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Problems of Buffon type with multiple
intersections for lattices of isoscele trapeziums

Giuseppe Caristi

Abstract
In this paper we study problems of Bufoon type with multiple inter-
sections for a lattice of isoscele trapeziums, having angles % and ?31 and

body test a line segment.
AMS?2000 subject Classification: Geometric Probability, stochastic ge-

ometry, random sets, random convex sets and integral geometry.
AMS Classification: 60D05, 52A22.

1 Preliminaries

In the two works [1] and [2] are studied problems of Buffon type with multiple
intersections for lattices of parallelograms and of equilater triangles taking as
test body a line segment of constant length s. For the same test body we
consider a lattice R with elementary tile a trapezium 3 of parallels sides A and
A — B and of sides B and B, that form an angle equal to § with the side A.
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We want to determine the probability of multiple intersections of the test
body s with the sides of lattice R, that is the probability p1,p2, ... that the test
body intersects respective one time, two times, ... the sides of lattice.
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Because of the different relations between the geometric objects of the trapez-
ium 3, that is between sides 4, B, the heights h = —\i and H = i , and the

diagonal § = vVA? — AB + B? we must consider the follomug cases:
Casel: B< A< f/Bﬁ' In this case we have:

A-B<h<H<B<dé<A

Case 2 : 5 oAb (1 + 5@) B. In this case we have:

sk

A-B<h<B<H<é<A4

Case 3::

o

1+ 3@) B < A < 2B. In this case we have:

RS AT B N =

Case4:2B< A< (4+2\/§) B. In this case we have:
h<B<A-B<H<{§<A

Case 5 : (4+2\/§)B < A. In this case we have:
h<B<H<A-B<{§<A.

The length needle s is small (in the given sense in [3]) respectively if and
only if I < A — B in the cases 1 and 2 and { < B2 in the cases 3, 4 and 5.

2 The length needle

We consider that [ is small respect to R. Under this hypothesis we don’t have to
distinguish between the 5 previous cases. The test body can intersect one time,
two times or three times the sides of lattice; therefore we want to calculate the
probabilities py, pa, ps.

Theorem 1 Let s a line segment of length | small regarding the lattice R, uni-
formly distribuited in a bounded region of the Euclidean plane. The probabilities
that s interscts one time, two times or three times the sides of R are respectively

4 24A+B I 2 5 12 _
plz—-—--——-—-—-—-—-—m—-——-—- ——-—-E-_,.. — (1)
m/3 2A-B B \2r/3 18/ (2A-B)B
4 2 &
e : 2
- (9+ﬁ\/§) QA-B)B @)

1 1 14 (3)
Ps = —= wa | At
3 9) (2A-B)B
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Proof. Let ¢ the angle formed from s with the the straight parallels of
the lattice, we observe that for reasons of simmetry is sufficient to consider the
direction of ¢ in the interval [0, 3]. Let M the set of the length segments
[ that have the barycentre m in the trapezium & and the arbitrary direction

€ [0, 5]. For k = 0,1,2,3 let ¥, set of segments s length [ that have the
barycentre m in the trapezium S, the direction ¢ such that che s intersects R
k times. Therefore M = R; U Ny UN3 is a three-dimensional set and if ¢ is the
direction s, then s € Ry if and only if the centre m of s is founded in a set of
3, that will be denote by 3 (). If i is the Lebesgue measure in the Euclidean

space, then Stoka’s formula gives to us

/Area S () d /Area Sk () d
pRe) 0
Pr= = R = (4)
w(M) ~ z Area S ﬁ(ABf——B“é)

hence Area “‘f (24 B) — ABYE _ B3
For ¢ E 0,3 [che set 33 () is empty, the set Jg () is the union of two par-
allelograms and of two trapezioms with hezght % sin ¢ and sides \/ﬁ sin (_ p) =

L (), v!@sm( + ) =t Iz (¢), like in Fig. 2.

21(@) 7,(®) (@)

7.(9)

Fig.2
Then we obtain:
L + Is (« i
Area S (¢) = (h (@) +l(p)+2- “Lgﬂ)_z“_zw(fl) 5 Siny =
{
Qﬁ (sin (% — n‘p) + sin (—g + Lp)) ésinap = 1% sin ¢ cos . (5)

The set ¥ (¢ ) is composed from four parallelograms; the two "horizontal"
have the hezght sin and horizontal sides A — 2l () respectively 4 — B —
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20y (); the two "oblique" have the oblique sides B — -2 l siny and the height
~‘/~_l1 () respectively % ¥y, (). Then:

Area 3y () = 24— B - 2(l1 (¢) + 12 () _é_sin o+

%"é (B i —j%siw> (L () +l2(p) =
Alsinyg + Blsin (g - (p) — 212 sin g cos . (6)

For ¢ € [o, 3*; [and ¢ € |5, 5] we have two different geometric situation as
we can see in Fig. 2 and 3.

\ Y 7
\ 4 i
\ \

sl
A\

ni@)

e 2(9)

Fig.3

For¢p € ] ~’35 —2’5] the set U3 (1) is composed by a little equilateral triangle with

side I7 () = ‘/- sin (¢ — ) by a trapezium that have the sides [cosg el (¢) =
€

5 sin (¢ + ), and height £ sin (» — §), and by two triangle that entirety forms
a parallelogram with sides I () and I} (¢) havig height £ sin (¢ — 3).

AreaSs () = —-——‘/_sm (c,, — %) §s1n( — 7—;-) [cos¢+ -}ﬁsin (tp + %)] +
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The set 3o () is the union of an equilater of side lcosc,o a trapezium with
parallel sides {f (¢} and 2[5 (¢) and height %sin (¢ — %), of an equilateral tri-
angle with side {5 (¢), and of a pentagon that with a httle equilateral triangle
with side /] (¢) they form a parallelogram with sides {3 (), (3 (@) := ‘%@ sing

2
and angles 7, 5.

In the figure 3 we see again that the set 3 () is the union of a pentagon
and of three parallelograms with angles % 33’5 The sides of the parallelo-
gram are respectively I (¢) and B — 2i3(p), A — B and %, and [y (@) and
B — 2I3 (p). The pentagon is the difference between a trapezium with parallel
sides A—[If (¢) + l2 ()] and A—2[If (¢) + L2 ()] and height £ sin @ and a little

equilateral triangle with sides [f (¢). Consequently:

V3 2 1 T 1 T
A %y = | A @+ — 8i R _) o o (, e —
rea Jg (p) [ § e 7 sin ((,J 3 + Wi sin“ (¢ 3)

1 i ' zi: E D
+2—\/§smapsm(\p+ 3) ﬁh/_bm ( 3)][ =

l:%%-m?cos&p——\?cos(Q;_?g-)—

1 2m 1 Ao B e

mcos <Qcp+ wg«) —mcos(z,o-f- S)Jl (8)

and l
Area S (@) = (A - B)= smga+

(B,‘g_.g — lsinfp) (%sin (g&— g) -+ %Sin (gzz+ —g)) o

Bfd L b e\l V3
[A——§<ﬁsm(cp—§)+-—\/"§sm(go+—3-))]-ism«p—(lcosnp)zzz
s 24 £
Alsing — 4—?——\/512 sin®p — %312 cos? ¢ = Alsinp + c;nr:/?;lz - f_ﬁ (9)

We calculate the integrals of these areas:

2l

fj-lrea I () dp = fArea S () d(,,+].4rea X (p)die =

Wi

T . 5 sin 2 51%
—Al s+ Blcos{= — ) — 2sin2 .l 5@ 2L Ry
( Alcosy cos(g ,,) 1% sin tp)|0+( Alcosp + 4\/51 4»/3;*)

Al + Bl (7 25})12 (10)
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Area 3 (p)dp = [ Area S (¢)dp+ | Area Sq (@) dp =

Ok_"“wwla
G\'\wh
e \wln

52 ) 3 ™ \/5 5
sin?¢ =i g2 e liE s o gt
7 sin ,90-%6\/5 o [(1681112(,9 .
V3 (2 27r) '* s N
e e sin -
56 ¢ S B gl 16\/— Bl
z ;

o I S
J_(mu)z, a
Areals (@) dp = | AreaS;(p)dp =

/ /

IR R TR T

2\/5[12 4}_(8 24\/3)5' (12)

Considering the formulas (4), (10), (11) and (12) we obtain the probabilities
(1), (2) e (3). m

18\/_511"1(29/%- )

3 The not small needle

Now we consider that the needle of length [ is not little respect to R, but minor
or equal to A. For each of the five previous cases we must disitinguish others
five undercases, for example in the case 1 the undercases are: A — B <[ < I
h<I<H;H<I<B;B<i<;3<l<A Thecases 1 and 2 have got two
identical undercases (A — B <1 < hed <[ < A) and the cases 2 and 3 have got
three identical undercases (B <I< H,H<I<ded <[ < A), and so on. We
observe that for [ < A exactly 16 undercases are different. In order to simplify
we will make the calculations on the undercase A — B <[ < h. In this case we
must distinguish between the following situations:

i) h<2(A-B); i1) 2(A- B) < h.
In this last situation two possibilities exist:

) A-B 1<2A~-8); skp2dA-B)<i<h




Now we consider the situations ¢) and ii);. The interval [0,%] is the union

of [0, ¥qal, [c,ao, -}] and (%, 525], where ¢, € {0, 2] is defined by the relation

Sm(%“""“) \g AzB

So for ¢ € [, 3] U [§, 5] we can be useful for the calculations of the areas
maked for the little case, it remain to determine Area 3 (), Area 39 () and
Area 33 (¢) when ¢ € [0, ¢, and for this we observe the Fig. 4:

Fig4

Area Q3 () is the area of parallelogram with sides 2L sin (£ — ) —(A — B),
7" 3

\/3 sin  and angles %, ;’, therefore we have:

Area S3(p) = ésinfp {% sin (% = {p) — (A~ B)} =

——li—cos(ﬁ-—Z )m ¢ —-E(A_B)f-:in'
T R i i
Pa
! =2
AreaSy () d =-(A—2§-2(COS¢O—1)+
0

5 - m (oo (5 —260). (13
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From (7) and (13) we obtain

9

fAr@a I3 () d / f Area S3(p)dp = - )(cos¢0 -1} +
0
2 J T sl s
5~ 2 (ot on(3-20)) +2 (3-57) -
LB [ i /n
m( 5 )(coscpﬂwl)%-z 4\/-( +‘Po+sm(§~2‘ro>) (14)

Iy () is composed from two parallelograms with sides that are respec-
tively ﬁ sin (p + %) and A - B — %3- sin (£ — ¢) and the same corrispondent
height of length i 5 sing, from two trapeziums with parallel sides respectively
\}—sm (.,o+ s \/gsm( —2)and A- B+ :/%sin (¢+3) - 3%%;11(5 — @),
A—B- \/- 81D (T~ ) and the same corrispondent height of length 5 singp, and
from an equilater triangle with side 2k \/« sin ( —¢) — (A= B). It follows that

Area I (p) = [_\% sin (3 ) (A-B) - \/. sin (g ) 2\/_ sin ( )

2\/_3111(?r ¢)+(A~B)—+-~2-£J_§si11(¢+~g~)mmsin gﬁw)]%sinfp-i-
2

(
B[ (5-0) -] = o 5) G- o

e
(A-B)I [sintp—sin (.72 _(10)] iy ,.?

3
‘/TE(A—B)Q—H/E(A—B)!sin( —%)+% [1—%cos %—290)},

'6

3
(A — B)? + —=sin’ (%-tp) i

/3‘2(90)‘1‘#”: ‘?(A“B)2W0—\/5(A~B)icos( —g)

0 0

wiA

r It

ﬁ%_‘_ 4\/3:81]71(3 2<p0)

T3 9 +21r)
== I

e A

-

—=sin (2¢+ —73) %]zm.—? (A - B)? gy+V3(A—-B)l

$a £2
s .2
=k ST z,o

e ---sm2
5 S ¥

3 12 \/"-’;
6v/3

%+ %sin(2w+g)’+

% — €08 (zpo— g—)J G
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@ 1. 1
% [ . +v+4\/.81n( 2990) 251112990+§]' (15)

Finally the set 3 () if ¢ € [0,¢p] is the umon of three polygons: an
horizontal parallelogram with sides 4 — 2, (¢) and 7=:;m @, havig angles %

and 2; and two oblique para.ilelogmms, of eachone of the parallelograms we

eliminate an equilateral triangle of side -2 7: sin (§ — ¢)—(A — B). The horizontal
sides of this parallelogram are I, (¢) and I3 (¢); The vertical height have length
B —‘é—g — [sin .

Hence for ¢ € [0, pg] we have

Area 1 (p) = [A - \2/% sin (',o A g)] ésin<p+

VA, . TN | (T
(B-—;—’ —lsmcp) (sm (-,o—l— 3—) + sin (E _50)) %_

2-—? [%sin(g—zp) —(A-«-B)rm%%sin<p+ ‘/;Bzcow—
—?(A—B)2+2(A—B)lsin(g—:p)—

i [% 2\/,.005(7r 2@)},

7]Afrea X () dp = %i- (1 —cosey) + —?Bisin wg — ? (A— B) oo+

1]

Bl telptn g ai g
2(A—B)I[cos(3 9,0) 2] 5[4\/§¢9+8 4\/38111(3 2990)]

and therefore it is had that:

Al
/Area Xy () dp = o (1+cospy) + Bl (1 - —;—cos ‘Po) - mé (A- B)2 Yot

Q(A—B}l[cos(%w%) _%} il

5w 1
[ \/.»(,w@ + YW + cos? i, — il sin (3 2?0)] (16)
Form the formulas (14), (15),(16) and (4) follows:
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Theorem 2 Let s a line segment of length 1, that respect to the dimension
of lattice R satisfies the relations A~ B <1 < h<2(A-B)or A-B <
I £ 2(A-B) < h. Let gy € [0,5] is the only angle with the property
sin (§ — H}) = 428 . ? .The line segment s is uniformly distribuited in a
bounded region of the Euclidean plane, then the probability that s intersects one
time, two times or three times the sides of lattice R are respectively

ﬁj—%—jﬂ {%% (1 -+ cospp) + Bl (1 w%cossao) n
l/z——g(A—B)2¢g+2(AwB)l(cos(g’“*{,:‘0) _%) -
TCRE R IER)
g = m -? (A= B)?p+V3(A—-B)I (-—?wcos (%—%))
(e e forne)]. oo
v ] G
+ = e (5 +eoain (5 -2m))]. (19)
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