Matthieu Pizenberg
email: matthieu@pizenberg.fr

Axel Carlier
email: axel.carlier@irit.fr

Emmanuel Faure
email: emmanuel.faure@irit.fr

Vincent Charvillat
email: vincent.charvillat@irit.fr

Web-Based Configurable Image Annotations

Keywords: annotation, open source software, dataset

Figure 1: Screenshot of the interface of our image annotation Web application.

INTRODUCTION

Image annotations are required in a wide range of applications including image classification (which requires textual labels), object detection (bounding boxes), or image segmentation (pixel-wise classification). The rise and successes of deep learning lead to an increasing need for annotations, as training sets should be of a large size for these algorithms to be efficient. Yet, researchers still spend time and resources to create ad hoc tools to prepare those datasets. The application we present in this paper aims at providing a customizable tool to ful ll most image annotation needs.

Many image annotation applications already exist (Table 1). La-belMe [START_REF] Bryan C Russell | LabelMe: a database and web-based tool for image annotation[END_REF], one of the most popular, provides an interface for drawing bounding boxes and polygons around objects in an image. It has been used extensively to create datasets for image segmentation. Some more recent softwares share the same goals, with their own speci cities. For example, Labelbox [START_REF]Labelbox[END_REF] and Dataturks [START_REF]Dataturks[END_REF] provide annotation tasks management, particularly useful when crowdsourcing the annotations; these softwares are proprietary. The VGG Image Annotator (VIA [START_REF] Dutta | VGG Image Annotator (VIA)[END_REF]) is an open-source client application like ours, with the speci city of providing annotation attributes, editable in a spreadsheet format.

We release an open-source application [START_REF]Application source code[END_REF], entirely client side, meaning that no data is uploaded to any server. Images are loaded from les and annotated locally, in the browser. The simplest tool, from a user perspective, should be immediately available i.e. should not require any additional installation to be fully functional. Our image annotation software is thus a Web-based application, easily con gurable to t users needs, as well as embeddable in the Mechanical Turk platform to design crowdsourcing campaigns.

We rst present the features of our application, then describe its architecture. Finally, we explain how it can be used to start crowdsourcing experiments.

PRESENTATION OF THE APPLICATION

A screenshot of the application can be seen in Figure 1. The image to be annotated occupies the central part of the screen; a toolbar is located on top, object classes are available on the left and images to be annotated on the right.

Images. Multiple images can be loaded at the same time using the image icon on the top-right corner of the application. These images are not uploaded on the server, and can either be loaded locally from the client's machine, or from a distant server.

Tools. Our application includes several tools to annotate images. Icons for these tools are depicted in Figure 2. From left to right, the rst available annotation is the point, that can be useful to designate objects in the image. It can also be used as a seed in regiongrowing image segmentation methods. The second annotation we included is the bounding box, which provides the localization of objects in the image, and is used in object detection problems. The information we acquire are the left, right, top and bottom coordinates of the bounding box. The third annotation we chose to implement is the stroke, or scribble, which is a popular interaction in image segmentation. It consists in a sequence of points, interpreted as a continuous line. The outline, fourth type of annotation, is a closed shape, typically drawn around objects. It is comparable to a bounding box in essence, but provides a more precise location of objects. Finally, polygons can also be drawn (as in LabelMe, for instance), by successively clicking new points as vertices.

All these tools are available both with a mouse or a touch interaction. As a matter of fact, some tools are better suited to touch devices (for example, outlines) than others (polygons). Object classes. For most annotation tasks, we also need to differentiate objects in the images. Typically each annotated area is attributed a class, or label. The PASCAL VOC dataset [START_REF] Everingham | The pascal visual object classes (voc) challenge[END_REF], for example, is composed of 20 classes, grouped by categories:

• Person: person • Animal: bird, cat, cow, dog, horse, sheep • Vehicle: aeroplane, bicycle, boat, bus, car, motorbike, train • Indoor: bottle, chair, dining table, potted plant, sofa, tv/monitor In our application, classes are speci ed in a JSON con guration le. A strict corresponding con g for PASCAL VOC classes is presented in Listing 1.

To attribute a class to an annotation, a user should rst select the class in the left sidebar, then use a tool to create an annotation. Selecting a class in the left sidebar also highlights the annotations corresponding to this class.

Con guration le. The ve annotation tools are optionally made available by the con guration le. In Listing 1, the last line of the depicted con guration le contains an annotations eld, listing the tools that should be available. In this case, they all are.

In addition to the ve fundamental annotation types, each type can be derived in virtually any number of variations. For example, interactive segmentation algorithms often require foreground and background scribbles. In our application, this would mean the user would need to draw two types of strokes. This can be achieved using the con guration le, as in Listing 2. Such con guration would result in two stroke icons in the toolbar, of di erent colors, just as in Figure 1.

TECHNICAL CHOICES

The application code is organized in two parts:

• A minimalist Node.js server, located in the server/ directory.

It is statically serving the content of server/dist/ with compression.

• A complete Elm client application, located in the client/ directory. Elm [START_REF] Czaplicki | Elm[END_REF][START_REF] Czaplicki | Asynchronous functional reactive programming for GUIs[END_REF] isn't a JavaScript framework, it is a functional programming language, compiling to JavaScript to run in browsers. Its syntax is inherited from Haskell but far simpler. The compiled application is 150 KB gzipped, which is great for low bandwidth connections. The application architecture enforces a unidirectional data transformation ow, visualized in Figure 3. The central entity is the Model. It contains all and every information about our application state. The visual aspect of our application is called the View (basically an HTML rendered document) which is generated by the view function, from the Model. Finally, all events generate messages, of type Msg. The update function, updates the model by reacting to those messages, closing the loop.

All functions are pure, meaning there is no side e ect, outputs of functions entirely de ned by inputs. There cannot be global variables mutations, real world events, network interaction etc. Basically such a program would be running in a predestined way from its start to its end, preventing us from loading images and interacting with them. This is why the application is attached to the Elm runtime, provided by the language, transforming all real world events ("side e ects") into our de ned set of messages, of type Msg.

The main challenge with pure functions is to describe side e ects without performing them. Those are described in three locations:

(1) View attributes as DOM event listeners for pointer events.

(2) Commands (Cmd) generated by the update function, like loading of images. (3) Subscriptions (Sub) to outside world events like the window resizing. The Elm runtime takes those side e ect descriptions, perform them, and, whenever there is a result / an answer, transforms it into one of our de ned messages (Msg) and routes it to our update function.

The model states

The state is the main component of the Model. It contains the images and con guration loaded as well as the annotations performed. Its type is de ned as in Listing 3 and can be modeled as a nite state machine, visualized in Figure 4.

The application available online starts in state 0 (NothingProvided) and enables you to reach state 2 (AllProvided) with buttons to load images and con guration. Two messages called LoadImages and ConfigLoaded produce transitions in the state machine. Listing 4: Msg type de nition.

The messages

All modi cations of the model are understood by looking at the Msg type de nition (Listing 4). The update function then performs the modi cations described by those messages.

• The WindowResizes message is triggered when the application is resized. In the update function, it takes the new size and recomputes some view parameters.

• A PointerMsg message is triggered by pointer events (mouse, touch, etc.). In the update function, this is the message activating all the annotations logic code of our application.

• Files are handled by ve messages:

-When loading images from the le explorer, a LoadImages message is generated with a list of the images les and their names as identi ers. For each image correctly loaded an ImageLoaded message is generated, providing a local url, corresponding to the image in memory. -The messages LoadConfig and ConfigLoaded behave similarly.

-The Export message causes the application to serialize into JSON all the annotations, and asks the user to save the generated le. It is triggered by clicking on the export button of the top action bar.

• Whenever an event should change the zooming level of the drawing area, a ZoomMsg message is generated.

• Finally, the RemoveLatestAnnotation message also explicit.

The view

The view of this application is based on four components, each implemented in its own module, with potentially di erent versions depending on the current state of the application.

• The top action bar (src/View/ActionBar.elm).

• The center annotations viewer area (src/View/AnnotationsArea.elm).

• The right images sidebar (src/View/DatasetSideBar.elm).

• The left classes sidebar (src/View/ClassesSideBar.elm).

Library and application duality

In order to o er a turnkey solution to image annotations, we created a con gurable application solving most needs. But we also thought of cases where advanced modi cations are required. Consequently, the foundation of this application has been extracted in the independent package elm-image-annotation [START_REF]Image annotation package[END_REF] This package also contains the following important modules, under the Annotation namespace:

• Annotation.Style: de nes types describing appearance of points, lines and llings of annotations.

• Annotation.Svg: exposes functions rendering SVG elements for each annotation kind.

• Annotation.Viewer: manages the central visualization area, supporting zooming and translations, relative to an image frame. If you are interested in creating another rendering target than SVG, like canvas, WebGL, . . . , it would require alternative modules to Annotation.Svg and Annotation.Viewer. The rest of the code can stay unchanged.

CROWDSOURCING ANNOTATIONS

Image annotation interfaces are often used in the context of large datasets of images to annotate. As such, tasks management for crowdsourcing campaigns is an important feature. Labelbox and Dataturks are all-in-one services providing tasks management directly in their applications. Just like LabelMe, we choose instead to provide a con guration, ready to use with Amazon Mechanical Turk (Mturk).

Mturk comes in two sides. A "requester" is de ning a set of tasks while a "worker" is performing them. Workers are payed by requesters through Mturk service. The concept of a "HIT" (Human Intelligence Task) characterizes the task unit. In our case, one HIT means one image to be annotated. We describe in details how to setup a campaign with our template in the application documentation.

CONCLUSION

In this paper we have introduced our web-based image annotation application. More information is available in the online documentation [1]. The application is still actively developed, we welcome all feedback and contributions.

Figure 2 :

 2 Figure 2: Annotation tools icons

3 [bbox 4 , 5] 6 }

 3456 { type : stroke , variations : [fg , bg] } Listing 2: A con guration le to include two types of strokes.

Figure 3 :

 3 Figure 3: The application architecture.

1 type State 2 = NothingProvided 3 | 4 | 5 |Listing 3 :Figure 4 :type Msg 2 = WindowResizes Device . Size 3 --pointer events 4 | PointerMsg Pointer . Msg 5 --select things 6 | SelectImage Int 7 | SelectTool Int 8 | SelectClass Int 9 --files 10 |

 2345342345678910 Figure 4: The application states.

Table 1 :

 1 Most relevant image annotation Web applications.

	Application Year Tools	Con gurable interface	Tasks management	Type License
	LabelMe	2008 bbox, polygon, iterative semi-automatic segmentation no	Mturk integration server	OSS
	VIA	2016 bbox, polygon, point, circle, ellipse	no	no	client	OSS
	Labelbox	2018 bbox, polygon, point, line	yes	yes	server private
	Dataturks	2018 bbox, polygon	no	yes	server private
	Ours	2018 bbox, polygon, point, stroke, outline	yes	Mturk integration client	OSS

 . It is designed as an API to create, modify and visualize shapes, useful in the context of image annotation. Modules for manipulation and serialization (in JSON) of annotations are under the Annotation.Geometry namespace. It already contains one module for each tool presented earlier. If you want to introduce a new tool, this is where you can create a new module.

ACKNOWLEDGMENTS

We would like to thank:

• @tforgione and @GarciaDelMolino for your wise feedbacks.

• @dncg for your Windows tests.

• The online Elm community for their help along the road: @evancz for the delightful Elm language, @ianmackenzie for your fantastic geometry library, @mdgri th for your very refreshing layout library, @luke for the amazing tool Ellie, @norpan, @jessta, @loganmac, @antew, for your invaluable help on slack.