
HAL Id: hal-03635560
https://hal.science/hal-03635560v1

Submitted on 8 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Web-Based Configurable Image Annotations
Matthieu Pizenberg, Axel Carlier, Emmanuel Faure, Vincent Charvillat

To cite this version:
Matthieu Pizenberg, Axel Carlier, Emmanuel Faure, Vincent Charvillat. Web-Based Configurable
Image Annotations. 26th ACM Multimedia Conference (MM 2018), Oct 2018, Seoul, South Korea.
pp.1368-1371, �10.1145/3240508.3243656�. �hal-03635560�

https://hal.science/hal-03635560v1
https://hal.archives-ouvertes.fr

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/22612

Official URL

DOI : https://doi.org/10.1145/3240508.3243656

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Pizenberg, Matthieu and Carlier, Axel
and Faure, Emmanuel and Charvillat, Vincent Web-Based
Configurable Image Annotations. (2018) In: 26th ACM
Multimedia Conference (MM 2018), 22 October 2018 - 26
October 2018 (Seoul, Korea, Republic Of).

Web-Based Configurable Image Annotations

Matthieu Pizenberg
University of Toulouse
matthieu@pizenberg.fr

Axel Carlier
University of Toulouse
axel.carlier@irit.fr

Emmanuel Faure
CNRS - IRIT

emmanuel.faure@irit.fr

Vincent Charvillat
University of Toulouse
vincent.charvillat@irit.fr

Figure 1: Screenshot of the interface of our image annotation Web application.

ABSTRACT

We introduce a new application for annotating images, with the
purpose of constituting training datasets for machine learning al-
gorithms. Our open-source software is meant to be easily used and
deployed, con!gured to meet the annotation needs of any use case,
and embeddable in crowdsourcing campaigns using the Amazon
Mechanical Turk service.

KEYWORDS

annotation; open source software; dataset

Reference Format:

Matthieu Pizenberg, Axel Carlier, Emmanuel Faure, and Vincent Charvillat.
2018. Web-Based Configurable Image Annotations. In 2018 ACM Multimedia
Conference (MM ’18), October 22–26, 2018, Seoul, Republic of Korea. ACM,

New York, NY, USA, 4 pages. https://doi.org/10.1145/3240508.3243656

1 INTRODUCTION

Image annotations are required in a wide range of applications
including image classification (which requires textual labels), object
detection (bounding boxes), or image segmentation (pixel-wise
classification). The rise and successes of deep learning lead to an
increasing need for annotations, as training sets should be of a
large size for these algorithms to be efficient. Yet, researchers still
spend time and resources to create ad hoc tools to prepare those

datasets. The application we present in this paper aims at providing

a customizable tool to ful!ll most image annotation needs.

Many image annotation applications already exist (Table 1). La-

belMe [10], one of the most popular, provides an interface for draw-

ing bounding boxes and polygons around objects in an image. It has

been used extensively to create datasets for image segmentation.

Some more recent softwares share the same goals, with their own

speci!cities. For example, Labelbox [5] and Dataturks [3] provide

annotation tasks management, particularly useful when crowd-

sourcing the annotations; these softwares are proprietary. The VGG

Image Annotator (VIA [8]) is an open-source client application

like ours, with the speci!city of providing annotation attributes,

editable in a spreadsheet format.

We release an open-source application [2], entirely client side,

meaning that no data is uploaded to any server. Images are loaded

from !les and annotated locally, in the browser. The simplest tool,

from a user perspective, should be immediately available i.e. should

not require any additional installation to be fully functional. Our

image annotation software is thus a Web-based application, eas-

ily con!gurable to !t users needs, as well as embeddable in the

Mechanical Turk platform to design crowdsourcing campaigns.

We !rst present the features of our application, then describe

its architecture. Finally, we explain how it can be used to start

crowdsourcing experiments.

2 PRESENTATION OF THE APPLICATION

A screenshot of the application can be seen in Figure 1. The image

to be annotated occupies the central part of the screen; a toolbar is

located on top, object classes are available on the left and images

to be annotated on the right.

Images. Multiple images can be loaded at the same time using

the image icon on the top-right corner of the application. These

images are not uploaded on the server, and can either be loaded

locally from the client’s machine, or from a distant server.

Tools. Our application includes several tools to annotate images.

Icons for these tools are depicted in Figure 2. From left to right,

the !rst available annotation is the point, that can be useful to

Application Year Tools
Con!gurable

interface

Tasks

management
Type License

LabelMe 2008 bbox, polygon, iterative semi-automatic segmentation no Mturk integration server OSS

VIA 2016 bbox, polygon, point, circle, ellipse no no client OSS

Labelbox 2018 bbox, polygon, point, line yes yes server private

Dataturks 2018 bbox, polygon no yes server private

Ours 2018 bbox, polygon, point, stroke, outline yes Mturk integration client OSS

Table 1: Most relevant image annotation Web applications.

designate objects in the image. It can also be used as a seed in region-

growing image segmentation methods. The second annotation we

included is the bounding box, which provides the localization of

objects in the image, and is used in object detection problems.

The information we acquire are the left, right, top and bottom

coordinates of the bounding box. The third annotation we chose to

implement is the stroke, or scribble, which is a popular interaction in

image segmentation. It consists in a sequence of points, interpreted

as a continuous line. The outline, fourth type of annotation, is a

closed shape, typically drawn around objects. It is comparable to

a bounding box in essence, but provides a more precise location

of objects. Finally, polygons can also be drawn (as in LabelMe, for

instance), by successively clicking new points as vertices.

All these tools are available both with a mouse or a touch inter-

action. As a matter of fact, some tools are better suited to touch

devices (for example, outlines) than others (polygons).

Figure 2: Annotation tools icons

Object classes. For most annotation tasks, we also need to dif-

ferentiate objects in the images. Typically each annotated area

is attributed a class, or label. The PASCAL VOC dataset [9], for

example, is composed of 20 classes, grouped by categories:

• Person: person

• Animal: bird, cat, cow, dog, horse, sheep

• Vehicle: aeroplane, bicycle, boat, bus, car, motorbike, train

• Indoor : bottle, chair, dining table, potted plant, sofa, tv/mon-

itor

In our application, classes are speci!ed in a JSON con!gura-

tion !le. A strict corresponding con!g for PASCAL VOC classes is

presented in Listing 1.

To attribute a class to an annotation, a user should !rst select

the class in the left sidebar, then use a tool to create an annotation.

Selecting a class in the left sidebar also highlights the annotations

corresponding to this class.

Con!guration !le. The !ve annotation tools are optionally

made available by the con!guration !le. In Listing 1, the last line

of the depicted con!guration !le contains an annotations !eld,

listing the tools that should be available. In this case, they all are.

In addition to the !ve fundamental annotation types, each type

can be derived in virtually any number of variations. For example,

1 { "classes":

2 [{ "category": "Person"

3 , "classes": ["person"]

4 }

5 , { "category": "Animal"

6 , "classes": ["bird", "cat", "cow", "dog", "horse",

"sheep"]

7 }

8 , { "category": "Vehicle"

9 , "classes": ["aeroplane", "bicycle", "boat", "bus",

"car", "motorbike", "train"]

10 }

11 , { "category": "Indoor"

12 , "classes": ["bottle", "chair", "dining table", "

potted plant", "sofa", "tv/monitor"]

13 }

14]

15 , "annotations": ["point", "bbox", "stroke", "outline",

"polygon"]

16 }

Listing 1: A con!guration !le to annotate the PASCAL

dataset.

1 { "classes": []

2 , "annotations":

3 ["bbox"

4 , { "type": "stroke", "variations": ["fg", "bg"] }

5]

6 }

Listing 2:A con!guration!le to include two types of strokes.

interactive segmentation algorithms often require foreground and

background scribbles. In our application, this would mean the user

would need to draw two types of strokes. This can be achieved using

the con!guration !le, as in Listing 2. Such con!guration would

result in two stroke icons in the toolbar, of di#erent colors, just as

in Figure 1.

3 TECHNICAL CHOICES

The application code is organized in two parts:

• Aminimalist Node.js server, located in the server/ directory.

It is statically serving the content of server/dist/ with

compression.

• A complete Elm client application, located in the client/

directory. Elm [6, 7] isn’t a JavaScript framework, it is a

functional programming language, compiling to JavaScript

to run in browsers. Its syntax is inherited from Haskell but

far simpler. The compiled application is 150 KB gzipped,

which is great for low bandwidth connections.

3.1 The application architecture

Msg Model View

Cmd Sub

Elm Runtime

*with attached
event listeners

Elm Virtual DOM"Single source of truth"App-defined messages

update view

DOMNetwork
Rest of

the World

subscriptions

Figure 3: The application architecture.

The application architecture enforces a unidirectional data trans-

formation %ow, visualized in Figure 3. The central entity is the

Model. It contains all and every information about our application

state. The visual aspect of our application is called the View (basi-

cally an HTML rendered document) which is generated by the view

function, from the Model. Finally, all events generate messages, of

type Msg. The update function, updates the model by reacting to

those messages, closing the loop.

All functions are pure, meaning there is no side e#ect, outputs

of functions are entirely de!ned by inputs. There cannot be global

variables mutations, real world events, network interaction etc.

Basically such a program would be running in a predestined way

from its start to its end, preventing us from loading images and

interacting with them. This is why the application is attached to

the Elm runtime, provided by the language, transforming all real

world events (“side e#ects”) into our de!ned set of messages, of

type Msg.

The main challenge with pure functions is to describe side e#ects

without performing them. Those are described in three locations:

(1) View attributes as DOM event listeners for pointer events.

(2) Commands (Cmd) generated by the update function, like load-

ing of images.

(3) Subscriptions (Sub) to outside world events like the window

resizing.

The Elm runtime takes those side e#ect descriptions, perform

them, and, whenever there is a result / an answer, transforms it

into one of our de!ned messages (Msg) and routes it to our update

function.

3.2 The model states

The state is the main component of the Model. It contains the im-

ages and con!guration loaded as well as the annotations performed.

Its type is de!ned as in Listing 3 and can be modeled as a !nite

state machine, visualized in Figure 4.

The application available online starts in state 0 (NothingProvided)

and enables you to reach state 2 (AllProvided) with buttons to

load images and con!guration. Two messages called LoadImages

and ConfigLoaded produce transitions in the state machine.

1 type State

2 = NothingProvided

3 | ConfigProvided Config Classes (Zipper Tool)

4 | ImagesProvided (Zipper RawImage)

5 | AllProvided Config Classes (Zipper Tool) (Zipper

AnnotatedImage)

Listing 3: State type de!nition.

NothingProvided

ImagesProvided

AllProvided

Zipper RawImage

Zipper AnnotatedImage

Config

Classes

Zipper Tool

ConfigProvided

Config

Classes

Zipper Tool

LoadImages

ConfigLoaded

ConfigLoaded

LoadImages

1a

2

1b

0

Figure 4: The application states.

1 type Msg

2 = WindowResizes Device.Size

3 -- pointer events

4 | PointerMsg Pointer.Msg

5 -- select things

6 | SelectImage Int

7 | SelectTool Int

8 | SelectClass Int

9 -- files

10 | LoadImages (List { name : String , file : Value })

11 | ImageLoaded { id : Int , url : String , width : Int ,

height : Int }

12 | LoadConfig Value

13 | ConfigLoaded String

14 | Export

15 -- other actions

16 | ZoomMsg ZoomMsg

17 | RemoveLatestAnnotation

Listing 4: Msg type de!nition.

3.3 The messages

All modi!cations of the model are understood by looking at the

Msg type de!nition (Listing 4). The update function then performs

the modi!cations described by those messages.

• The WindowResizes message is triggered when the applica-

tion is resized. In the update function, it takes the new size

and recomputes some view parameters.

• A PointerMsgmessage is triggered by pointer events (mouse,

touch, etc.). In the update function, this is the message acti-

vating all the annotations logic code of our application.

• The messages SelectImage, SelectTool and SelectClass

are generated when clicking on images, tools and classes.

• Files are handled by !ve messages:

– When loading images from the !le explorer, a LoadImages

message is generated with a list of the images !les and

their names as identi!ers. For each image correctly loaded

an ImageLoaded message is generated, providing a local

url, corresponding to the image in memory.

– Themessages LoadConfig and ConfigLoaded behave sim-

ilarly.

– The Export message causes the application to serialize

into JSON all the annotations, and asks the user to save

the generated !le. It is triggered by clicking on the export

button of the top action bar.

• Whenever an event should change the zooming level of the

drawing area, a ZoomMsg message is generated.

• Finally, the RemoveLatestAnnotation message is also ex-

plicit.

3.4 The view

The view of this application is based on four components, each

implemented in its own module, with potentially di#erent versions

depending on the current state of the application.

• The top action bar (src/View/ActionBar.elm).

• The center annotations viewer area

(src/View/AnnotationsArea.elm).

• The right images sidebar

(src/View/DatasetSideBar.elm).

• The left classes sidebar

(src/View/ClassesSideBar.elm).

3.5 Library and application duality

In order to o#er a turnkey solution to image annotations, we cre-

ated a con!gurable application solving most needs. But we also

thought of cases where advanced modi!cations are required. Con-

sequently, the foundation of this application has been extracted in

the independent package elm-image-annotation [4]. It is designed

as an API to create, modify and visualize geometric shapes, useful

in the context of image annotation.

Modules for manipulation and serialization (in JSON) of annota-

tions are under the Annotation.Geometry namespace. It already

contains one module for each tool presented earlier. If you want to

introduce a new tool, this is where you can create a new module.

This package also contains the following important modules,

under the Annotation namespace:

• Annotation.Style: de!nes types describing appearance of

points, lines and !llings of annotations.

• Annotation.Svg: exposes functions rendering SVG elements

for each annotation kind.

• Annotation.Viewer: manages the central visualization area,

supporting zooming and translations, relative to an image

frame.

If you are interested in creating another rendering target than SVG,

like canvas, WebGL, . . . , it would require alternative modules to

Annotation.Svg and Annotation.Viewer. The rest of the code

can stay unchanged.

4 CROWDSOURCING ANNOTATIONS

Image annotation interfaces are often used in the context of large

datasets of images to annotate. As such, tasks management for

crowdsourcing campaigns is an important feature. Labelbox and

Dataturks are all-in-one services providing tasks management di-

rectly in their applications. Just like LabelMe, we choose instead

to provide a con!guration, ready to use with Amazon Mechanical

Turk (Mturk).

Mturk comes in two sides. A “requester” is de!ning a set of

tasks while a “worker” is performing them. Workers are payed by

requesters through Mturk service. The concept of a “HIT” (Human

Intelligence Task) characterizes the task unit. In our case, one HIT

means one image to be annotated. We describe in details how to

setup a campaign with our template in the application documenta-

tion.

5 CONCLUSION

In this paper we have introduced our web-based image annotation

application. More information is available in the online documen-

tation [1]. The application is still actively developed, we welcome

all feedback and contributions.

ACKNOWLEDGMENTS

We would like to thank:

• @tforgione and @GarciaDelMolino for your wise feedbacks.

• @dncg for your Windows tests.

• The online Elm community for their help along the road:

@evancz for the delightful Elm language, @ianmackenzie for

your fantastic geometry library, @mdgri"th for your very

refreshing layout library, @luke for the amazing tool Ellie,

@norpan, @jessta, @loganmac, @antew, for your invaluable

help on slack.

REFERENCES
[1] 2018. Application documentation. https://reva-n7.gitbook.io/annotation-app/.

(2018). Accessed: 2018-05-20.
[2] 2018. Application source code. https://github.com/mpizenberg/annotation-app.

(2018). Accessed: 2018-05-20.
[3] 2018. Dataturks. https://dataturks.com/. (2018). Accessed: 2018-05-20.
[4] 2018. Image annotation package. https://github.com/mpizenberg/

elm-image-annotation. (2018). Accessed: 2018-05-20.
[5] 2018. Labelbox. https://www.labelbox.com/. (2018). Accessed: 2018-05-20.
[6] Evan Czaplicki. 2017. Elm. http://elm-lang.org/. (2017). Accessed: 2018-05-20.
[7] Evan Czaplicki and Stephen Chong. 2013. Asynchronous functional reactive

programming for GUIs. In ACM SIGPLAN Notices, Vol. 48. ACM, 411–422.
[8] A. Dutta, A. Gupta, and A. Zissermann. 2016. VGG Image Annotator (VIA).

http://www.robots.ox.ac.uk/ vgg/software/via/. (2016). Accessed: 2018-05-20.
[9] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and

Andrew Zisserman. 2010. The pascal visual object classes (voc) challenge. Inter-
national journal of computer vision 88, 2 (2010), 303–338.

[10] Bryan C Russell, Antonio Torralba, Kevin P Murphy, and William T Freeman.
2008. LabelMe: a database and web-based tool for image annotation. International
journal of computer vision 77, 1 (2008), 157–173.

