with quadratic Hamiltonian

∀p ∈ Rd, H(p) = |p|2, (3)

where |·| stands for the Euclidean norm on Rd, and the unknown J behaves as a Lagrange multiplier regarding
the constraint min v(t, ·) = 0. In Theorem 1.1, uniqueness of the pair (v, J) holds true in the class of locally
Lipschitz-continuous functions v, and locally BV functions J . On the one side, Lipschitz regularity is a natural
setting for viscosity solutions of Hamilton-Jacobi equations [3, 16, 10]. On the other side, the limiting function
J may have jump discontinuities [34, 33, 4], so that BV is the appropriate functional space for well-posedness.
The existence of a solution (v, J) of (P0) is a consequence of [4], where it is obtained as the limit of the
sequence (uε, Iε)ε of solutions of (Pε), together with locally uniform Lipschitz and BV estimates, respectively.
The uniqueness of the pair (v, J) has been adressed in some particular cases in [34, 31, 23], then in [8] in a
more general setting including the problem under study. It is in fact composed of two companion results.
Considering (P0), the following holds
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Theorem 1.2 ([8]). (i). Suppose that (v1, J1) and (v2, J2) are two solutions of (P0) in W
1,∞
loc ×BVloc with

the same initial data vin. Assume that vin is coercive, that min vin = 0, and that R is uniformly
decreasing with respect to its second argument (A3). Then, v1 = v2, and J1 = J2 almost everywhere.

(ii). Let J ∈ BV (0, T ) be given. Then, the variational solution v of

∂tv(t, x) + |∇xv(t, x)|2 = −R(x, J(t)), t > 0, x ∈ Rd, (4)

with initial data vin, is the unique locally Lipschitz viscosity solution of (4) over (0, T ]×Rd. Moreover,
v is independent of the choice of a representative of J in BV . Namely, if (4) is considered with two
source terms J1 and J2 in BV (0, T ) such that J1 = J2 almost everywhere in (4), then v1 = v2.

Theorem 1.2 suggests the following argument, which will be a key strategy in the present work. It is
possible to consider J being given as a source term in (P0), and show separately that the solution satisfies the
constraint min v(t, ·) = 0, in order to prove that (v, J) is the unique viscosity solution of (P0). This enables
decoupling the Hamilton-Jacobi equation from its constraint.

In this paper, we propose and investigate a numerical scheme for (Pε) which enjoys stability properties
when the parameter ε goes to 0. Indeed, because of the definition of Iε in (Pε), the problem becomes stiff
in the small-ε regime. If no specific strategy was employed, the accuracy of the numerical approximation of
(Pε) would hence be deteriorated in the asymptotic regime. Schemes specifically designed for such singular
problems are called Asymptotic-Preserving (AP). They were introduced for kinetic equations [21, 24, 25], and
their properties are usually summarized by the following diagram

(Pε)
ε→ 0−−−−−−−→ (P0)

h→ 0

x
x h→ 0

(
Shε
)
−−−−−−−→
ε→ 0

(
Sh0
)

,

that should be understood as follows: an equation (Pε) depending on a parameter ε > 0 is given, and its
solution converges when ε → 0 to the solution of another equation (P0). The scheme

(
Shε
)
, where all the

discretization parameters are included in the notation h, enjoys the AP property if it converges to the solution
of (Pε) when ε > 0 is fixed and h → 0, and if its solution converges when h > 0 is fixed and ε → 0, to the
solution of another scheme

(
Sh0
)
. The latter scheme is required to be convergent to the solution of problem

(P0), when h → 0. Even if it is in general not true, an AP scheme can also enjoy the stronger property of
being Uniformly Accurate (UA), meaning that its precision is independent of ε. There is a large literature
about AP schemes for various asymptotics of kinetic equations [22, 15], but, to the best of our knowledge,
there are few results in case the asymptotic problem belongs to the class of Hamilton-Jacobi equations: a
scheme for front propagation in a one-dimensional kinetic linear BGK equation is analyzed in [20], a scheme
for dynamics of concentration in a selection-mutation equation close to (Pε) but with an integral mutation
kernel is proposed, tested but not analyzed in [6], and a model structured with age but where mutations are
not considered is treated in [1]. In contrast with AP schemes designed for linear kinetic equations, the latter
works share the following features: the nonlinear character of the continuous problem (Pε), and the need of
a specific numerical analysis for the approximation of Hamilton-Jacobi equations (P0).

The discretizations of the two problems (Pε) and (P0) raise several challenges. Concerning (Pε), the stiffest
term Iε is handled implicitly in the numerical approximation. It implies stability in the small ε limit, but it
requires the resolution of a nonlinear scalar equation, whose cost is independent of ε. The other terms are
discretized according to the properties expected for the scheme in the limit ε→ 0.

The numerical analysis of the constrained Hamilton-Jacobi problem (P0) is original, to the best of our
knowledge. We identified two important difficulties: the unbounded character of the solution on the one hand,
and the lack of regularity of J on the other hand. We propose a finite-difference scheme for (P0), which enjoys
partial monotonicity properties. The classical Hamilton-Jacobi side of the problem is handled with a standard
monotonic scheme compatible with the discrete maximum principle [11, 35]. The contribution issued from
the constraint comes with a nonlinear scalar problem to solve. During this step, the monotonicity of R with
respect to its second argument is crucially used to handle the lack of regularity. Thanks to this construction,
the scheme enjoys strong stability properties even if it is nonlocal, nonlinear, and it is used for unbounded
data.

The paper is organized as follows: the scheme for (Pε) is constructed, in Section 2, as well as the scheme
for the limit problem (P0). The AP property of the scheme for (Pε) is proved in Section 3. The convergence
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of the scheme for (P0) is proved in Section 4, while the convergence of the scheme for (Pε) for a given positive
ε > 0 is treated in Section 5. Finally, various properties of the schemes are illustrated and discussed via
numerical tests in Section 6.

Acknowledgment. The authors wish to thank Benoît Gaudeul for the proofreading of this paper. This
project has received funding from the European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation program (ERC consolidator grant WACONDY no 865711). HY was partially
supported by the Vienna Science and Technology Fund (WWTF) with a Vienna Research Groups for Young
Investigators project, grant VRG17-014 (since October 2021). The third author would like to thank the Isaac
Newton Institute for Mathematical Sciences for support and hospitality during the programme “Frontiers in
kinetic theory: connecting microscopic to macroscopic scales - KineCon 2022” when work on this paper was
undertaken. This work was supported by EPSRC Grant Number EP/R014604/1.

2 Construction of the scheme and main results
In this section, we present the construction of an AP scheme for (Pε) in dimension d = 1, and we state
its properties. Presenting the results in dimension 1 avoids useless technical complications in what follows.
However, the scheme can be generalized to any finite dimension, and its properties can be proved as in
dimension 1. The generalization of the scheme in higher dimension is presented in Section 6.6.

Let T > 0 be fixed, the number Nt of time steps be given. The time step is defined as ∆t = T/Nt, and let
tn = n∆t for n ∈ [[0, Nt]]. The trait step is denoted ∆x > 0, and the grid is defined with xi = x0 + i∆x for a
given x0 ∈ R and for all i ∈ Z. For n ∈ [[0, Nt − 1]] and i ∈ Z, the scheme for (Pε) is given by

un+1
i − uni

∆t
+H

(
uni − uni−1

∆x
,
uni+1 − uni

∆x

)
= ε

uni+1 − 2uni + uni−1

∆x2 −R(xi, I
n+1)

In+1 = ∆x
∑
i∈Z

ψ(xi)e
−un+1/ε.

(Sε)

Note that sequences (uni )n,i and (In+1)n depend on ε, although it is ommitted to simplify the notation. The
scheme is initialized with u0

i = uin
ε (xi) for all i ∈ Z. The function H is given by

H(p, q) = max
{
H+(p), H−(q)

}
, (5)

with

H+(p) =

{
p2 if p > 0

0 otherwise,
and H−(q) =

{
q2 if q < 0

0 otherwise.
(6)

Such a choice of discretization for the Hamiltonian H defined in (3) makes the scheme (Sε) enjoy monotonicity
properties. It is a classical assumption in numerical schemes for Hamilton-Jacobi equations, see [11, 35], and
discretizations like (5) were for instance used in [19]. Here, together with the implicit definition of In+1 in
(Sε), it provides stability properties in the small ε limit. Moreover, we will show that the monotonicity is
conserved when ε→ 0. It is a key ingredient of the convergence of the scheme in the asymptotic regime.

In what follows, we will denote, for a given L > 0,

CH(L) = sup
|p|6L

|(H+)′(p)|+ sup
|q|6L

|(H−)′(q)| = 4L. (7)

Then, the following results hold:

Proposition 2.1 (Convergence of the scheme (Sε)). Suppose that assumptions (A1)-(A2)-(A3)-(A5)-(A6)
are satisfied, and that ε > 0 and T > 0 are fixed. Let Λ ∈ (0, 1). There exists IM ′ > 0, and ∆t0 > 0 such that
for all ∆t < ∆t0 and ∆x satisfying

2ε
∆t

∆x2 + CH(L0 + Tκ)
∆t

∆x
= Λ, (CFLε)

with L0 defined in (A6), CH in (7), and

κ = sup
06I6IM′

‖R(·, I)‖W 2,∞(R), (8)
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scheme (Sε) is well defined. Moreover, there exists a constant C(ε), depending on T , ‖∂2
t uε‖∞,[0,T ]×R,

‖∂kxuε‖∞,[0,T ]×R for k = 1, 2, 3, and
∥∥∂2

x (ψnε)
∥∥
∞,[0,T ]×R, such that for all n ∈ [[0, Nt − 1]],

sup
i∈Z
|un+1
i − uε(tn+1, xi)| 6 C(ε)(| ln(∆t)|∆t+ ∆x), (9)

and ∣∣Iε(tn+1)− In+1
∣∣ 6 C(ε) (| ln(∆t)|∆t+ ∆x) , (10)

where uε and Iε are defined in (Pε), un+1 = (un+1
i )i∈Z and In+1 in (Sε), nε in (1) and ψ in (A1).

Remark 2.1. It is worth remarking that the L∞ norms of derivatives of uε and nε in Prop. 2.1 are well
defined, provided that ψ is smooth enough. Indeed, the bound for ‖∂xuε‖∞,[0,T ]×R is a consequence of the
Lipschitz property of uε in x, and comes from the maximum principle applied to (Pε) derivated with respect
to x. Bounds for higher order derivatives, as well as derivatives of nε, are consequences of Duhamel’s formula
for (1) and (Pε), and of regularizing effects of the Laplacian. As it is not the purpose of this paper, we omit
the details of these properties. One can refer to [16] for the necessary tools.
Remark 2.2. The estimate in | ln(∆t)|∆t in (9)-(10) comes from the quadrature rule in the approximation of
Iε. At first sight, this could be seen as a reduction of order of the scheme, compared to the order 1 in ∆t that
could be expected. However, because of (CFLε), one has ∆x =∆t→0 O(

√
∆t), so that the order reduction in

time has no impact on the precision of scheme (Sε).
Remark 2.3. The behavior of C(ε) when ε goes to 0 brings serious difficulties. Indeed, it goes to +∞ when
ε → 0, meaning that the time step ∆t should be refined according to ε to make (Sε) approximate (Pε)
properly. The asymptotic behavior of C(ε) for small ε does not only come from regularity issues of uε when
ε → 0. Indeed, it is strongly related to the fact that Prop. 2.1 holds for fixed ε > 0 only. In particular, the
constant κ in (CFLε) depends on ε and may go to +∞ when ε goes to 0. To overpass this difficulty, Prop.
2.1 is supplemented by the two forthcoming propositions, that give the behavior of (Sε) when ε is small.
Remark 2.4. Since the scheme (Sε) is a coupled system of two implicit equations, a nonlinear equation has to
be solved to compute (un+1

i )i∈Z and In+1. The fact that In+1 is well-defined is straightforward. Indeed, it is
solution of the equation ϕ(I) = 0, where

ϕ(I) = I −∆x
∑
i∈Z

ψ(xi)e
−ũn+1

i /εe∆tR(xi,I)/ε, (11)

with
ũn+1
i = uni + ε∆t

uni+1 − 2uni + uni−1

∆x2 −∆tH

(
uni − uni−1

∆x
,
uni+1 − uni

∆x

)
.

It is worth remarking that since ϕ is a difference between an increasing and a decreasing function, there exists
an unique In+1 ∈ R such that ϕ(In+1) = 0. This property is independent of ε, therefore the scheme (Sε) is well-
defined for all ε ∈ (0, 1]. In practice, In+1 is computed first, with Newton’s method for ϕ. However, it must
be implemented with care, to ensure that it is properly solved for all ε ∈ (0, 1], with constant computational
cost. The solution of equation (11) is uniformly bounded with respect to ε. Indeed, we prove in Section 3
that it is bounded by 2IM when ε is small enough, with IM defined in (A2), and a bound is given in Section
5 for larger ε, see Remark 5.3. However, (11) is very sensitive to approximations in the arguments of the
exponentials, that are dramatically increased when ε is small. As a consequence, the numerical resolution of
(11) can collapse during Newton’s iterations. To avoid such a phenomenon, Newton’s iterations are computed
as analytically as possible, and implemented with special care of the compensations between terms. When it
is not enough, ϕ(I) = 0 with ϕ defined in (11) is replaced by the equivalent equation

ln(I) = ln(∆x) + ln

(∑
i∈Z

ψ(xi)e
−ũn+1

i /εe∆tR(xi,I)/ε

)
,

that is also solved with Newton’s method. We refer to [6], and to the codes available at [7], for more details.
Remark 2.5. Since it is defined for indices i ∈ Z, the scheme (Sε) cannot be implemented exactly as it is
defined. However, Prop. 2.1 also holds for a truncated version of the scheme (Sε), in which the sum defining
In+1 is considered on a finite number of indices. We refer to Section 5 for details.

Proposition 2.2 (Convergence of the scheme (Sε) to the scheme (S0)). Under assumptions (A1)-(A2)-(A3)-
(A5)-(A6)-(A7), and supposing that ∆t and ∆x are fixed, such that

2ε
∆t

∆x2 + CH(L0 + TK)
∆t

∆x
6 1, (CFLε→0)

5



is satisfied for all ε ∈ (0, 1], where L0 is defined in (A6), K in (A3) and CH in (7). Let (un+1
i )n,i and (In+1)n

be the ε-dependent sequences defined by (Sε). Then, for all n ∈ [[0, Nt − 1]] and for all i ∈ Z,

un+1
i −→

ε→0
vn+1
i , In+1 −→

ε→0
Jn+1

where the sequences (vn+1
i )n,i and (Jn+1)n satisfy the scheme

vn+1
i − vni

∆t
+H

(
vni − vni−1

∆x
,
vni+1 − vni

∆x

)
= −R(xi, J

n+1), n ∈ [[0, Nt − 1]], i ∈ Z

min
i∈Z

vn+1
i = 0, n ∈ [[0, Nt − 1]],

(S0)

initialized with v0
i = vin(xi), for all i ∈ Z.

Remark 2.6. As in Remark 2.5, Prop. 2.2 also holds for the truncated scheme that is implemented in practice.
Remark 2.7. The well-posedness of (S0) is a consequence of Prop. 2.2. Indeed, the convergence of un+1

i and
In+1 when ε → 0 gives the existence of a solution of the implicit scheme (S0). The fact that (vn+1

i )i∈Z and
Jn+1 are uniquely defined follows from the proof of Prop. 2.2. Discussion about the direct implementation
of (S0) is postponed to Section 4.

The next proposition states that the solution of the scheme (S0) converges to the solution of the limit
equation (P0) when the discretization parameters go to 0. To this end, we extend the definition of the scheme
(S0), in order to make it coincide at the grid points with a function defined over [0, T ]×R, and we reformulate
it, so that the monotonic component of the scheme is taken apart. It can be seen as an operator, denoted by
Ms, acting on functions defined on R. Namely, for all s ∈ (0,∆t] and f : R→ R,Ms(f) : R→ R is defined
by

∀x ∈ R, Ms(f)(x) = f(x)− s H
(
f(x)− f(x−∆x)

∆x
,
f(x+ ∆x)− f(x)

∆x

)
. (Ms)

Suppose now that the ratio λ = ∆t/∆x is fixed. Let us define (t, x) 7→ v∆t(t, x) on [0, T ]×R, and t 7→ J∆t(t)
on (0, T ], such that for all n ∈ [[0, Nt − 1]], s ∈ (0,∆t], and x ∈ R,

v∆t(tn + s, x) =Ms (v∆t(tn, ·)) (x)− sR (x, J∆t(tn + s))

J∆t(tn + s) = Jn+1

min
i∈Z

v∆t(tn+1, xi) = 0,

(12a)

(12b)
(12c)

and initialized with v∆t(0, ·) = vin. The function J∆t is piecewise constant, with Jn+1 defined in (S0). It is
easy to remark, that v∆t and J∆t coincide with the solution of the scheme (S0) at the grid points

∀n ∈ [[0, Nt]], ∀i ∈ Z, v∆t(tn, xi) = vni , and ∀n ∈ [[0, Nt − 1]], J∆t(tn+1) = Jn+1.

This is due to the fact that the constraint min v∆t = 0 is only considered on the grid points in (12c).
For the sake of simplicity, let us denote

CH = CH(14(L0 +KT ) + 1), (13)

in what follows, where CH is defined in (7), L0 in (A6), and K in (A3).

Proposition 2.3 (Convergence of the scheme (S0)). Suppose that the assumptions of Theorem 1.1 are satis-
fied, and that vin satisfies (A5)-(A6)-(A7) for ε = 0. Suppose that the ratio ∆t/∆x is fixed such that

CH
∆t

∆x
6 1, and

∆t

∆x

√
(L0 + TK)2 +K 6 1, (CFL0)

with CH defined in (13), L0 in (A6), and K in (A3). Then for all t ∈ (0, T ] and for all x ∈ R,

|v∆t(t, x)− v(t, x)| −→
∆t→0

0,

and the convergence is locally uniform on (0, T ]× R. Moreover, for almost all t ∈ (0, T ],

|J∆t(t)− J(t)| −→
∆t→0

0,

where v and J are uniquely determined as the viscosity solution of (P0), and with v∆t, J∆t defined by (12).
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Remark 2.8. Remark that condition (CFL0) contains two items. Although they both show linear relations
between ∆t and ∆x, they are of very different nature. Indeed, the first one is a classical stability condition,
which yields in particular the monotonicity of scheme (Ms), with CH in (13) taken a few larger than necessary
for technical reasons. On the other hand, the second condition makes J∆t nondecreasing. This is crucial in
the compactness argument used to prove that J∆t converges when ∆t→ 0. We refer to Section 4 for details.
Remark 2.9. Contrary to Prop. 2.1, Prop. 2.3 does not give any convergence rate for scheme (S0). This
comes from the lack of regularity of the viscosity solution v and J of (P0). Indeed, J ∈ BV (0, T ), while v
enjoys Lipschitz regularity in [0, T ]×R. This property is a consequence of the definition of v as the variational
solution of (P0), but it is also obtained in Section 4, where v is shown to be a limit of Lipschitz functions.
According to this observation, one can come back to Prop. 2.1, and remark that no uniform bound in ε is to
be expected for C(ε), even if the estimates of the proof of Prop. 2.1 were made sharper.
Remark 2.10. Scheme (S0) can be implemented on a truncated domain, that is reduced at each time step,
but with no more approximation. Hence, Prop. 2.3 holds for the scheme that is implemented in practice.

3 Convergence of (Sε) to the limiting scheme (S0)
In this section, we prove that (Sε) enjoys stability properties with respect to ε ∈ (0, 1], thus Prop. 2.2 follows.
Prop. 2.2 states that, when ε goes to 0 with fixed discretization parameters, the solution of (Sε) converges to
the solution of (S0). It relies on a convenient reformulation of the scheme (Sε), for all n ∈ [[0, Nt − 1]] and for
all i ∈ Z 

un+1
i =Mε

∆t (un)i −∆tR(xi, I
n+1)

In+1 = ∆x
∑
i∈Z

ψ(xi)e
−un+1

i /ε,

(14a)

(14b)

where un = (uni )i∈Z, andMε
∆t (un) ∈ RZ is defined for all i ∈ Z by

Mε
∆t (un)i = uni + ε∆t

uni+1 − 2uni + uni−1

∆x2 −∆tH

(
uni − uni−1

∆x
,
uni+1 − uni

∆x

)
. (15)

As it has been announced in Section 2, the scheme (Sε) enjoys monotonicity properties. More precisely, it is
a consequence of the first step (15). Indeed, the following properties hold (see [11]):

Lemma 3.1. Let u = (ui)i∈Z and v = (vi)i∈Z ∈ RZ, and Mε
∆t defined as in (15). Let L > 0, and suppose

that 2ε∆t/∆x2 + ∆tCH(L)/∆x 6 1, with CH(L) defined in (7). Then the following results hold true

• If there exists i ∈ Z such that, |ui − ui±1| 6 L∆x, |vi − vi±1| 6 L∆x, and ∀j ∈ [[i − 1, i + 1]], uj 6 vj,
thenMε

∆t (u)i 6Mε
∆t (v)i.

• If for all i ∈ Z, |ui − ui−1| 6 L∆x, then for all i ∈ Z,
∣∣Mε

∆t (u)i −Mε
∆t (u)i−1

∣∣ 6 L∆x.

• If u− v = (ui − vi)i∈Z ∈ `∞(Z), and if, for all i ∈ Z, |ui − ui−1| 6 L∆x, and |vi − vi−1| 6 L∆x, then
Mε

∆t (u)−Mε
∆t (v) ∈ `∞(Z) and ‖Mε

∆t (u)−Mε
∆t (v)‖∞ 6 ‖u− v‖∞.

Using this lemma and the reformulation (14) of the scheme (Sε), stability properties of the scheme (Sε)
when ε goes to 0 are proved. The following lemma is stated:

Lemma 3.2. Suppose that assumptions (A1)-(A2)-(A3)-(A5)-(A6)-(A7) hold true, and that ∆t and ∆x are
fixed such that the inequality (CFLε→0) is satisfied. Then, there exists an ε0 > 0, depending only on the
constants arising in the assumptions and on ∆x and ∆t, such that for all ε ∈ (0, ε0), the sequence (uni )n,i
defined by the scheme (Sε) satisfies:

(i). Uniform Lipschitz continuity in trait: For all n ∈ [[0, Nt]], there exists a constant Ln = L0 + n∆tK 6
L0 + TK, with L0 defined in (A6) and K in (A3), such that the sequence un = (uni )i∈Z enjoys Ln-
Lipschitz property:

∀i ∈ Z,
∣∣∣∣uni+1 − uni

∆x

∣∣∣∣ 6 Ln.

(ii). Uniform bound from below for un: For all n ∈ [[0, Nt]], there exists bn ∈ R, such that bn > bNt
=

b− TH(a, a)− TK, and that for all i ∈ Z,

uni > a|xi − x0|+ bn,

where a and b have been defined in (A5), H in (5), K in (A3), and T is the fixed final time.
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(iii). Uniform bounds for (In)n∈[[1,Nt]]: For all n ∈ [[0, Nt − 1]],

Im/2 6 In+1 6 2IM .

(iv). Estimate for minun: There exist cm and cM such that for all n ∈ [[0, Nt]],

cmε 6 min
i∈Z

uni 6 cMε,

and cm 6 cinm and cM > cinM depend only on the constants defined in the assumptions and on ∆x and
∆t.

Proof. We proceed by induction. Thanks to the assumptions, the initial data u0 = (u0
i )i∈Z satisfies the

properties (i)-(ii) and (iv) of Lemma 3.2. Let us suppose that the items (i)-(ii)-(iv) of Lemma 3.2 hold true
for a given n ∈ [[0, Nt−1]], and prove that un+1 = (un+1

i )i∈Z enjoys these properties, while In+1 satisfies (iii).

• First of all, we recall that In+1 is well defined for all ε ∈ (0, 1], see Remark 2.4. We now prove that, if
ε 6 ε0, then In+1 > Im/2. For a given j ∈ Z, the following inequality holds

I −∆x
∑
i∈Z

ψ(xi)e
−Mε

∆t(u
n)i/εe∆tR(xi,I)/ε 6 I −∆xψme−M

ε
∆t(u

n)j/εe∆tR(xj ,I)/ε,

where we used (A1). An upper bound forMε
∆t (un)j is obtained thanks to the positivity of H and to

(i)

Mε
∆t (un)j = unj + ε

∆t

∆x

unj+1 − 2uni + unj−1

∆x
−∆tH

(
uni − uni−1

∆x
,
uni+1 − uni

∆x

)
6 unj + 2ε

∆t

∆x
Ln,

using the upper bound L0 + TK of Ln, and with the choice of j such that unj = mini∈Z u
n
i , property

(iv) provides

Mε
∆t (un)j 6 ε

(
cM + 2

L0 + TK

CH(L0 + TK)

)
,

where the estimate independent of ∆t and ∆x comes from (CFLε→0). This estimate yields

ϕ(I) 6 I −∆xψme−cM−2(L0+TK)/CH(L0+TK)e∆tR(xj ,I)/ε,

and the bound from below for In+1 in (iii) is then obtained by a contradiction argument. Indeed, since
ϕ is an increasing function, for all I < Im/2, the following inequality holds true

ϕ(I) 6 ϕ(Im/2) 6
Im
2
−∆xψme−cM−2(L0+TK)/CH(L0+TK)e∆tR(xj ,Im/2)/ε, (16)

and thanks to the strict monotonicity of R with respect to its second argument, together with (A2), one
can show that R(xj , Im/2) is uniformly positive with respect to j ∈ Z. Indeed, it writes

R(xj , Im/2) > R(xj , Im) +
Im
2K

,

thanks to (A3), and assumption (A2) eventually yields

R(xj , I) >
Im
2K

.

Coming back to (16), one has for all I 6 Im/2

ϕ(I) 6 ϕ(Im/2) 6
Im
2
−∆xψme−cM−2(L0+TK)/cH(L0+TK)e∆tIm/2Kε −→

ε→0
−∞,

hence there exists an ε1 > 0, depending only on Im, ψm, cM , CH , L0, T , K, ∆t, and ∆x, such that

∀ε ∈ (0, ε1), ∀I 6 Im/2, ϕ(I) 6 −1.

Since In+1 is defined as the solution of ϕ(In+1) = 0, the first inequality in (iii) holds true.

8



• The bound from below (ii) of (un+1
i )i∈Z, is a consequence of the monotonicity of the first step of the

scheme (Sε). Indeed, if we denote vni = a|xi − x0|+ bn, the scheme (15) applied to vn = (vni )i∈Z gives

Mε
∆t (vn)i =


a|xi − x0|+ bn −∆tH(a, a) if i 6= 0

bn + 2a
ε∆t

∆x
if i = 0,

since H(a, a) = H(−a,−a). Therefore,Mε
∆t (un)i >Mε

∆t (vn)i, for all i ∈ Z, thanks to Lemma 3.1, so
that  un+1

i > a|xi − x0|+ bn −∆tH(a, a)−∆tR(xi, I
n+1) if i 6= 0

un+1
0 > bn + 2a

ε∆t

∆x
−∆tR(x0, I

n+1).

Since In+1 > Im/2, and I 7→ R(xi, I) is decreasing for all i ∈ Z, the choice bn+1 = bn−∆tH(a, a)−∆tK
yields (ii) thanks to (A3).

• The second inequality in (iv) is a consequence of the bound from below of (un+1
i )i∈Z, as well as the one

for In+1. Indeed, considering ε ∈ (0, ε1), the definition of In+1 yields

Im/2 6 In+1 6 ∆x
∑
i∈Z

ψ(xi)e
−un+1

i /ε,

and for an integer N > 1, which will be determined later, the following inequality holds true

Im/2 6 ∆x
∑
|i|<N

ψ(xi) e−u
n+1
i /ε + ∆x

∑
|i|>N

ψ(xi) e−(bNt
+a|xi−x0|)/ε,

because of (ii). In both terms, we use (A1), and since xi − x0 = i∆x, we have

Im/2 6 (2N − 1)∆x ψM e
−min

i∈Z
un+1
i /ε

+ 2∆x ψM e−(bNt
+aN∆x)/ε

∑
i>0

e−ai∆x/ε.

Therefore, N is chosen such that bNt
+ aN∆x > 1. Note that this choice is independent of n, and that

it depends only on the assumptions, and ∆x. Hence, the previous inequality can be simplified as

Im/2 6 (2N − 1)∆x ψM e
−min

i∈Z
un+1
i /ε

+
2∆x ψM e−1/ε

1− e−a∆x/ε
,

and ε2 can be defined, as a function of the parameters arising in the assumptions and of ∆x, but
independently of n such that

∀ε ∈ (0, ε2),
2 ∆x ψM e−1/ε

1− e−a∆x/ε
6 Im/4,

so that for 0 < ε < min(ε1, ε2), the second inequality in (iv) is satisfied, with

cM = max

{
− ln

(
Im

4(2N − 1)∆xψM

)
, cinM

}
.

Once again, it is worth noticing that this choice is independent of n.

• The previous results yield the inequality In+1 6 2IM in (iii). Indeed, thanks to (iv), uni > cmε for all
i ∈ Z, and because of the monotonicity of (15), this implies that

∀i ∈ Z, Mε
∆t (un)i > cmε.

Moreover the bound from below (ii) satisfied by un+1 = (un+1
i )i∈Z, ensures that there exists an index

k ∈ Z such that un+1
k = mini∈Z u

n+1
i 6 cMε. The definition of un+1

i at line (14a) yields

∆tR(xk, I
n+1) =Mε

∆t (un)k − u
n+1
k > −(cM − cm)ε > ∆tR(xk, IM )− (cM − cm)ε,

where the last inequality has been obtained considering that R(xk, IM ) 6 0, according to (A2). One
can conclude similarly as above, using (A3) to write

∆tR(xk, I
n+1) > ∆tR(xk, 2IM ) +

∆tIM
K

− ε(cM − cm).
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Denoting ε3 = ∆tIM/(K(cM−cm)), the previous inequality states that for all ε ∈ (0, ε3), R(xk, I
n+1) >

R(xk, 2IM ). Once again, we emphasize the fact that ε3 is defined once for all since it depends only on
the assumptions and on ∆t, and it is independent of n. The second inequality in (iii) follows, since R
is decreasing with respect to I.

• The first inequality in (iv) is a consequence of the previous result. Indeed, thanks to the definition of
In+1 in (14b) and to (A1), one has

∀i ∈ Z, ψm ∆x e−u
n+1
i /ε 6 ∆x

∑
i∈Z

ψ(xi)e
−un+1

i /ε = In+1 6 2IM .

It gives that ∀i ∈ Z, un+1
i > cmε, where cm = min

{
− ln

(
2IM
ψm∆x

)
, cinm

}
, depends only on the constants

defined in the assumptions and on ∆x, and is independent of n.

• Eventually, Lemma 3.1 yields thatMε
∆t(u

n) enjoys Ln-Lipschitz property. The Ln+1-Lipschitz bound
(i) of un+1 is then a consequence of (iii) and (A3).

Eventually, we denote ε0 = min(ε1, ε2, ε3), such that Lemma 3.2 holds.

This technical lemma provides the necessary tools to prove the convergence of the sequences defined by
the scheme (Sε) to the sequences defined by the scheme (S0):

Proof of Prop. 2.2. As for the proof of Lemma 3.2, we proceed by induction. Thanks to the assumptions,
there exists a sequence (v0

i )i∈Z such that u0
i −→
ε→0

v0
i for all i ∈ Z. We suppose that it is true for a given

n ∈ [[0, Nt − 1]] and we prove that there exist (vn+1
i )i∈Z and Jn+1 ∈ R such that

∀i ∈ Z, un+1
i −→

ε→0
vn+1
i , and In+1 −→

ε→0
Jn+1.

First of all, (uni )i∈Z enjoys the Lipschitz property (i) of Lemma 3.2, and (CFLε→0) holds. These properties
are uniform with respect to ε small enough, thus the convergence of the first step (15) of the scheme (Sε)
follows immediately

∀i ∈ Z, Mε
∆t(u

n)i −→
ε→0
M0

∆t(v
n)i = vni −∆tH

(
vni − vni−1

∆x
,
vni+1 − vni

∆x

)
.

Moreover, Lemma 3.2 gives that (In+1)ε∈(0,ε0) is uniformly bounded with respect to ε, so that In+1 −→ Jn+1

when ε→ 0, up to an extraction. It provides an extraction of (un+1
i )ε∈(0,ε0) such that

∀i ∈ Z, un+1
i −→

ε→0
vn+1
i =M0

∆t(v
n)i −∆tR(xi, J

n+1),

and such that mini∈Z v
n+1
i = 0, thanks to the point (iv) of Lemma 3.2. Hence, (vn+1

i )i∈Z satisfies the scheme
(S0).

To conclude the proof, one has to prove that all extractions of (In+1)ε∈(0,ε0) converge to the same limit.
We proceed by contradiction, supposing that there are two extractions which converge respectively to Jn+1

a

and Jn+1
b , with Jn+1

a < Jn+1
b . As previously, it provides two extractions of (un+1

i )ε∈(0,ε0) which converges
respectively to vn+1

i,a and vn+1
i,b when ε→ 0, where

∀i ∈ Z, vn+1
i,a = ṽn+1

i −∆tR
(
xi, J

n+1
a

)
and min

i∈Z
vn+1
i,a = 0,

∀i ∈ Z, vn+1
i,b = ṽn+1

i −∆tR
(
xi, J

n+1
b

)
and min

i∈Z
vn+1
i,b = 0,

and as R is decreasing with respect to its second variable (A3),

∀i ∈ Z, vn+1
i,a − v

n+1
i,b = ∆t

(
R
(
xi, J

n+1
i,b

)
−R

(
xi, J

n+1
i,a

))
< 0.

Eventually, we remark that (vn+1
i,b )i∈Z is increasing enough at infinity, since the inequality (ii) of Lemma 3.2

is uniform with respect to ε when ε→ 0. As a consequence,

∃j ∈ Z, vn+1
j,b = min

i∈Z
vn+1
i,b = 0.

But the previous inequality then gives that vn+1
j,a < 0, which contradicts with the fact that mini∈Z v

n+1
i,a = 0.
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4 Convergence of the limiting scheme (S0)
As in Section 3, stability estimates for the scheme (S0) are obtained using the convenient reformulation (12) of
the scheme (S0), in which the monotonic component of the scheme (Ms) is taken apart. We start by recalling
useful properties of the monotonic scheme (Ms) (see [11]):

Lemma 4.1. Let s ∈ (0,∆t] andMs defined as in (Ms). Let L > 0, and suppose that ∆tCH(L) 6 ∆x, with
CH(L) defined in (7). Then the following results hold true

(i). If f(x), f(x±∆x), g(x) and g(x±∆x) are such that f(x) 6 g(x), f(x±∆x) 6 g(x±∆x), and∣∣∣∣f(x)− f(x±∆x)

∆x

∣∣∣∣ 6 L,

∣∣∣∣g(x)− g(x±∆x)

∆x

∣∣∣∣ 6 L,

thenMs(f)(x) 6Ms(g)(x).

(ii). In particular, if f and g are two L-Lipschitz functions such that, f 6 g, then Ms(f) 6Ms(g). More-
over, bothMs(f) andMs(g) are L-Lipschitz continuous.

Remark 4.1. In particular, using the notations and assumptions of Lemma 4.1, if f : R 7→ R is a L-Lipschitz
function such that ∀i ∈ Z, f(xi) > 0, then ∀i ∈ Z, Ms(f)(xi) > 0. Moreover, if

∃(a, a) ∈ [0, L]2, ∃(b, b) ∈ R2, ∀x ∈ R, a|x− x0|+ b 6 f(x) 6 a|x− x0|+ b,

then
∀x ∈ R, a|x− x0|+ b− sH(a, a) 6Ms(f)(x) 6 a|x− x0|+ b.

Using these notations, we prove the following lemma, which establishes stability properties of the scheme
(S0), as well as the fact that J∆t is nondecreasing.

Lemma 4.2. Suppose that the assumptions of Prop. 2.3 are satisfied, and that v∆t and J∆t are defined in
(12). The following results hold:

(i). Uniform Lipschitz continuity in trait: for all t ∈ [0, T ], there exists a constant Lt = L0 + tK 6 LT , with
L0 defined in (A6) and K in (A3), such that v∆t(t, ·) is Lt-Lipschitz continuous.

(ii). Uniform Lipschitz continuity in finite time: for all x ∈ R, v∆t(·, x) is (L2
T +K) Lipschitz continuous on

[0, T ], where LT is defined in (i) and K in (A3).

(iii). Uniform bounds for v∆t: for all t ∈ [0, T ], there exist bt, bt ∈ R such that bt = b − tH(a, a) − tK and
bt = b+ tK, such that

∀x ∈ R, a|x− x0|+ bt 6 v∆t(t, x) 6 a|x− x0|+ bt.

where a, a, b and b are defined in (A5), H in (5), and K in (A3).

(iv). Uniform bounds for J∆t: ∀t ∈ (0, T ], Im 6 J∆t(t) 6 IM .

(v). Monotonicity of J∆t: J∆t is nondecreasing on (0, T ].

Remark 4.2. This lemma is similar to the stability properties stated in Section 3, but it is important to notice
that all the constants are independent of the discretization. Moreover, the result (v) only holds for the limit
scheme (S0).

Remark 4.3. Lemma 4.2 gives hints for the implementation of (S0) independently of (Sε). Indeed thanks to
the properties above, and to (A2)-(A3),

[Im, IM ] 3 J 7→ min
i∈Z

{
vni −∆tH

(
vni − vni−1

∆x
,
vni+1 − vni

∆x

)
−∆tR(xi, J)

}
, (17)

is increasing, takes a negative value at Im, a positive one at IM , and it is equal to 0 at Jn+1. One can
also notice that it is continuous, as the minimum in (17) is taken on a finite number of indices, thanks to
Lemma 4.2-(iii) and (A3). Even with no further result on the regularity of R, and hence on (17), Jn+1 can
be approximated, for instance by dichotomy. In practice, an approximated Newton’s method works, and it is
more efficient in terms of computational time.
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Proof. We start by proving (i)-(iii) and (iv) by induction. Let n ∈ [[0, Nt−1]]. Suppose that (i)-(iii) are true
for v∆t(tn, ·), as it is the case for the initial data vin thanks to (A5)-(A6). Let n ∈ [[0, Nt− 1]] and s ∈ (0,∆t].
In what follows, we show that v∆t(tn + s, ·) satisfies (i)-(iii), and that J∆t(tn+1) satisfies (iv):

• Let j realize the minimum of (v∆t(tn, xi))i∈Z. Hence v∆t(tn, xj) = 0 thanks to (12b), and the definition
of H in (5) yields

M∆t (v∆t(tn, ·)) (xj) = 0.

Coming back to (12a), we have

−∆tR (xj , J∆t(tn+1)) = v∆t(tn+1, xj) > 0,

and we obtain that Im 6 J∆t(tn+1) thanks to (A2) and (A3).

• Notice that since (CFL0) is satisfied, the first step (Ms) of the scheme (S0) is monotonic. Hence, Lemma
4.1 gives

∀x ∈ R, a|x− x0|+ btn − sH(a, a) 6Ms ((v∆t(tn, ·)) (x),

so that v∆t(tn + s, x) > a|x− x0|+ btn − sH(a, a)− sR(x, J∆t(tn + s)). The monotonicity of R(x, ·) as
well as the lower bound for J∆t(tn + s) yield

a|x− x0|+ btn+s 6 v∆t(tn + s, x),

with btn+s = btn − sH(a, a)− sK, thanks to (A3).

• Since v∆t(tn, xi) > 0 for all i ∈ Z, Lemma 4.1 yields that

∀i ∈ Z, M∆t (v∆t(tn, ·)) (xi) > 0.

Consider then k ∈ Z such that

v∆t(tn+1, xk) = min
i∈Z

v∆t(tn+1, xi) = 0.

Note that such a k exists, thanks to the previous step of the proof. We obtain

∆tR (xk, J∆t(tn+1)) =M∆t (v∆t(tn, ·)) (xk) > 0,

thanks to (12a). The inequality J∆t(tn+1) 6 IM is then a consequence of assumptions (A2) and (A3).
The bounds for J∆t in (iv) follow, since it is constant on (tn, tn+1].

• Once again, the monotonicity of the first step (Ms) of scheme (S0), yields

∀x ∈ R,Ms (v∆t(tn, ·)) (x) 6 a|x− x0|+ btn ,

so that property (iii) is proved with btn+s = btn + sK, thanks to (A3).

• Similarly, v∆t(tn + s, ·) is Ltn+s-Lipschitz continuous thanks to Lemma 4.1 and (A3).

The Lipschitz-in-time property (ii) is a consequence of (i). We now show that J∆t(tn+1) > J∆t(tn).
Recalling that J∆t is constant on (0,∆t] and that is not defined at t = 0, we then suppose that n ∈ [[1, Nt−1]].
Considering an index j such that v∆t(tn, xj) = mini∈Z v∆t(tn, xj) = 0, (12a) yield

R(xj , J∆t(tn+1)) 6 0,

as previously. Let us now consider the previous step of the scheme, at the same index j. As this part of the
proof only uses points of the grid, we use rather the formulation (S0) for the sake of simplicity. We have,

vnj − v
n−1
j

∆t
+H

(
vn−1
j − vn−1

j−1

∆x
,
vn−1
j+1 − v

n−1
j

∆x

)
+R(xj , J

n) = 0

vnj = min
i∈Z

vni = 0.

(18)

Since all the vn−1
i for i ∈ Z are nonnegative, one has

vn−1
j − vn−1

j−1

∆x
6
vn−1
j

∆x
, and

vn−1
j+1 − v

n−1
j

∆x
>
−vn−1

j

∆x
.
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Moreover, because H is increasing with respect to its first variable and decreasing with respect to the second
one, the following inequality holds

H

(
vn−1
j − vn−1

j−1

∆x
,
vn−1
j+1 − v

n−1
j

∆x

)
6 H

(
vn−1
j

∆x
,
−vn−1

j

∆x

)
=

(
vn−1
j

∆x

)2

,

where the last equality comes from the expression of H, see (5). Once injected in (18), we obtain

R(xj , J
n) >

vn−1
j

∆t

(
1− ∆t

∆x2 v
n−1
j

)
,

and the right hand side of this inequality is positive. Indeed, thanks to the Lipschitz-in-time property (ii),
we have ∣∣∣∣∣vnj − v

n−1
j

∆t

∣∣∣∣∣ =
vn−1
j

∆t
6 L2

T +K,

and the condition (CFL0) yields the result. To conclude, let us remark that

R (xj , J∆t(tn+1)) 6 0 6 R (xj , J
n) = R (xj , J∆t(tn)) , (19)

and use the fact that R is decreasing with respect to its second variable. The monotonicity of J∆t in (v)
follows immediately since it is constant on the interval (tn, tn+1].

Remark 4.4. Let us emphasize the fact that the above proof strongly relies on considerations on the minimum
of (vnj )j . This bears similarities with [34], where the relation R(x(t), J(t)) = 0, with x(t) = arg min v(t, ·), is
used to study J . In the discrete setting, (19) is the equivalent of this relation.

The next step consists in establishing the convergence of v∆t and J∆t defined in (12) when ∆t and ∆x go
to 0 with ∆t/∆x fixed. The following results hold

Lemma 4.3. Suppose that the assumptions of Prop. 2.3 are satisfied, and that v∆t, J∆t are defined by (12).
Then,

(i). Convergence of (v∆t)∆t>0: there exists v0 ∈ C0([0, T ]× R), such that

∀(t, x) ∈ [0, T ]× R, v∆t(t, x) −→
∆t→0

v0(t, x) up to a subsequence,

and with min v0(t, ·) = 0, for all t ∈ [0, T ]. Moreover, the convergence is locally uniform on [0, T ]× R.

(ii). Convergence of (J∆t)∆t>0: there exists J0 ∈ BV (0, T ), lower semi-continuous, such that

for almost all t ∈ (0, T ], J∆t(t) −→
∆t→0

J0(t) up to a subsequence.

Moreover, J0 is nondecreasing, and ∀t ∈ (0, T ], Im 6 J0(t) 6 IM .

Proof. Thanks to Lemma 4.2, the family (v∆t)∆t>0 is composed of Lipschitz functions, having the same
Lipschitz constant. Considering R > 0, one can notice that since v∆t enjoys Lipschitz-in-time regularity

‖v∆t‖L∞([0,T ]×[−R,R]) 6 (L2
T +K)T + ‖vin‖L∞([−R,R]),

hence the family (v∆t) satisfies the hypothesis of Ascoli’s theorem for (t, x) ∈ [0, T ] × [−R,R]. Then, there
exists a function v0 ∈ C0([0, T ] × R) such that v∆t −→∆t→0 v0 uniformly on [0, T ] × [−R,R]. Moreover,
(v∆t)∆t is a sequence of uniformy coercive and Lipschitz functions, such that

∀n ∈ [[0, Nt]], min
i∈Z

v∆t(tn, xi) = 0.

Hence, there exists a constant c such that for all t ∈ [0, T ],

|min v∆t(t, ·)| 6 c(∆t+ ∆x),

and min v0(t, ·) = 0 is a consequence of the local uniform convergence of (v∆t)∆t to v0. This proves (i).
The second point (ii) is a consequence of Helly’s selection theorem. Indeed, Lemma 4.2-(iv)-(v) states

that (J∆t)∆t>0 is a sequence of uniformly bounded BV functions with uniformly bounded total variation.
Hence, there exists a BV function J̃0 such that

J∆t −→
∆t→0

J̃0, pointwise in (0, T ] up to a subsequence.

Moreover, J̃0 is nondecreasing, and Im 6 J̃0 6 IM , since these properties hold for all J∆t. Considering a lower
semi-continuous function J0 such that J0 = J̃0 almost everywhere in (0, T ] yields the result.
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Remark 4.5. In what follows, the mention ∆t→ 0 will always refer to a subsequence for which the convergences
of Lemma 4.3 hold true.

Remark 4.6. Note that, although it is not defined by the scheme, a value for J∆t(0) is needed in what follows,
because of the compactness argument used below. When it is necessary, we define J∆t(0) = J1. This choice
consists in extending continuously J∆t at 0, but it has no meaning from the point of view of the constraint of
the scheme. However, it is well-suited to the fact that J∆t is bounded and nondecreasing.

To complete the proof of Prop. 2.3, it remains to identify v0 = v and J0 = J almost everywhere, where
(v, J) is the viscosity solution of (P0). However, J0 enjoys only BV regularity, and in particular it is not
expected to be continuous (we refer to Section 6, where numerical tests show that J0 can have jumps). As
a consequence, general convergence results of numerical schemes for Hamilton-Jacobi equations such as [11]
cannot be applied directly. To the best of our knowledge, there is no general framework for finite-differences
numerical schemes for Hamilton-Jacobi equation when the Hamiltonian is not continuous in time. In what
follows, we propose a proof of the convergence of the scheme (S0) to the viscosity solution of (P0). The key
ingredient of the proof is an appropriate regularization of J∆t and J0, used in [2], and also in [8] for the study
of the uniqueness of viscosity solution of constrained Hamilton-Jacobi equation. For k > 0 and ∆t > 0, let us
define

∀t ∈ [0, T ], Jk∆t(t) = inf
s∈[0,T ]

(J∆t(s) + k|t− s|). (20)

The following results hold true

Lemma 4.4. Suppose that the assumptions of Prop. 2.3 are satisfied. Let Jk∆t and J
k
0 defined by (20). Then,

(i). For all ∆t > 0, and for all k > 0, Im 6 Jk∆t 6 IM , and Jk∆t is a nondecreasing function on [0, T ].

(ii). For fixed ∆t > 0, and for all t ∈ [0, T ], Jk∆t(t)↗ J∆t(t) when k → +∞.

(iii). For fixed ∆t > 0, Jk∆t is a k-Lipschitz function on [0, T ].

(iv). For fixed k > 0, ‖Jk∆t − Jk0 ‖∞ −→
∆t→0

0.

Proof. We only detail the proof of (iv). Let k > 0 be fixed. From Lemma 4.3, J∆t(t) → J0(t) almost
everywhere in [0, T ] when ∆t→ 0. We first remark that

Jk∆t(t) −→
∆t→0

Jk0 (t) a. e. in [0, T ]. (21)

Indeed, let us consider t ∈ [0, T ] such that J∆t(t)→∆t→0 J0(t). Since (Jk∆t(t))∆t>0 is a bounded sequence, it
admits a converging subsequence, once again denoted by (Jk∆t(t))∆t>0. Let us denote by ` its limit. Since

∀s ∈ [0, T ], Jk∆t(t) 6 J∆t(s) + k|t− s|,

then letting ∆t→ 0 in the previous inequality yields

∀s ∈ [0, T ], ` 6 J0(s) + k|t− s|,

so that ` 6 Jk0 (t). Moreover, as Jk∆t(t) is defined as an infimum,

∀n ∈ N∗, ∃s∗n ∈ [0, T ], J∆t(s
∗
n) + k|t− s∗n| −

1

n
6 Jk∆t(t).

Since (s∗n)n>1 converges (up to an extraction) to s∗ ∈ [0, T ] when n→ +∞, taking the lim inf in the previous
inequality gives

J0(s∗) + k|t− s∗| 6 `,

because J0 is lower semi-continuous. As a consequence Jk0 (t) 6 `. The only adherence value of (Jk∆t(t))∆t>0 is
then Jk0 (t), which yields (21). To conclude, the uniform convergence in (iv) is a consequence of the convergence
almost everywhere of a family of Lipschitz functions defined on a compact domain.

Remark 4.7. The uniform convergence in Lemma 4.4-(iv) does not generally hold true in the limit k → ∞.
This result will only be used for fixed k > 0.
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Now that Jk∆t and J
k
0 are defined, we consider them as a source term respectively in the scheme and in

the equation. Namely, let us define vk the viscosity solution of the Hamilton-Jacobi equation

∂tv
k + |∇xvk|2 = −R(x, Jk0 ), x ∈ R, t > 0, (22)

with initial data vin. Thanks to the Lipschitz properties of the right-hand side of (22), vk exists, is uniquely
determined, and enjoys Lipschitz-regularity properties. Moreover, the following lemma establishes that, be-
cause of the construction of Jk0 , vk converges when k → +∞ to the viscosity solution of (22) with J0 instead
of Jk0 . Similarly, let us define vk∆t by

vk∆t(tn + s, x) =Ms(v
k
∆t(tn, ·))(x)− s R(x, Jk∆t(tn + s)), (23)

for all n ∈ [[0, Nt − 1]], s ∈ (0,∆t], and x ∈ R, withMs defined in (Ms), and initialized with vk∆t(0, ·) = vin.
The properties of vk and vk∆t are summarized in the following lemma:

Lemma 4.5. Suppose that the assumptions of Prop. 2.3 are satisfied. Let k > 0, vk and vk∆t defined by (22)
and (23). Then, vk and vk∆t enjoy the following properties

(i). Uniform Lipschitz continuity in trait: for all t ∈ [0, T ], vk(t, ·) and vk∆t(t, ·) are LT -Lipschitz continuous,
with LT defined in Lemma 4.2-(i).

(ii). Uniform Lipschitz continuity in finite time: for all x ∈ R, vk(·, x) and vk∆t(·, x) are (L2
T +K)-Lipschitz

continuous on [0, T ], where LT is defined in Lemma 4.2-(i), and K in (A3).

(iii). Uniform bounds for vk: for all (t, x) ∈ [0, T ]× R,

b−KT 6 vk(t, x) 6 a|x− x0|+ b+ TK,

where K, b, b, and a are defined in (A3) and (A5).

(iv). Uniform bounds for vk∆t: for all (t, x) ∈ [0, T ],

a|x− x0|+ bt 6 vk∆t(t, x) 6 a|x− x0|+ bt, (24)

where a, bt, a and bt are defined in (A5) and in Lemma 4.2-(iii).

(v). Monotonicity of the approximation: vk ↗ v∞ when k → +∞, pointwise in [0, T ]×R , where v∞ is the
viscosity solution of

∂tv
∞ + |∇xv∞|2 = −R(x, J0), x ∈ R, t ∈ (0, T ], (25)

initialized with vin.

(vi). Monotonicity of the approximation: vk∆t 6 v∆t, where v∆t is defined in (12).

Proof. Concerning the properties of vk, the points (i) and (ii) are natural properties of viscosity solution of
(22), while (iii) is a consequence of the comparison principle. Point (v) is proved in [8].

Concerning vk∆t, since we suppose that (CFL0) is satisfied, the proofs of the first points of Lemma 4.2
can be applied. This yields immediately (i)-(ii) and (iv). The last point of the Lemma is a consequence of
the monotonicity of the scheme (Lemma 4.1), and is done by induction. Indeed, the inequality (vi) holds
true at t = 0. Moreover, v∆t and vk∆t enjoy the Lipschitz properties of Lemmas 4.2-(i)-(ii) and 4.5-(i)-(ii),
and (CFL0) is satisfied. As a consequence, the first step (Ms) of the reformulation of the scheme (S0) is
monotonic. Hence, if vk∆t(tn, ·) 6 v∆t(tn, ·), one has Ms(v

k
∆t(tn, ·)) 6 Ms(v∆t(tn, ·)) for all s ∈ (0,∆t).

Eventually, we use Lemma 4.4 and the fact that R is noincreasing in its second variable to conclude that
vk∆t(tn + s, ·) 6 v∆t(tn + s, ·) for all s ∈ (0,∆t].

Remark 4.8. Note that, contrary to the non-regular problems (P0) and (S0), there is no constraint neither on
min vk(t, ·), nor on mini∈Z v

k
∆t(tn+1, xi).

Now that the problem is regularized, we can use viscosity procedures to show that scheme (S0) converges
to the viscosity solution of (P0). Following the ideas developped in [11], let us define an auxiliary function

ψ(t, x, τ, ξ) = vk(t, x)− vk∆t(τ, ξ)−
(x− ξ)2

2∆x1/2
− (t− τ)2

2∆t1/2
−
(
σ + 4C2

HαeT
)
t (26)

− αet

2
(x2 + ξ2)− α

T − t
for all (t, x, τ, ξ) ∈ [0, T [×R× [0, T ]×R. Here, α ∈ (0, 1), and σ is positive and will be determined later. The
functions vk and vk∆t are defined in (22) and (23), Then, ψ satisfies the following properties.
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Lemma 4.6. Suppose that the assumptions of Prop. 2.3 hold, and that ψ is defined by (26). Then

• For all α, and σ positive, ψ admits a global maximum. It is reached at (t∗, x∗, τ∗, ξ∗) ∈ [0, T [×R ×
[0, T ]× R.

• There exists σ = σ(∆t, k) with σ(∆t, k)→∆t→0 0 (when k > 0 is fixed), and ∆t0 > 0, such that for all
α ∈ (0, 1) and for all ∆t < ∆t0, t∗ 6 2(L2

T +K)∆t1/2, where K and LT are defined in (A3) and Lemma
4.2-(i).

Proof. The first point of the Lemma is immediate, thanks to Lemma 4.5-(iv)-(iii). The idea of the proof of
the second point is very similar to what is done in [11], where monotonic schemes for bounded solutions of
Hamilton-Jacobi equations are studied. However, it is worth noticing that, in our framework the boundedness
hypothesis is lacking, since it would contradict with the definition of Iε in (Pε). Moreover, the proof we
propose below spies the influence of the regularizations Jk0 and Jk∆t of J0 and J∆t through the parameter k.
Indeed, it is necessary to come back to the non-regularized problem.

Step (i). Since ψ(t∗, x∗, τ∗, ξ∗) > ψ(t∗, 0, τ∗, 0), we have

α
et
∗

2
(x∗2 + ξ∗2) 6 vk∆t(τ

∗, 0)− vk∆t(τ∗, ξ∗) + vk(t∗, x∗)− vk(t∗, 0).

Then, Lemma 4.5-(i) gives

α
et
∗

2
max {|x∗|, |ξ∗|}2 6 LT |ξ∗|+ LT |x∗|,

which yields
αet

∗
max {|ξ∗|, |x∗|} 6 4LT . (27)

Step (ii). We proceed as in the previous step. Comparing the values of ψ at (t∗, x∗, τ∗, ξ∗) and (t∗, x∗, τ∗, x∗),
we obtain

(x∗ − ξ∗)2

2∆x1/2
6 vk∆t(τ

∗, x∗)− vk∆t(τ∗, ξ∗) + α
et
∗

2
(x∗2 − ξ∗2),

and Lemma 4.5-(i) and (27) give

|t∗ − τ∗| 6 2(L2
T +K)∆t1/2, |x∗ − ξ∗| 6 10LT∆x1/2. (28)

Note that the bound for |τ∗ − t∗| is obtained similarly, starting from ψ(t∗, x∗, τ∗, ξ∗) > ψ(t∗, x∗, t∗, ξ∗) and
using Lemma 4.5-(ii).

Step (iii). We aim to show that t∗ 6 2(L2
T + K)∆t1/2, provided that σ is appropriately chosen. We argue

by contradiction, and suppose that t∗ > 2(L2
T +K)∆t1/2. It implies that τ∗ > 0, thanks to (28). Let us start

by considering
(t, x) 7→ ψ(t, x, τ∗, ξ∗) = vk(t, x)− ϕ(t, x),

on [0, T [×R, with

ϕ(t, x) = vk∆t(τ
∗, ξ∗) +

(
σ + 4C2

HαeT
)
t+

(x− ξ∗)2

2∆x1/2
+

(t− τ∗)2

2∆t1/2
+ α

et

2
(x2 + ξ∗2) +

α

T − t
.

It admits a maximum, precisely at (t∗, x∗), with t∗ ∈ (0, T ). Since vk is the viscosity solution of (22), we
deduce

∂tϕ(t∗, x∗) +H (∇xϕ(t∗, x∗)) +R(x∗, Jk0 (t∗)) 6 0,

that is

σ + 4C2
HαeT +

t∗ − τ∗

∆t1/2
+ α

et
∗

2
(x∗2 + ξ∗2) +

α

(T − t∗)2
(29)

+H
(
x∗ − ξ∗

∆x1/2
+ αet

∗
x∗
)

+R(x∗, Jk0 (t∗)) 6 0,

where H is defined in (3). Next, let us consider

(τ, ξ) 7→ ψ(t∗, x∗, τ, ξ),
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on [0, T ]× R. As previously, it admits a maximum, precisely at (τ∗, ξ∗), so that for all (τ, ξ) ∈ [0, T ]× R

vk∆t(τ, ξ) > w(τ, ξ) + k∗, (30)

with

w(τ, ξ) = − (x∗ − ξ)2

2∆x1/2
− (t∗ − τ)2

2∆t1/2
− αet

∗

2
ξ2,

k∗ = vk∆t(τ
∗, ξ∗) +

(x∗ − ξ∗)2

2∆x1/2
+

(t∗ − τ∗)2

2∆t1/2
+ α

et
∗

2
ξ∗2.

Remark that τ∗ = tn∗ + s∗ with n∗ ∈ [[0, Nt − 1]] and s∗ ∈ (0,∆t]. The previous inequality yields

vk∆t(tn∗ , ξ
∗) > w(tn∗ , ξ

∗) + k∗. (31)

The next step consists in applying the scheme (23) to this inequality. To do so, one has to make sure that

|w(tn∗ , ξ
∗ ±∆x)− w(tn∗ , ξ

∗)| 6 (14LT + 1)∆x, (32)

so that (CFL0) ensures that scheme (Ms) enjoys monotonicity. From the expression of w(τ, ξ), we have∣∣∣∣w(tn∗ , ξ
∗)− w(tn∗ , ξ

∗ ±∆x)

∆x

∣∣∣∣ 6 αet
∗
|ξ∗|+ ∆x1/2

2
+
|x∗ − ξ∗|
∆x1/2

+ α
eT

2
∆x.

Hence, if ∆x is chosen small enough, (32) holds, thanks to (27) and (28). Since the ratio ∆t/∆x is fixed, this
condition on ∆x implies that the result holds for all ∆t 6 ∆t0, for some ∆t0 > 0. Since (CFL0) is satisfied,
the first step of the scheme (Ms) is monotonic and can hence be applied to the inequality (30), using (31).
AsMs∗ commutes with constants, it gives

Ms∗(v
k
∆t(tn∗ , ·))(ξ∗)− s∗R(ξ∗, Jk∆t(tn∗ + s∗)) >Ms∗(w(tn∗ , ·))(ξ∗) + k∗ − s∗R(ξ∗, Jk∆t(tn∗ + s∗)),

that is

vk∆t(τ
∗, ξ∗) > w(tn∗ , ξ

∗)− s∗H
(
w(tn∗ , ξ

∗)− w(tn∗ , ξ
∗ −∆x)

∆x
,
w(tn∗ , ξ

∗ + ∆x)− w(tn∗ , ξ
∗)

∆x

)
+ k∗ − s∗R(ξ∗, Jk∆t(τ

∗)).

The latter yields counterpart of (29)

0 6 H

(
x∗ − ξ∗

∆x1/2
− αet

∗
ξ∗ +

∆x1/2

2
+ α

et
∗

2
∆x,

x∗ − ξ∗

∆x1/2
− αet

∗
ξ∗ − ∆x1/2

2
− αet

∗

2
∆x

)
(33)

+R(ξ∗, Jk∆t(τ
∗)) +

t∗ − τ∗ + s∗/2

∆t1/2
.

Inequalities (29) and (33) are now gathered, so that

σ + 4C2
HαeT + α

et
∗

2
(x∗2 + ξ∗2) +H

(
x∗ − ξ∗

∆x1/2
+ αet

∗
x∗,

x∗ − ξ∗

∆x1/2
+ αet

∗
x∗
)

(34)

−H

(
x∗ − ξ∗

∆x1/2
− αet

∗
ξ∗ +

∆x1/2

2
+ α

et
∗

2
∆x,

x∗ − ξ∗

∆x1/2
− αet

∗
ξ∗ − ∆x1/2

2
− αet

∗

2
∆x

)

6 R(ξ∗, Jk∆t(τ
∗))−R(x∗, Jk0 (t∗)) +

∆t1/2

2
,

since H defined in (3) and the numerical Hamiltonian satisfy H(p, p) = H(p) for any p ∈ R. An upper bound
for the right hand side is obtained from (A3), and from the k-Lipschitz regularity of Jk0 in Lemma 4.4

R(ξ∗, Jk∆t(τ
∗))−R(x∗, Jk0 (t∗)) 6 K|ξ∗ − x∗|+K‖Jk∆t − Jk0 ‖∞ +Kk|t∗ − τ∗|,

that can, once again, be estimated using (28) and the fact that the ratio ∆t/∆x is fixed. On the other hand,
the Lipschitz property of H gives a lower bound for the left hand side of (34). Indeed, all the arguments of
the functions H in the inequality are bounded in absolute value by 14LT + 1. It yields

σ + 4C2
HαeT + α

et
∗

2
(x∗2 + ξ∗2)− 2CH

(
αet

∗
(|x∗|+ |ξ∗|) +

∆x1/2

2
+ α

eT

2
∆x

)
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6 C(k)
(

∆t1/2 + ∆x1/2 + ‖Jk∆t − Jk0 ‖∞
)
,

where C(k) is a constant depending on k, and on the parameters K and LT . We remark now that the left-hand
side of the inequality is bounded from below independently of |x∗| and |ξ∗|. Hence,

σ 6 σ + 4C2
HαeT − 4C2

Hαet
∗
6 C(k)

(
∆t1/2 + ∆x1/2 + ‖Jk0 − Jk∆t‖∞

)
+ αCHeT∆x,

and σ = σ(∆t, k) is defined so that the previous inequality cannot hold, and that σ(∆t, k) →∆t→0 0 when k
is fixed, as does the right hand side of the inequality. Because of ‖Jk0 − Jk∆t‖∞, there is no indication for the
speed of the convergence σ(∆t, k) →∆t→0 0 when k is fixed. Indeed, Lemma 4.4-(iv) is obtained by using a
compactness argument, which does not give a quantitative estimate.

We are now able to gather all these preliminary results to prove Prop. 2.3:

Proof of Prop. 2.3. Consider a choice of σ = σ(∆t, k) as in Lemma 4.6. Then, the function ψ defined in (26)
reaches its maximum at (t∗, x∗, τ∗, ξ∗), therefore

∀(t, x) ∈ [0, T [×R, ψ(t, x, t, x) 6 ψ(t∗, x∗, τ∗, x∗),

hence, for all α ∈ (0, 1),

vk(t, x)− vk∆t(t, x) 6 σ(∆t, k)t+ 4C2
HαeT t+ αetx2 +

α

T − t
+ LT |x∗ − ξ∗|+ (L2

T +K)(t∗ + τ∗),

thanks to Lemma 4.5-(i)-(ii). Let us start by letting α→ 0 in the previous inequality, to get

vk(t, x)− vk∆t(t, x) 6 σ(∆t, k)t+ C∆t1/2,

where C > 0 can be determined using the fact that (x∗, ξ∗) ∈ R2 satisfy (28), that the ratio ∆t/∆x is fixed,
and that t∗ 6 2(L2

T + K)∆t1/2. Thanks to (28), τ∗ 6 4(L2
T + K)∆t1/2 also holds. It is worth noticing that

since vk and vk∆t are continuous, this inequality also holds if t = T . Then, Lemma 4.5-(vi) yields

vk(t, x) 6 v∆t(t, x) + σ(∆t, k)t+ C∆t1/2,

Still considering a fixed k > 0, let now ∆t→ 0. As σ(∆t, k)→∆t→0 0, and v∆t converges pointwise to v0 (see
Lemma 4.3-(i)),

vk(t, x) 6 v0(t, x).

We conclude by noticing that this inequality is true for all (t, x) ∈ [0, T ]×R. Finally, we let k → +∞, to get
the following inequality

v∞ 6 v0.

Now, we have to prove the reverse inequality. The proof is very similar to what was done previously, but
some modifications are necessary. We list here the modifications that are to be done in the steps of the proof:

• In Lemma 4.3-(ii), an upper semi-continuous representative should be opted for (J0 instead of J0, say).
Note that J0 = J0 almost everywhere.

• The functions J∆t and J0 should be regularized from above instead of (20). Namely, for k > 0 and
∆t > 0, let us define

∀t ∈ [0, T ], Jk0(t) = sup
s∈[0,T ]

(J0(s)− k|t− s|) ,

Jk∆t(t) = sup
s∈[0,T ]

(J∆t(s)− k|t− s|) .

Most of the properties of Lemma 4.4 still hold true, except that for fixed ∆t > 0 and for all t ∈ [0, T ],
Jk∆t(t)↘ J∆t(t) as k → +∞. Similarly, (iv) has to be replaced by

for fixed k > 0, ‖Jk∆t − Jk0‖∞ −→
∆t→0

0.
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• The viscosity solution wk of the following Hamilton-Jacobi equation should be defined accordingly

∂tw
k + |∇xwk|2 = −R(x, Jk0), x ∈ R, t > 0,

initialized with vin. The properties of Lemma 4.5 are still true, except (25). We have instead: wk ↘ w∞

when k → +∞ pointwise in [0, T ]× R, where w∞ is the viscosity solution of

∂tw
∞ + |∇xw∞|2 = −R(x, J0), x ∈ R, t ∈ [0, T ], (35)

initialized with vin.

• The regularized scheme associated to Jk∆t should be defined as well, namely

wk∆t(tn + s) =Ms(w
k
∆t(tn, ·))(x)− s R(x, Jk∆t(tn + s)), (36)

for all n ∈ [[0, Nt − 1]], s ∈ (0,∆t] and x ∈ R, withMs defined in (Ms), and initialized with vin. The
properties of Lemma 4.5 are still true, except (vi) that has to be replaced by wk∆t > v∆t.

• Lemma 4.6 should also be adapted. Instead of ψ, let us define

Ψ(t, x, τ, ξ) = wk(t, x)− wk∆t(τ, ξ) +
(x− ξ)2

2∆x1/2
+

(t− τ)2

2∆t1/2
+ (σ + 4C2

HαeT )t

+ α
et

2
(x2 + ξ2) +

α

T − t
.

Then, Lemma 4.6 still holds true, but with a minimum instead of a maximum.

• As it has been done in the first part of this proof, we obtain eventually w∞ > v0.

To conclude, remark that v∞ and w∞ are respectively viscosity solution of (25) and (35), that are recalled
here

∂tv
∞ + |∂xv∞|2 = −R(x, J0), ∂tw

∞ + |∂xw∞|2 = −R(x, J0),

both initialized with vin, and with the source terms being such that J0 = J0 a.e. Thanks to Theorem 1.2-(ii),
it implies that v∞ = w∞ a.e. Then, the equality

v0 = v∞ = w∞,

comes immediately from v∞ 6 v0 6 w∞, and because all these functions are continuous. Indeed, one can
notice that the Lipschitz constants of Lemma 4.5 do not depend on k or ∆t. Hence, v0 enjoys the same
Lipschitz regularity as vk∆t, and is, in particular, continuous.

The next step consists in identifying v0 and J0 to the viscosity solution v of (P0), and to the associated
constraint J . It is a consequence of min v0 = 0, proved in Lemma 4.3-(i) and of Theorem 1.2, meaning that

v0 = v, and J0 = J0 = J a.e.

Indeed, thanks to the assumptions made on the problem, v is also continuous (see [4]), so the equality v0 = v
is true pointwise in (t, x) ∈ [0, T ]× R.

To conclude, remark that the only limit of the subsequences (v∆t) and J∆t, defined in Lemma 4.3 are v
and J . The restriction up to a subsequence stated in Remark 4.5 can then be removed, and Prop. 2.3 is
proved.

5 Convergence of the scheme (Sε)
In this section, we fix ε > 0, and we prove that (Sε) approximates properly (Pε) when the discretization
parameters ∆t and ∆x go to 0. We start with a technical lemma, which states properties of the sequences
(In+1)n∈[[0,Nt−1]] and (un+1)n∈[[0,Nt−1]], with un+1 = (un+1

i )i∈Z, defined by the scheme (Sε).

Lemma 5.1. Suppose that the assumptions (A1)-(A2)-(A3)-(A4)-(A5)-(A6) are satisfied, and that ε > 0 is
fixed. There exist ∆x0 > 0, and IM ′ > 0, depending on ε, and on the constants arising in the assumptions,
such that if ∆t and ∆x < ∆x0, are fixed such that (CFLε) holds, the scheme (Sε) is well-defined. Moreover,
the sequence (uni )n,i defined by the scheme (Sε) satisfies:
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(i). For all n ∈ [[0, Nt]], there exists a constant λn = L0 + n∆tκ 6 L0 + Tκ = λNt , with L0 defined in (A6)
and κ in (8), such that the sequence (uni )i∈Z enjoys λn-Lipschitz property

∀i ∈ Z,
∣∣∣∣uni − uni−1

∆x

∣∣∣∣ 6 λn.

(ii). For all n ∈ [[0, Nt]], there exists β
n
∈ R, with β

n
> β

Nt
= b− TH(a, a)− T‖R(·, 0)‖∞, and βn 6 βNt

=

b+ aNt∆x0 + Tκ, such that for all i ∈ Z,

a|xi − x0|+ β
n
6 uni 6 a|xi − x0|+ βn,

where a and b have been defined in (A5), κ in (8) and T is the fixed final time.

(iii). For all n ∈ [[0, Nt − 1]], 0 6 I 6 IM ′ .

Remark 5.1. At first sight, this lemma is similar to Lemma 3.2. However, it holds here for a fixed ε > 0, and
it states uniform estimates in ∆t and ∆x < ∆x0 such that (CFLε) is satisfied. On the contrary, Lemma 3.2
states uniform estimates in ε ∈ (0, ε0), where ε0 > 0 depends on the assumptions, and on ∆t and ∆x.
Remark 5.2. In what follows, IM ′ is chosen large enough, such that

∀t ∈ [0, T ], 0 < Iε(t) + 1 6 IM ′ , (37)

where Iε is defined in (Pε). We refer to [4] for the existence of such a bound.

Proof. The proof is done by induction. The initial data u0 = (u0
i )i∈Z enjoys the properties of Lemma (5.1).

Let ε > 0 be fixed, and let us suppose that the items (i)-(ii) are satified by un = (uni )i∈Z for a given
n ∈ [[0, Nt − 1]], and prove that In+1 and un+1 = (un+1

i )i∈Z are well defined, and satisfy (i)-(ii)-(iii).
First of all, let us remark that In+1 is solution of Φ(I) = 0, with

Φ(I) = I −∆x
∑
i∈Z

ψ(xi)e
−Mε

∆x(un)i/εe∆tR(xi,I)/ε, (38)

whereMε
∆x is defined in (14). Thanks to Lemma 3.1, and because of (CFLε),

∀i ∈ Z, Mε
∆t(u

n)i > a|xi − x0|+ β
n
−∆tH(a, a) > a|xi − x0|+ β

Nt
, (39)

so that the sum in (38) is well-defined for all I ∈ R. Since Φ is a difference between an increasing and a
decreasing function, there exists a unique In+1 ∈ R such that Φ(In+1) = 0. Therefore, un+1 is uniquely
determined too. Moreover, the inequality Φ(I) 6 I immediately yields that In+1 > 0. As R(x, ·) is decreasing
for all x,

∀i ∈ Z, un+1
i >Mε

∆t(u
n)i −∆tR(xi, 0),

which gives the lower estimate in (ii), with β
n+1

= β
n
−∆tH(a, a)−∆t‖R(·, 0)‖∞.

Now, consider I > IM , with IM defined in (A2). Then, R(xi, I) 6 0 for all i ∈ Z, thanks to (A2)-(A3),
and using (A1)-(39) we have

Φ(I) > I − 2ψMe
−β

Nt
/ε

∆x
1

1− e−a∆x/ε
−→

∆x→0
I − 2ε

a
ψMe

−β
Nt
/ε
. (40)

Hence, there exists ∆x0 > 0 and IM ′ > 0 such that for all ∆x 6 ∆x0, Φ(IM ′) > 0. Since Φ is increasing,
In+1 6 IM ′ . Eventually, Lemma 3.1 yields (i), and

∀i ∈ Z, Mε
∆t(u

n)i 6 a|xi − x0|+ βn + 2εa
∆t

∆x
,

where (CFLε) gives (ii).

Remark 5.3. It is worth noticing that ∆x0 and IM ′ are determined once for all and do not depend on
n ∈ [[0, Nt]]. Indeed, coming back to the definition of β

Nt
, one can remark that they can be fixed independently

of the induction. However, they depend on ε, which is fixed here. Their asymptotic behavior when ε → 0 is
not satisfactory, since ∆x0 may vanish, and IM ′ grows to infinity, when ε→ 0, as β

Nt
might be negative. We

refer to Lemma 3.2 for a bound of In+1 independent of ε, with fixed ∆t and ∆x. Indeed, this bound is valid
for small ε, and the bound for In+1 outside of the asymptotic regime comes from (40).
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Going on with the proof of the convergence of scheme (Sε), its implicit character has to be dealt with. To
this end, let us define,

DIM′ =

{
u = (ui)i∈Z ∈ RZ, u > u, ∆x

∑
i∈Z

ψ(xi)e
−ui/ε < IM ′

}
, (41)

where
u = (ui)i∈Z =

(
a|xi − x0|+ β

Nt

)
i∈Z

,

and IM ′ are defined in Lemma 5.1. Define then SIM′ : DIM′ → RZ, such that

∀u = (ui)i∈Z ∈ DIM′ , ∀i ∈ Z, SIM′ (u)i = ui + ∆tR

(
xi,∆x

∑
i∈Z

ψ(xi)e
−ui/ε

)
. (42)

Since I 7→ R(x, I) is smooth for all x ∈ R, one can notice that SIM′ ∈ C
1
(
DIM′

)
. But a stronger result holds:

Lemma 5.2. Let ∆t > 0 and ε > 0. Suppose that ∆tKIM ′ < ε, with IM ′ defined in Lemma 5.1, and K in
(A3). Then, SIM′ : DIM′ → SIM′

(
DIM′

)
is invertible. Moreover, its inverse enjoys Lispschitz regularity: for

all u, v ∈ SIM′
(
DIM′

)
such that u− v ∈ `∞(Z), S−1

IM′
(u)− S−1

IM′
(v) ∈ `∞(Z) and∥∥∥S−1

IM′
(u)− S−1

IM′
(v)
∥∥∥
∞

6
1

1−∆tKIM ′/ε
‖u− v‖∞.

As this Lemma is an elementary consequence of the implicit function theorem, its proof is not detailed
here. These technical lemmas and Lemma 3.1 yield Prop. 2.1.

Proof of Prop. 2.1. Scheme (Sε) can be rewritten using Lemma 5.1, and notations (15)-(42). Indeed, for all
n ∈ [[0, Nt − 1]], un+1 = (un+1

i )i∈Z ∈ DIM′ ∩ SIM′
(
DIM′

)
, and it is defined by induction with

SIM′ (u
n+1) =Mε

∆t(u
n).

Considering uε and Iε defined as the solution of (Pε), the consistency error En+1
i of the scheme (Sε) at

(tn+1, xi), with n ∈ [[0, Nt − 1]] and i ∈ Z, is defined by

En+1
i = u(tn+1, xi)−Mε

∆t (u(tn, xj)j∈Z)i + ∆tR (xi, Iε(tn+1)) ,

and there exists a constant C depending only on ‖∂2
t uε‖∞,[0,T ]×R, and ‖∂kxuε‖∞,[0,T ]×R for k = 1, 2, 3, such

that
∀n ∈ [[0, Nt − 1]], ∀i ∈ Z,

∣∣En+1
i

∣∣ 6 C∆t(∆t+ ∆x). (43)

Apart from the finite-differences approximations of the derivatives, the scheme (Sε) is constructed with a
quadrature rule for the approximation of Iε. Its precision can be estimated, thanks to Lemma 5.1. At first,
define a truncated version of Iε(t), on a domain [x0 −X , x0 + X ], by

IXε (t) =

∫
|x−x0|6X

ψ(x)e−uε(t,x)/εdx. (44)

Hence, X is determined such that, for all t ∈ [0, T ],

∣∣Iε(t)− IXε (t)
∣∣ 6 ∆t, and

∣∣∣∣∣∣∣∣∆x
∑
i∈Z

|xi−x0|>X

ψ(xi)e
−uε(t,xi)/ε

∣∣∣∣∣∣∣∣ 6 ∆t. (45)

Note that X can be chosen once for all, and independently of ε, remarking that, for all t ∈ [0, T ], uε(t, ·) is
increasing at infinity. Indeed, thanks to [4], the following estimate holds

∀t ∈ [0, T ], ∀x ∈ R, uε(t, x) > a|x− x0|+ bNt
. (46)

where we used the notations of Lemma 3.2. Of course, such a choice makes X depend on ∆t. Explicit
computations using Lemma 5.1-(ii) and (46), yield

X =
∆t→0

O(− ln(∆t)), (47)
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where we consider that ε > 0 is fixed. Note that X is such that for all t ∈ [0, T ],∣∣∣∣∣∣∣∣I
X
ε (t)−∆x

∑
i∈Z

|xi−x0|6X

ψ(xi)e
−uε(t,xi)/ε

∣∣∣∣∣∣∣∣ 6 K
(
X∆x2 + ∆x∆t

)
. (48)

Indeed, the approximation of the integral can be considered as if it were done with a trapezoidal rule, up to
an error of order ∆t (adding half the sum of the two first neglected terms, which are of size ∆t). The error
estimate of the trapezoidal rule yields that K depends on the second derivative of ψ exp(−uε(t, ·)/ε), which
is uniformly bounded with respect to t ∈ [0, T ]. Suppose now that the ratio in (CFLε) is fixed. Then, ∆x is
uniquely determined for any given ∆t > 0, and

∆x =
∆t→0

O(
√

∆t).

Hence, thanks to (37)-(45)-(47) and (48), there exists ∆t0 > 0 such that for all ∆t < ∆t0 and for all t ∈ [0, T ],
(u(t, xi))i∈Z ∈ DIM′ . Then, using Lemmas 3.1 and 5.2, and the above estimates, there exists a constant,
denoted C(ε), such that, for all n ∈ [[0, Nt − 1]],(

1− ∆tKIM ′

ε

)
‖uε(tn+1, xj)j∈Z − un+1‖∞ 6 ‖(uε(tn, xj)j∈Z − un‖∞ + C(ε)∆t(∆t+ ∆x+ | ln(∆t)|∆t).

Indeed, as u0
i = uε(0, xi) for all i ∈ Z, the previous inequality yields that for all n ∈ [[0, Nt]], (uε(tn, xj)j∈Z −

un ∈ `∞(Z). The first estimate of Prop. 2.1 follows immediately. Eventually, one can notice that

DIM′ 3 u = (ui)i∈Z 7→ ∆x
∑
i∈Z

ψ(xi)e
−ui/ε,

enjoys IM ′/ε-Lipschitz regularity. This yields the second estimate of Prop. 2.1.

Remark 5.4. Let us end with a remark about the implementation of (Sε). Its implicit character has been
discussed in Section 2, but another difficulty arises when coding it. Indeed, (Sε) is defined for all indices i ∈ Z,
meaning that, in practice, the expressions have to be truncated. However, because of In+1, the expression
of the scheme (Sε) is nonlocal, in the sense that the whole distribution in trait (uni )i∈Z is needed to compute
every single un+1

i for i ∈ Z. When implemented, the scheme (Sε) uses an approximated value of In+1, with
the truncation defined as previously.

In addition, considering the scheme (Sε) on a truncated domain raises questions about boundary conditions
that are to be considered. Indeed, because of (15), the (uni ), for |i| 6 N+1, are needed to computeMε

∆t(u
n)i,

for |i| 6 N . In practice, un−N−1 and unN+1 can be approximated, we refer to Section 6 for more details. Yet,
to avoid more approximations, one can also define a truncation ofMε

∆t

Mε
∆t,N : R2(N+1)+1 → R2N+1,

such that
∀u = (uj)j∈Z ∈ RZ, ∀|i| 6 N, Mε

∆t,N

(
(uj)|j|6N+1

)
i

=Mε
∆t(u)i.

Roughly speaking, this consists in avoiding the question of the boundary, by reducing the trait domain at
each time step of the scheme. Note that Mε

∆t,N enjoys the same monotonicity properties as Mε
∆t, and in

particular the last point of Lemma 3.1 can be easily adapted. Similarly, SIM′ defined in (42) can be defined
on a truncated domain, Lemmas 5.1 and 5.2 still hold, and Prop. 2.1 is true in the truncated setting.

6 Numerical tests
In this section, we highlight and discuss the properties of the schemes (Sε) and (S0) using numerical tests.
Unless other choices are specified, we will consider the schemes in dimension 1, with ψ(x) ≡ 1 in (A1) and
the initial data

uin(x) = vin(x) =
min

(
(x− β)2; (x− α)2 + δ

)
√

1 + x2
, (49)

with α = 2, β = −0.2 and δ = 1. This choice is adapted from [34] to satisfy the hypotheses (A4)-(A5)-(A6)-
(A7). We will also consider the function

R(x, I) = e−I
x2

1 + x2
− I, (50)
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which satisfies (A2) and (A3). All the tests are done with final time T = 1. In most cases, and if the
discretization is not specified, we consider ∆t = 5 · 10−4 and ∆x = 5 · 10−2, such that (CFLε)-(CFLε→0)-
(CFL0) are satisfied for all ε ∈ (0, 1]. First, the implementation of the schemes is done according to Remark
5.4. Namely, the iterations of the schemes are computed on a larger trait domain, that is reduced at each
time iteration to avoid approximations at the boundary.

The implementation of the schemes has been done using Matlab, the code is available at [7], where scripts
for all the figures presented above are also provided. Note also that the solution of scheme (Sε) will be denoted
uε∆t and I

ε
∆t in what follows. This choice is made to simplify the notations, and to be similar to v∆t and J∆t

defined in scheme (S0).

6.1 Behavior of scheme (Sε) when ε→ 0

The behavior of scheme (Sε) when ε → 0 is illustrated in Fig. 1, where uε∆t and Iε∆t, computed with (Sε),
are displayed for a series of ε. The limits v∆t and J∆t computed with (S0) are displayed on the same graph.
As shown in Prop. 2.2, one can observe that the solution of scheme (Sε) converges to the solution of scheme
(S0) when ε → 0. It is also worth remarking that the solution uε∆t of the problem (Pε) is smooth, and so is
Iε∆t when ε > 0. Lipschitz singularities for uε∆t, and discontinuities for Iε∆t, appear in the limit ε → 0. One
can notice that Iε∆t is not necessarily increasing when ε > 0. Moreover, the convergence seems to be faster
for uε∆t than for Iε∆t.
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Figure 1: uε∆t (left) and Iε∆t (right) computed with (Sε) for a series of ε, and v∆t and J∆t computed with
(S0). Parameters: T = 1, ∆x = 5 · 10−2, ∆t = 5 · 10−4, uin defined in (49), and R in (50).

More precisely, the convergence rate for uε∆t and I
ε
∆t is numerically studied in Fig. 2. First of all, Lemma

3.2-(iv) yields that the minimum of the approximation of uε∆t with (Sε) is of order ε. This can indeed be
observed on the left-hand side of Fig. 2, where the minimum of uε∆t is plotted in logarithmic scale as a function
of ε. As expected, we observe a line which has slope 1. This figure presents, on the same graph, a numerical
study of the convergence rate of the solution uε∆t of (Sε) to the solution v∆t of (S0) when ε → 0. The L∞
norm of uε∆t(T, ·) − v∆t(T, ·) is displayed in logarithmic scale as a function of ε. This test suggests that the
convergence of the solution uε of (Pε) to the solution v of (P0) is of order 1 in ε. Similarly, the convergence
rate of Iε∆t to J∆t is studied in the right-hand side of Fig. 2, in discrete L1(0, T ) and L∞(0, T ) norms. Once
again, the rate of convergence seems to be 1. However, we observe a discrepancy between the two tests in
the regime ε > 10−4 which is the order of the time step. The order of convergence is recovered in the regime
ε 6 10−4, essentially because this convergence test is done for given ∆t and ∆x, fixing the dimension of the
problem. We conclude from this observation that L1 is more appropriate to capture the AP property due to
the occurrence of true discontinuities of J∆t. This behavior means a lack of uniform accuracy in L∞ norm,
and we refer to Section 6.5 for more details. Coming back to the continuous problems (Pε) and (P0), this
suggests that the convergence of Iε to J when ε→ 0 might be true in L1(0, T ), but not in L∞(0, T ).

6.2 Behavior of scheme (S0)
We now discuss the behavior of scheme (S0), regarding the lack of regularity of the solution of (P0). Indeed,
v enjoys Lipschitz regularity, while J ∈ BV (0, T ) can, in particular, have jumps. This behavior is highlighted
in Fig. 3, where the left-hand side displays the solution v∆t of (S0) for some fixed times, as functions of x.
We emphasize the lack of diffusing effects, as shown by the C1 discontinuity of the solution v∆t, which seems
to be maintained as time grows. It is also interesting to notice that the function J∆t has true numerical
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Figure 2: Convergence of the solution of (Pε) to the solution of (P0) . Left: uε∆t to v∆t in L∞ norm, and
minuε∆t to 0 as functions of ε (logarithmic scale). Right: Iε∆t to J∆t in L1 and L∞ norms, as functions of ε
(logarithmic scale). Parameters: T = 1, ∆x = 5 · 10−2, ∆t = 5 · 10−4, uin defined in (49), and R in (50).

jumps, where the solution varies considerably in a single time step, due to the implicit character of the
scheme. Moreover, coming back to problem (P0), the selection makes the dominant trait, i.e. x̄(t) such that
of v(t, x̄(t)) = min v(t, ·), evolve in time. Left-hand side of Fig. 3 exhibits a case with a jump from the left
local minimum to the right one. This is confirmed on the right-hand side of Fig. 3, where x̄∆t and J∆t are
displayed as functions of t. One can notice that the jumps occur simultaneously, which was to be expected
since J∆t is a constraint that makes min v equal to 0. Moreover, J∆t is nondecreasing on [0, T ], as it has been
proved in Lemma 4.2-(v).
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Figure 3: Scheme (S0). Left: v∆t computed with (S0) for a series of times. Right: arg minx v∆t and J∆t as
functions of t. Parameters: T = 1, ∆x = 5 · 10−2, ∆t = 5 · 10−4, uin defined in (49), and R in (50).

6.3 Truncated scheme
As it has already been emphasized in Remark 5.4, the schemes (Sε) and (S0) are nonlocal, meaning that the
whole distribution in trait at time tn is needed to compute any single point at time tn+1. We proposed a way
to restrict the schemes to a finite grid, by considering a larger trait domain at the initialization and removing
points of the domain at each time iterations. The propositions of Section 2 hold true with this approximation,
provided that the considered trait domain is large enough so that (45) is satisfied. Thanks to this strategy,
no approximation is required at the boundary. However, it is costly in terms of computational time, since
2Nt points in x are to be added to the initial grid. This drawback can be dealt with in dimension 1, but the
cost increases with the dimension. Moreover, this stategy leads to complications when considering initial data
which do not exactly satisfy (A5)-(A6). Indeed, it would be natural to consider Gaussian distributions for
the initial data of (1), so that uin

ε is quadratic. However, such distributions do not enjoy uniform Lipschitz
property. When implemented, the conditions (CFLε)-(CFLε→0)-(CFL0) then have to be considered with
the Lispschitz constant which is valid on the larger grid. It makes these stability conditions always more
restrictive, as each point added in time makes the Lipschitz constant increase.
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To avoid this difficulty, we propose a truncated version of the schemes (Sε)-(S0). This consists in, once
again, considering a truncated trait space (xi)i∈[[1,Nx]], such that (45) is satisfied. However, this trait space is
of constant size in all the time iterations. Since they are needed, the values at x0 and xNx+1 are approximated.
For all n ∈ [[0, Nt]], we propose the following approximation in (Sε)-(S0)

un0 = 4un1 − 6un2 + 4un3 − un4
unNx+1 = 4unNx

− 6unNx−1 + 4unNx−2 − unNx−3,
(51)

which consists in extrapolating (uni )i∈[[1,Nx]] by a polynomial, whose derivatives coincide with the discrete
derivatives of (uni )i∈[[1,Nx]]. Namely, for the left point, we define

P (y) = un1 +
un2 − un1

∆x
y +

un1 − 2un2 + un3
∆x2 y2 +

(un2 − 2un3 + un4 )− (un1 − 2un2 + un3 )

∆x3 y3,

is such that P (0), P ′(0), P ′′(0) and P (3)(0) coincide with the first discrete derivatives of (uni )i that can be
computed, and it satisfies P (−∆x) = un0 . A similar explanation holds for the right boundary.

This approximation is tested in Fig. 4, where results of scheme (Sε) without and with the approximation at
the boundary are compared. The left-hand side displays the L∞ norm in x of the difference of uε∆t computed
with the two versions of the scheme at time T , while the difference between the two Iε∆t in L1(0, T ) norm
is presented on the right-hand side. In both cases, the results are presented as functions of ε. Observe
that the difference between (Sε) and its version with approximations at boundaries is never greater than the
discretization error. Moreover, this difference goes to 0 when ε → 0, likely because the error due to the
truncation in the quadrature step (48) is vanishing, combined with the fact that the characteristics lines are
exiting the domain at ε = 0. Thanks to the stability of (Sε), this validates numerically the approximation at
boundary for (S0) as well.
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Figure 4: Comparison between scheme (Sε) and its version with approximations at boundaries, as function of
ε (logarithmic scale). Left: L∞ norm in x of the difference between the uε computed with the two schemes
at final time. Right: difference between the two Iε in L1(0, T ) norm. Parameters: T = 1, ∆x = 5 · 10−2,
∆t = 5 · 10−4, uin defined in (49), and R in (50).

Remark 6.1. As they are less expensive in terms of computational time, and since their results are very
close to the results of schemes (Sε)-(S0), in what follows we will use the corresponding schemes including the
approximations (51) at the boundaries.

6.4 Accuracy of (S0)
Using its version with approximations at boundaries, we test the accuracy of (S0) with parameters which does
not satisfy exactly the hypotheses (A2)-(A3)-(A5)-(A6). Indeed, we consider

vin = min
(
x2; (x− α)2 + δ

)
, (52)

with α = 2, δ = 1, and
R(x, I) = x− I. (53)

The solution of (P0) is analytically known using these parameters, see [34]. Moreover, this explicit solution
do not enjoy more regularity than what is expected. Indeed, v enjoys Lispschitz regularity but is not C1, and
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J jumps at t = 1/2. The results of scheme (S0) are displayed in Fig. 5 together with the analytic solution.
The agreement is visually very good, including the discontinuity of J which is captured at the correct time
point.
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Figure 5: Comparison between scheme (S0) and analytic solution. Left: v. Right: J . Parameters: T = 1,
∆x = 5 · 10−2, ∆t = 5 · 10−4, vin defined in (52), and R in (53).

Although Prop. 2.3 states the convergence of (S0) to the solution of (P0) when ∆t and ∆x go to 0 with
∆t/∆x fixed, it does not give any convergence rate. Indeed, the lack of regularity of the solutions of (P0)
makes this problem difficult to address theoretically. To bypass this issue, we proposed a proof based on
compactness arguments and on an appropriate regularization of J . However, quantitative estimates cannot
be expected using such arguments. We propose a numerical study of the rate of convergence of (P0) in Fig. 6.
For this numerical test, we compare the functions v∆t and J∆t computed with (S0), to the solution v and J of
(P0) analytically computed in [34]. As in Prop. 2.3, we fix ∆t/∆x and we make ∆t go to 0. The comparison
is done in L∞ for v∆t(T, ·) − v(T, ·), while J∆t − J is estimated in L1(0, T ) norm. The error is displayed in
logarithmic scale. Remark that the numerical convergence rate of scheme (S0) is 1, both for v∆t and J∆t.
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Figure 6: Convergence rate of scheme (S0). Left: ‖v∆t(T, ·) − v(T, ·)‖∞ as a function of ∆t, with ∆t/∆x
fixed (logarithmic scale). Right: ‖J∆t − J‖L1(0,T ) as a function of ∆t, with ∆t/∆x fixed (logarithmic scale).
Parameters: T = 1, ∆t/∆x = 5 · 10−2, vin defined in (52), and R in (53).

6.5 Uniform accuracy of (Sε)
In this section, the uniform accuracy of the scheme (Sε), in its version with approximations at boundaries, is
tested. Prop. 2.1 establishes that, for all ε > 0, (Sε) converges with rate C(ε) (| ln(∆t)|∆t+ ∆x), with ∆t
and ∆x satisfying (CFLε), and where C(ε) depends on uin, T , and ε. As it is emphasized in Remark 2.3, this
proposition does not give any clue on the order of the scheme uniformly in ε, since C(ε) is expected to go to
+∞ when ε → 0. However, thanks to the stability properties of scheme (Sε) stated in Prop. 2.2, a better
behavior can be suspected. The uniform accuracy of scheme (Sε) is tested by computing the results of (Sε)
for a series of ε and ∆x. The solution of the corresponding scheme will be denoted uε∆x in what follows. Once
∆x is given, ∆t is fixed by ∆t = λmin(∆x; ∆x2/ε), with λ such that (CFLε) and (CFLε→0) hold. These u∆x

ε
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are then compared to a reference solution. However, contrary to the previous section, no analytic solution of
(Pε) is known, to the best of our knowledge, so that the reference solution has to be itself an approximation.
A ∆xref is introduced, smaller than all the ∆x previously considered, and uε∆xref

is computed for all the ε
considered. The L∞ norm of u∆xref

(T, ·)ε− uε∆x(T, ·) is then computed for all ε and ∆x considered, and they
are presented as functions of ε, on the left-hand side of Fig. 7 in logarithmic scale. Similarly, the right-hand
side of Fig. 7 displays the L1(0, T ) norm of Iε∆x − Iε∆xref

, as functions of ε in logarithmic scale. Remark
that, in both cases, these error curves are stratified, meaning that the approximation error in scheme (Sε) is
uniformly bounded with respect to ε when the discretization is fixed.
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Figure 7: Uniform accuracy of (Sε). Left: ‖uε∆x(T, ·)− uε∆xref
(T, ·)‖L∞ for a series of ∆x and as functions of

ε (logarithmic scale). Right: ‖Iε∆x− Iε∆xref
‖L1(0,T ) for a series of ∆x and as functions of ε (logarithmic scale).

Parameters: T = 1, λ = 5 · 10−2, uin defined in (49), and R in (50).

The numerical tests above suggest that scheme (Sε) enjoys uniform accuracy with respect to ε in L∞ norm
for uε∆x(T, ·) and in L1(0, T ) norm for Iε∆x. However, the lack of regularity of the solutions of (Pε) strongly
influences the accuracy of the numerical resolution. To emphasize on this fact, remark that the uniform
accuracy of (Sε) is not true for Iε∆x in L∞(0, T ) nor in the total variation seminorm, denoted TV (0, T )
in what follows. Indeed, the L∞(0, T ) norm and TV (0, T ) seminorm of Iε∆x − Iε∆xref

, as functions of ε in
logarithmic scale are displayed in Fig. 8. Contrary to Fig. 7, the error curves are not stratified, and one can
remark that

sup
ε

∥∥Iε∆x − Iε∆xref

∥∥
L∞(0,T )

9
∆x→0

0, and sup
ε

∥∥Iε∆x − Iε∆xref

∥∥
TV (0,T )

9
∆x→0

0,

meaning that (Sε) does not enjoy uniform accuracy for Iε∆x in L
∞ norm and TV seminorm. The fact that these

norms are poorly adapted to the study of the convergence of I∆x
ε can be understood considering the jumps.

For small ε, Iε is close to the discontinuous function J , so that the jumps are visually well approximated. The
comparison between I∆x

ε and I∆xref
ε is also good at first sight, but jumps may not be exactly simultaneous,

making the difference I∆x
ε − I∆xref

ε have a thin peak around the jump. Such a peak is small in L1 norm, but
not in L∞ or TV .

6.6 Extension to higher dimensions
Problems (Pε) and (P0) are well-posed in any finite dimension d, but dimension 1 was chosen for the presen-
tation and the study of schemes (Sε) and (S0) in this paper. However, schemes (Sε)-(S0) can be generalized
to any dimension, and all the results of this paper still hold when d ∈ N∗, the proofs being done exactly the
same way but with heavier notations due to multi-indices.

We detail here the adaptation of schemes (Sε) and (S0) in dimension d = 2, and we provide some numerical
tests to highlight the asymptotic-preserving property. The generalization to any dimension is straightforward.
As in Section 2, define T , Nt and ∆t for the time discretization. Two trait steps are now needed, denoted ∆x
and ∆y in what follows, and two trait grids are defined, namely xi = x0 + i∆x (i ∈ Z), and yj = y0 + yj∆y
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Figure 8: Uniform accuracy test for Iε computed with (Sε): ‖I∆x
ε − I∆xref

ε ‖ for a series of ∆x and as functions
of ε (logarithmic scale). Left: L∞(0, T ) norm. Right: TV (0, T ) seminorm. Parameters: T = 1, λ = 5 · 10−2,
uin defined in (49), and R in (50).

(j ∈ Z), where x0, y0 ∈ R are given. Let n ∈ [[0, Nt − 1]], and i, j ∈ Z. The schemes are given by

un+1
i,j − uni,j

∆t
+H

(
uni,j − uni−1,j

∆x
,
uni+1,j − uni,j

∆x

)
+H

(
uni,j − uni,j−1

∆y
,
uni,j+1 − uni,j

∆y

)
= ε

uni+1,j − 2uni,j + uni−1,j

∆x2 + ε
uni,j+1 − 2uni,j + uni,j−1

∆y2 −R
(
xi, yj , I

n+1
)

In+1 = ∆x∆y
∑

(i,j)∈Z2

ψ(xi, yj)e
−un+1

i,j /ε,

(Sd=2
ε )

and 

vn+1
i,j − vni,j

∆t
+H

(
vni,j − vni−1,j

∆x
,
vni+1,j − vni,j

∆x

)
+H

(
vni,j − vni,j−1

∆y
,
vni,j+1 − vni,j

∆y

)
= −R

(
xi, yj , I

n+1
)

min
(i,j)∈Z2

vn+1
i,j = 0,

(Sd=2
0 )

where H is defined in (5). They both can be implemented on a truncated domain, with or without approxima-
tions at boundaries, as presented above. The following tests use the version with approximation at boundaries
and grids of constant size. Denoting X = (x, y) ∈ R2, we consider uin, vin adapted from (49),

uin(X) = vin(X) =
min

(
|X − β|2; |X − α|2 + δ

)√
1 + |X|2

, (54)

with α = (2, 2), β = (−0.2,−0.2) and δ = 1. Similarly to (50), we define

R(X, I) = e−I
|X|2

1 + |X|2
− I. (55)

Note that in both cases, | · | stands for the Euclidean norm on R2. Fig. 9 displays level lines of uin
ε defined in

(54), of uε∆t computed with (Sd=2
ε ) for ε = 10−2 and ε = 10−4, and of v∆t computed with (Sd=2

0 ). When ε is
small, uε∆t is similar to v∆t. Moreover, one can notice that the minimum of uin

ε has jumped from the bottom
left local minimum to the top right one. Fig. 10 highlights the stability of the component Iε∆t in (Sd=2

ε ) when
ε → 0. Indeed, it goes to the component J∆t of (Sd=2

0 ), and has discontinuities in the asymptotic regime.
More generally, all the properties discussed in dimension 1 are still statisfied.

Conclusion
In this paper, we proposed and analyzed an asymptotic-preserving scheme for parabolic Lotka-Volterra equa-
tions (Pε), which model the evolution of a population density. The scheme (Sε) we proposed is converging
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Figure 9: Test with d = 2. Top left: uin
ε . Top right: uε∆t computed with (Sd=2

ε ) and ε = 10−2. Bottom left:
uε∆t computed with (Sd=2

ε ) and ε = 10−4. Bottom right: v∆t computed with (Sd=2
0 ). Parameters: T = 1,

∆t = 5 · 10−4, ∆x = ∆y = 5 · 10−2, uin
ε and vin defined in (54), and R in (55).
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Figure 10: Test with d = 2: Iε∆t computed with (Sd=2
ε ) for a series of ε, and J∆t computed with (Sd=2

0 ).
Parameters: T = 1, ∆t = 5 · 10−4, ∆x = ∆y = 5 · 10−2, uin

ε and vin defined in (54), and R in (55).

for fixed ε > 0, and enjoys stability properties in the asymptotics. Moreover, the limiting scheme (S0) is
converging towards the unique viscosity solution of the constrained Hamilton-Jacobi equation (P0), which
describes the asymptotic regime.

The key ingredients for the construction of the asymptotic-preserving scheme are the monotonicity and the
implicit treatment of the constraint. Thanks to these properties, the convergence of the scheme (Sε) is proved,
and so is its asymptotic behavior in the vanishing ε limit. The convergence of the limit scheme is based on
compactness arguments, and once again on the monotonicity of the scheme. It is indeed a usual property
required for non-diffusive schemes for Hamilton-Jacobi equations. However, because of the lack of regularity
of the Lagrange multiplier associated with the non-negativity constraint, the scheme has to be regularized to
prove its convergence. Eventually, the properties of the schemes have been discussed through numerical tests.
Both (Sε) and (S0) can also be generalized to any dimension. Moreover, numerical tests suggest that (Sε)
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enjoys uniform accuracy in appropriate discrete function spaces, meaning that its precision is independent of
ε.

A natural continuation of this work would be the study of an asymptotic-preserving scheme for integral
Lotka-Volterra equations. This question will be adressed in a future work.
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