
HAL Id: hal-03635377
https://hal.science/hal-03635377

Submitted on 8 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Benchmarking Big Data OLAP NoSQL Databases
Mohammed El Malki, Arlind Kopliku, Essaid Sabir, Olivier Teste

To cite this version:
Mohammed El Malki, Arlind Kopliku, Essaid Sabir, Olivier Teste. Benchmarking Big Data OLAP
NoSQL Databases. 4th International Symposium on Ubiquitous Networking (UNet 2018), May 2018,
Hammamet, Tunisia. pp.82-94. �hal-03635377�

https://hal.science/hal-03635377
https://hal.archives-ouvertes.fr

Official URL
DOI : https://doi.org/10.1007/978-3-030-02849-7_8

Any correspondence concerning this service should be sent

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/24706

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: El Malki, Mohammed and Kopliku, Arlind

and Sabir, Essaid and Teste, Olivier Benchmarking Big Data OLAP

NoSQL Databases. (2018) In: 4th International Symposium on

Ubiquitous Networking (UNet 2018), 2 May 2018 - 5 May 2018

(Hammamet, Tunisia).

Benchmarking Big Data OLAP NoSQL

Databases

Mohammed El Malki1(&), Arlind Kopliku1, Essaid Sabir2,

and Olivier Teste1

1 Institut de Recherche en Informatique de Toulouse, Toulouse, France

{elmalki,teste}@irit.fr, ArlindKopliku@yahoo.fr
2 NEST Research Group, ENSEM, Hassan II University of Casablanca,

Casablanca, Morocco

e.sabir@ensem.ac.ma

Abstract. With the advent of Big Data, new challenges have emerged

regarding the evaluation of decision support systems (DSS). Existing evaluation

benchmarks are not configured to handle a massive data volume and wide data

diversity. In this paper, we introduce a new DSS benchmark that supports

multiple data storage systems, such as relational and Not Only SQL (NoSQL)

systems. Our scheme recognizes numerous data models (snowflake, star and flat

topologies) and several data formats (CSV, JSON, TBL, XML, etc.). It entails

complex data generation characterized within “volume, variety, and velocity”

framework (3 V). Next, our scheme enables distributed and parallel data gen-

eration. Furthermore, we exhibit some experimental results with KoalaBench.

1 Introduction

Several benchmarks have been proposed for information systems evaluation and

specifically for decision support systems [1]. We particularly mention the well-known

TPC-DS [18] and the TPC-H benchmarks [13, 24]. They provide data sets and usage

scenarii allowing comparison of systems’ behavior under equivalent conditions, thus

permitting comparative evaluations. Recently, information systems have quickly

evolved to support the growth of data Volume, Variety/diversity and Velocity (3 V)

framework. However, the evaluation benchmarks have not evolved at the same rate.

The existing solutions are still at the time where data warehouses were mainly stored in

a single powerful machine and relational databases were mostly used. Besides, there

are many other reasons to make us believe that a new DSS benchmark is required. For

instance, we cite the following:

(i) New Enabling Technologies: Nowadays, there are different NoSQL (“Not only

SQL”) systems that ease Big Data management, which cannot be handled effi-

ciently by existing relational systems [11, 20]. These systems enable the storage

according to various data models (documents, columns, graphs, etc.), introducing

a higher flexibility on the schema levels. We are facing a high diversity of

solutions to jointly consider;

https://doi.org/10.1007/978-3-030-02849-7_8

(ii) Multiple Data Models: Every NoSQL solution supports different formats and data

models [7]. On one hand, multidimensional data warehouses rooted with rela-

tional databases (ROLAP) favour data models like the snowflake schema (stan-

dardized schemas) or the star schema (non-standard schema). On the other hand,

NoSQL systems are likely to use a flat model with a complete denormalization

(can be related to the universal relationship) and could use imbrications. These

approaches go against the principle introduced by the relational approach of strict

separation between the data model and the data processing. The dependencies

between data modelling and data processing make even more important to have a

support for multiple data models adapted to multiple various treatments;

(iii) Data Volume: Before deciding which solution to adopt, it is important to check

the system behaviour under a massive amount of data [11]. The larger the amount

is, the more we are facing the memory limits on a single-computer configuration.

Big Data’s new solutions allow to scale up and balance the memory disorders.

Data are settled on multiple computers forming a cluster. Then, when it reaches

the storage limit, the system can be upgraded by simply adding new computers.

This agile method costs less than increasing the storage capacity of a centralized

computer. It is worth to mention that existing benchmarks generate the data only

on one computer;

(iv) Variety/Diversity: NoSQL systems rely on new logical data models that promise

higher flexibility. Some NoSQL systems are said “schemaless”; i.e. there is no

fixed data schema. Data of the same class can have no schema or might have

multiple schemas. Integration and analysis of those heterogeneous data sets is a

complicated task that benchmarks dedicated to the existing decision-making

systems are still struggling with;

(v) Velocity: As data is generated with an increasing rate, the architectures are

compelled to adopt a system capable of processing such fast growing data.

Henceforth, related research community must consider new evaluation benchmarks

supporting big data challenges. Data warehouses evaluation benchmarks (TPC-DS

[18], TPC-H and SSB [19] are relatively out-of-date and do not consider the new

challenges and technologies. These solutions are neither defined for a usage in a

distributed environment, nor for NoSQL databases. Their data generating processes are

quite sophisticated and interesting. However, they remain limited when it comes to data

volume and data variety since they depend on the memory limit of the machine being

used for data generation and they only generate one data model, one file format, and

one schema. NoSQL systems work with different logical data models and different file

formats and they can accommodate to diverse schemaless data. In other terms, a

significant effort is needed to load data on NoSQL systems and to be able to assess

some of their advantages such as support for data diversity.

In this paper, we propose a new benchmark for evaluating multidimensional data

warehouses that take into consideration big data properties (i.e., 3 V paradigm).

KoalaBench is an extension of TPC-H that tackles big data technologies and

requirements. These new benchmark functionalities include:

– Support for relational databases system and NoSQL systems;

– Support for multiple logical models: snowflake, star schema, flat schema;

– Support parallel and distributed data generation natively in HDFS;

– Support for variety/diversity: multiple schemas at once;

– Support for velocity: able to process fast growing data.

The remaining is organized as follows. We provide in Sect. 2 a comprehensive

overview on existing benchmark suites. Section 3 describes the proposed benchmark.

We finally exhibit an extensive experimental work and results in Sect. 4. Concluding

remarks and some future directions are drawn in Sect. 5.

2 Related Work

During the last few years, tremendous research efforts on information system bench-

marks have been deployed. However, the technology evolution and the explosion of

stored information are demanding novel and efficient benchmarks methods. We dis-

tinguish two benchmarking families with respect to distributed information systems

and decision support systems. The first method details the TPC-D derived benchmarks,

which focus on Decision Systems (DSS). Whereas, the second family tackles the

benchmarks supporting NoSQL approaches.

2.1 Decision Benchmark Systems (DSS)

Benchmark approach edited by Transaction Processing Performance Council (TPC) is

the most used to evaluate DSS systems. The well-known benchmark APB-1 was

popular in the 90’s. It quickly became obsolete because it was too simple and

unsuitable for most experiences [4, 22].

The TPC-D benchmark was the first benchmark designed explicitly for DSS sys-

tems. Later, two sub-benchmarks were derived from it: TPC-H has been designed for

ad-hoc queries and TPC-R has been designed for reporting. TPC-DS succeeds on TPC-

H as the data model became richer, standardized and supports a total of 99 queries

classified into 4 categories: interactive OLAP queries, ad-hoc decision support queries,

extraction queries and reporting queries. The data model is a constellation schema

composed of 7 fact tables and 17 shared dimensions tables. TPC-H is an alternative

benchmark that simulates a decision support system database environment. It imple-

ments business-oriented queries and concurrent data access. These queries are per-

formed on ultra large amounts of data and have a high degree of complexity.

In 2009, the Star Schema Benchmark (SSB) was proposed [19]. It is an extension of

the TPC-H benchmark. Unlike TPC-DS, SSB introduces some denormalization on data

for the sake of simplicity. It implements a pure star schema composed of a fact table

and 4 dimension tables. In order to adapt a star-schema-oriented benchmark to NoSQL,

two SSB-derived benchmarks were proposed. Namely, the CNSSB that supports

column-oriented data models [6] and SSB that supports column-oriented as well as

documents-oriented data models with different logical data modelling approaches [2].

TPC benchmarks remain the main reference for DSS evaluation. However, they are

built for relational systems and cannot be easily implemented for NoSQL databases.

2.2 Big Data Benchmarks

Big Data benchmarks tend to compare the new systems that are storing massively

distributed data and that support parallels computing. Yahoo Cloud service is one of the

most popular tools. It is used to compare standard CRUD operations (Create, Read,

Update and Delete) [3]. It already has been used by most of the NoSQL systems

proving their capabilities for data loading, updates, etc. [3]. Similarly, Bigframe is a

benchmark that primarily focuses on problems of volume, variety, and velocity in Big

Data context [10]. With more functionalities than the first two, the authors of [8]

propose BigBench which models command lines. It is composed of 3 types of data:

structured (from TPC-DS), semi-structured (clicks streams on web sites), and

unstructured (clients comments) and it is developed to measure and evaluate offline

analytic using Hadoop. Hibench is a benchmark suite for measuring incomplete data

using Hadoop and MapReduce. BigDataBench is a complete benchmark suite that

evaluates the big data requirements centric on 4 V [14]. it supports the offline and

online analysis using Hadoop and NoSQL.

As shown in Table 1 and unlike traditional benchmarks, big data benchmarks are

oriented toward flexible information, massive data, and scalability. Even though these

big data benchmarks have gained popularity in the last few years, they do not evaluate

the same criteria as compared to DSS benchmarks (fact, dimensions, OLAP).

In this paper, we propose a new benchmark, an extension of TPC-H. This solution

supports column-oriented models and document-oriented models. This effort is com-

plementary to the Big Bench effort as it provides a simpler but fair framework to play

with NoSQL and SQL-like technologies. Also this new benchmark is dedicated to

multidimensional data warehouse.

3 KoalaBench Benchmark Tool

KoalaBench is a decision support benchmark for Big Data needs. It is derived from the

TPC-H benchmark, the reference benchmark in research and industry for decision

support systems. It has been adapted to support Big Data technologies such as NoSQL

Table 1. Comparing Big Data benchmarking solutions.

Benchmark Multidimensional

scheme (fact – dimensions, OLAP)

Data scalability Software

YCSB No Partial (volume, variety) NoSQL

Bigbench No Partial (volume- variety) Hadoop

BigDataBench No Total NoSQL

HiBench – Partial (volume- variety) Hadoop/hive

SSB+ Yes Partial (volume) NoSQL

TPCH Yes no RDBMS

CN Yes Partial (volume) NoSQL

Koalabench Yes Total NoSQL

and Hadoop file systems. It generates data in different file formats following different

data models. The data generator is developed using a Java development of TPC-H. It

supports:

– different logical models (flat, star, snowflake and flexible models);

– different formats compatible with NoSQL and relational storage systems;

– parallel and distributed data generation through HDFS and MapReduce;

– diversity in data through flexible schemas;

– velocity of generated data.

3.1 Data Models

The KoalaBench benchmark can generate consistent data with 3 logical models [3, 4].

We detail them below:

Snowflake Data Model. This first data model is very close to the one used in the TPC-

H benchmark with small modifications. In the snowflake model, data redundancy is

minimized through data normalization; facts refer to dimensions which refer to other

entities. For example, a customer can reference a country that references a region

(Europe). The regions and the countries are generated in different files. The data

schema is represented in. In this model, the data are generated in 9 files which will

serve to supply the database.

Star Data Model. This data model corresponds to a star schema. It is a common data

model for data warehouses [17, 21]. It is simpler than the snowflake schema. Here, we

only consider one entity per fact and one entity per dimension. Dimensions themselves

can have some redundancy (functional dependencies data). For instance, the customer

is associated with a country that is associated with a region (e.g. EUROPE). In the star

schema, we will not have a separate file for countries and regions. The customer file

will include the country and the region even if the region is functionally dependent

from the region. The data generation and data model are very similar to the Star

Schema Benchmark (SSB) (Fig. 1).

We add a table entity. named Date. becomes an explicit dimension and it is

described by multiple attributes such as “week number”, “day of the week”, “day in the

year”, … The date table is common in traditional data warehouses. The LineItem fact is

associated with 4 dimensions: Customer, Part, Date, and Supplier. This makes a

simplification in the schema. The data schema is represented in Fig. 2.

Flat Data Model. This is the simplest data model we propose. It groups, in one entity,

data about the fact and dimensions. This creates a considerable amount of redundancy

in data, but it is known to be better for some NoSQL systems that do not support joins.

We remove some attributes that are less important.

3.2 Complex Data

The new benchmark supports diversity of data, meant as variety of schema. It can

generate data with diverse schemas i.e. data of the same class (table, collection) does

not have to comply with one strict schema, different records of the same class can have

different schemas. It is easy to think of instances of the class “products”, where we can

store mobile phones and num supplier. They can be described by common attributes

such as weight and brand but they can have specific attributes such as screen size.

Fig. 1. Snowflake data model

Fig. 2. Star data model.

Benchmark support for data diversity is important as support of flexible schemas is

one of the major advantages of some NoSQL systems. KoalaBench enables diverse

data generation, which can help measure this advantage. Data diversity is optional and

is user defined. The user has to define two parameters:

– diversity: the possible schema categories. The records of the same category are

homogeneous in structure i.e. have the same attributes.

– homogeneity: indicates the distribution of the data according to the diversity,

meaning the ratio of records by the schema category.

To illustrate, consider A the set of the attributes such as A = [a1, a2 …, an] and

T the set of records such as T = [t1, t 2 …, tm]. With a diversity level equal to 2, we get

two categories of schemas:

– C S1= [b1, b2, …, bp] a set of attributes bj 2 A

– C S2 = [c1, c2, …, cq] a set of attributes cj 2 A

The choice of attributes is determined by the user, in a configuration file of schemas

and their distribution; CS1 [CS2 = A. This file allows the user to determine the

schemas and the distributions percentage.

The homogeneity specifies the distribution of data for the different possible sche-

mas; the level of homogeneity is proportional to the level of the diversity. For example,

with a diversity level at 2, the homogeneity is equal to 1⁄2 + 1⁄2, forming two sets of

data such as T1 [T2 = T et T1 \ T2 = ∅:

– T1: 50% of records with a data schema of category CS1.

– T2: 50% of records with a data schema of category CS2.

Note 1: In this extension, the flexibility does not concern root attributes (identifiers)

of the dimensions.

Note 2: The absence of some attributes in the data schemas that are potentially

diverse, has a direct consequence on the results and the queries usage. Some requests

can become invalid, if the attributes they contain do not appear in any schemas. To

address this issue, we recommend choosing categories of schema that cover every

attribute (C S1 [C S2 = A).

Data Velocity. Ability to process data with regular or irregular interval refreshment

is another contribution of this paper. The new benchmark considers this feature and

allows the user to select the data generation interval and the time T for data loading in

the system. For example, for a total volume of 1 TB of data, the user can specify a

generation of 2000 GB every 60 s. Same for loading, the user can schedule a load at a

regular time interval or not. For an irregular interval, the user only specifies the number

of times the file must be loaded and the maximum time Tmax to wait between two loads.

The system implicitly generates a value T 2 [1, Tmax].

3.3 File Formats and Supported Systems

Several file formats are possible: tbl, csv, json and xml. To optimize the data loading

phase in the NoSQL systems, the generator gives the user the possibility to specify the

appropriate format of the used NoSQL systems. For example, for the document-

oriented model, MongoDB is a system storing data in bjson (binary json), it is opti-

mized for a loading from json files. Loading a csv format file in MongoDB is possible

but it will need a conversion in json that considerably increases the loading time.

Koalabench has a special option for generating data compatible with ElasticSearch.

Regarding the formats and the data models generated, several data management

systems are supported.

– Relational databases: PostgreSQl, MySQL, Oracle that takes files under csv, tbl or

xml formats.

– XML databases or object-oriented supporting XML format files.

– Document-oriented databases: MongoDB, CouchDB, ElasticSearch that compliant

with json format.

– Column-oriented databases: HBase, Cassandra that takes csv format files.

– Graph-oriented databases: Neo4j that takes files in csv format.

The supported systems are summarized in the following Table 2.

3.4 Distributed Data Generation

The data generator has been adapted to generate data on several computers in parallel.

It is possible to generate data on the very popular distributed files system HDFS. The

distributed generation is based on the two main components of the Hadoop distributed

file systems:

– MapReduce: to ensure the parallel generation of data.

– HDFS: to ensure the distributed file storage.

3.5 Impact of Scale Factor

Here, we discuss the effect of the scale factor on data generation. We detail the data

generation for scale factor sf = 1. For other scale factors, the proportions are linear

Snowflake Model: When we generate data with the snowflake data model, we gen-

erate 8 files for 8 entities. For each entity we have: 5247925 line items, 1500000 orders,

150000 customers, 800000 supplied parts, 200000 parts, 10000 suppliers, 25 nations, 5

regions. The total dataset size takes different amounts of memory depending on the data

format. More precisely, it takes: 3.87 GB in .xml, 2.33 GB in .json, 1.16 GB in .tbl and

1.16 GBin .csv.

Table 2. Supported systems versus supported file formats.

Information system class Supported databases (examples) File formats

RDBMS PostgreSQL, MySQL, SqlServer, Oracle, etc. csv, tbl, xml

Document-oriented MongoDB, CouchDB, ElasticSearch json

Column-oriented Hbase, Cassandra csv, tbl

Graph-oriented Neo4J csv

XML, object-oriented BaseX, … xml, json, csv

Star Model: When we generate data with the star data model, we generate 5 files for 5

entities. For each entity we have: 5247925 line items, 150000 customers, 200000 parts,

10000 suppliers and 255 dates. The total dataset size takes different amounts of

memory depending on the data format. Yet: 2.52 GB in .xml, 1.47 GB in .json,

0.68 GB in .tbl and 0.68 GB in .csv.

Flat Model: When we generate data with the flat data model, we just generate 1 file.

We have a total of 5247925 line items. The total dataset size takes different amounts of

memory depending on the data format. More precisely, it takes: 8.21 GB in .xml,

4.67 GB in .json, 2.38 GB in .tbl and 2.38 GB in .csv.

Obtained results are summarized in Table 3.

3.6 Queries Generator

Without loss of generality, we use the original QGEN query generator to generate

queries written in SQL. Generating queries in other interrogation languages is tempting

and certainly useful, but it would be challenging to cover all the NoSQL technologies

out there. Moreover, this would likely be technology and version specific. The QGEN

generator has a high number of queries; few of them could not be directly translated

into NoSQL language specific queries. Some NoSQL systems are not suitable for non-

standard data models (e.g. “joins” are not supported natively). Thus, it is up to the

benchmark users to handle the adaptation work.

For our own experiments, we rewrote some queries to adapt them to the non-

standard data models and we translated them into the targeted NoSQL database lan-

guages: Hive for HBase usage, CQL for Cassandra usage, in the MongoDB query

language for a usage with MongoDB and in the Cypher language to be used with

Neo4j. These queries can be classified according to two criteria:

– Dimensionality affects the dimensions number in the grouping clause (equivalent to

the Group By clause in SQL): iD for i dimensions;

– Selectiveness affects the level of data filtering when some conditions are applied.

4 Experiments and Data Sets

In this section, we present the results of some experiments conducted using the pro-

posed benchmark. More precisely:

Table 3. File size versus data model.

Model/format .xml .json .tbl .csv

Flocon 3.87 GB 2.33 GB 1.16 GB 1.16 GB

Star 2.52 GB 1.47 GB 0.68 GB 0.68 GB

Plat 8.21 GB 4.67 GB 2.38 GB 2.38 GB

Flat flexible 6.48 GB 4.12 GB 2.13 GB 2.13 GB

– we analyze and compare data generation with respect to the memory usage;

– we analyze and compare data generation with respect to the execution time;

– we analyze and compare loading times in Cassandra and MongoDB NoSQL.

For the different configurations, we change the scale factor to enable comparison at

different scale levels.

Hardware. The used cluster includes three nodes (machines). Each node has 4-core

CPU, 3.4 Ghz (i5-4670), 8 GB RAM, 2 TB SATA disk (7200RPM), 1 Gb/s network.

Each node acts as a worker. One node acts also as dispatcher.

Software: Every machine runs on a CentOS operating system. We test data loading on

two NoSQL data stores: Cassandra (v.3) and MongoDB (v.3.2) [5]. The latter repre-

sents respectively column-oriented storage and document-oriented storage.

Experiment 1: Memory Usage on Different Configurations. In Table 4, we report

the time needed to generate data under different scale factors (sf = 1, 10, 100, 1000) for

the different data models. The file format impacts drastically the memory usage, as we

can see in Table 3. For instance, at sf = 1000 and under the flat model, we have got

2380 GB for CSV file format and 4670 GB (almost double) for the JSON format. This

difference impacts significantly the generating time, as files with a more expressive

format (JSON or XML) may need 3 to 4 longer time. This way, using flat model at

sf = 1000, we need around 17883 s to generate a CSV file versus 69872 s for a JSON

file. Another observation can be noted about the fixed or flexible generation on the flat

model. Indeed, we notice that the flexible generation is faster, which is explained by the

minor volume generated Table 6.

Table 4. Memory usage (in GB) by factor and by scale model

sf1 sf10 sf100 sf1000

Snowflake xml 3.87 GB 38.7 GB 387 GB 3870 GB

json 2.33 GB 23.3 GB 233 GB 2330 GB

csv 1.16 GB 11.6 GB 116 GB 1160 GB

tbl 1.16 GB 11.6 GB 116 GB 1160 GB

Star xml 2.52 GB 25.2 GB 252 GB 2520 GB

json 1.47 GB 14.7 GB 147 GB 1470 GB

csv 0.68 GB 6.8 GB 68 GB 680 GB

tbl 0.68 GB 6.8 GB 68 GB 680 GB

Flat flexible xml 6.48 GB 64.8 GB 64.8 GB 6480 GB

json 4.12 GB 41.2 GB 412 GB 4120 GB

csv 2.13 GB 21.3 GB 213 GB 2130 GB

tbl 2.13 GB 21.3 GB 213 GB 2130 GB

Flat xml 8.21 GB 82.1 GB 821 GB 8210 GB

json 4.67 GB 46.7 GB 467 GB 4670 GB

csv 2.38 GB 23.8 GB 238 GB 2380 GB

tbl 2.38 GB 23.8 GB 238 GB 2380 GB

Experiment 2: In Table 5, we report the loading time under different scale factors

(sf = 1, 10, 100) for different data models. We only have proceeded to the necessary

loading for each tool, JSON for MongoDB and CSV for Cassandra. We notice that the

required loading time in Cassandra is lower than in MongoDB. For example, at sf = 1,

we need 672 s for Cassandra versus 3976 s for MongoDB, which means 4 times

longer. This can be explained by the file’s format used. In MongoDB, the JSON format

used is 4 times more voluminous than a CSV file. In addition, it led to more transfers

between the master node and the slave node. The communication in Cassandra via its

master-master architecture seems much less expensive. MongoDB creates an important

number of indexes to optimize the querying phase.

5 Concluding Remarks

This paper presents the KoalaBench benchmark built to address the issues of decisions

support systems based on big multidimensional data warehouses (Big Data). It is based

on an extension of the reference benchmark TPC-H. The data can be generated in

different formats (TBL, CSV, XML, JSON) and in different data models. It is worth to

Table 5. Time of generation (in seconds) by scale factor and by model.

sf1 sf10 sf100 sf1000

Snowflake xml 50.2 s 386 s 3634 s 35902 s

json 39.2 s 298 s 2873 s 27453 s

csv 23.7 s 173 s 1877 s 17832 s

tbl 23.7 s 173 s 1877 s 17832 s

Star xml 30.5 s 192 s 2028 s 18973 s

json 40.5 s 244 s 2351 s 21839 s

csv 20.8 s 123 s 1312 s 12893 s

tbl 20.8 s 123 s 1312 s 12893 s

Flat flexible xml 122 s 1143 s 11165 s 104321 s

json 71 s 561 s 5835 s 56348 s

csv 21 s 136 s 1560 s 14902 s

tbl 21 s 136 s 1560 s 14902 s

Flat xml 154 s 1372 s 13767 s 132756 s

json 87 s 691 s 7003 s 69872 s

csv 31 s 164 s 1873 s 17883 s

tbl 31 s 164 s 1873 s 17883 s

Table 6. Loading time per model and per scale factor with Cassandra and MongoDB.

sf = 1 sf = 10 sf = 100

Cassandra (star) 672 s 6643 s 69025 s

MongoDB (flat) 3967 s 38632 s 381142 s

mention that KoalaBench is not restricted to relational models; it can also generate data

in several NoSQL systems. This novel benchmark solution is suitable for columns-

oriented, graph-oriented and documents-oriented NoSQL systems. Moreover, data can

be generated under a fixed or a flexible schema, in a distributed architecture using the

Hadoop platform. KoalaBench proposes a specific loading script for every evaluated

system. Conducted experiments show that the KoalaBench brings numerous advan-

tages compared to the original version TPC-H. It simplifies the loading phase and

allows data loading in a Hadoop distributed environment. It also permits evaluating the

schemas’ diversity, which is specific to NoSQL approaches. This functionality enables

dynamic data generation.

References

1. Chaudhuri, S., Dayal, U.: An overview of data warehousing and OLAP technology.

SIGMOD Rec. 26(1), 65–74 (1997)

2. Chevalier, M., El Malki, M., Kopliku, A., Teste, O., Tournier, R.: Document-oriented data

warehouses: models and extended cuboids, extended cuboids in oriented document. In: 10th

International Conference on Research Challenges in Information Science (RCIS 2016),

Grenoble, France, pp. 1–11. IEEE (2016)

3. Chevalier, M., El Malki, M., Kopliku, A., Teste, O., Tournier, R.: Implementation of

multidimensional databases in column-oriented NoSQL systems. In: Morzy, T., Valduriez,

P., Bellatreche, L. (eds.) ADBIS 2015. LNCS, vol. 9282, pp. 79–91. Springer, Cham (2015).

https://doi.org/10.1007/978-3-319-23135-8_6

4. Chevalier, M., El Malki, M., Kopliku, A., Teste, O., Tournier, R.: Implementation of

multidimensional databases with document-oriented NoSQL. In: Madria, S., Hara, T. (eds.)

DaWaK 2015. LNCS, vol. 9263, pp. 379–390. Springer, Cham (2015). https://doi.org/10.

1007/978-3-319-22729-0_29

5. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking cloud

serving systems with YCSB. In: Proceedings of the 1st ACM Symposium on Cloud

Computing, Series. SOCC 2010. ACM, pp. 143–154 (2010)

6. Darmont, J.: Data warehouse benchmarking with DWEB. In: Taniar, D. (ed.) Progressive

Methods in Data Warehousing and Business Intelligence: Concepts and Competitive

Analytics. Advances in Data Warehousing and Mining (2008)

7. Dede, E., Govindaraju, M., Gunter, D., Canon, R.S., Ramakrishnan, L.: Performance

evaluation of a MongoDB and hadoop platform for scientific data analysis. In: Proceedings

of the 4th ACM Workshop on Scientific Cloud Computing, Series, pp. 13–20 (2013)

8. Dehdouh, K., Boussaid, O., Bentayeb, F.: Columnar NoSQL star schema benchmark. In: Ait

Ameur, Y., Bellatreche, L., Papadopoulos, George A. (eds.) MEDI 2014. LNCS, vol. 8748,

pp. 281–288. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11587-0_26

9. Dehdouh, K., Bentayeb, F., Boussaid, O., et al.: Using the column oriented NoSQL model

for implementing big data warehouses. In: PDPTA. The Steering Committee of The World

Congress in Computer Science, Computer Engineering and Applied Computing (World-

Comp), p. 469 (2015)

10. Ghazal, A., et al.: BigBench: towards an industry standard benchmark for big data analytics

(2013)

11. Iu, M.-Y., Zwaenepoel, W.: HadoopToSQL: a mapReduce query optimizer. In: Proceedings

of the 5th European Conference on Computer Systems. ACM, pp. 251–264 (2010)

12. Ivanov, T., Rabl, T., Poess, M., Queralt, A., Poelman, J., Poggi, N., Buell, J.: Big Data

Benchmark Compendium. In: Nambiar, R., Poess, M. (eds.) TPCTC 2015. LNCS, vol. 9508,

pp. 135–155. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31409-9_9

13. Jacobs, A.: The pathologies of big data. Commun. ACM 52(8), 36–44 (2009)

14. Kim, K., et al.: MRBench: a benchmark for mapReduce framework. In: 2008 14th IEEE

International Conference on Parallel and Distributed Systems. ICPADS 2008, pp. 11–18,

December 2008

15. Hacigumus, H., Iyer, B., Mehrotra, S.: Providing database as a service. In: 2002 Proceedings

of 18th International Conference on Data Engineering. IEEE, pp. 29–38 (2002)

16. Lee, K.-H., Lee, Y.-J., Choi, H., Chung, Y.D., Moon, B.: Parallel data processing with

mapReduce: a survey. SIGMOD Rec. 40(4), 11–20 (2012)

17. Lee, R., Luo, T., Huai, Y., Wang, F., He, Y., Zhang, X.: YSmart: yet another SQL-to-

mapReduce translator. In: 2011 31st International Conference on Distributed Computing

Systems (ICDCS), pp. 25–36, June 2011

18. Moniruzzaman, A.B.M., Hossain, S.A.: NoSQL database: new era of databases for big data

analytics - classification, characteristics and comparison. CORR abs/1307.0191 (2013)

19. Morfonios, K., Konakas, S., Ioannidis, Y.: ROLAP implementations of the data cube. ACM

Comput. Surv. (CSUR) 39(4), 12 (2007)

20. Poess, M., Nambiar, R.O., Walrath, D.: Why you should run TPC-DS: a workload analysis.

In: Proceedings of the 33rd International Conference on Very Large Data Bases. VLDB

2007 (2007)

21. O’Neil, P.E., O’Neil, E.J., Chen, X.: The star schema benchmark (SSB). In: PAT, vol. 200,

p. 50 (2007)

22. Stonebraker, M.: New opportunities for new SQL. Commun. ACM 55(11), 10–11 (2012)

23. Ravat, F., Teste, O., Tournier, R., Zurfluh, G.: Algebraic and graphic languages for OLAP

manipulations. In: Strategic Advancements in Utilizing Data Mining and Warehousing

Technologies: New Concepts and Developments, p. 60 (2009)

24. Vassiliadis, P., Sellis, T.: A survey of logical models for OLAP databases. ACM SIGMOD

Rec. 28(4), 64–69 (1999)

25. Wang, J., et al.: BigDataBench: a big data benchmark from internet services. In: 2014 IEEE

20th International Symposium on High Performance Computer Architecture (HPCA),

pp. 488–499, February 2014

26. Zhang, J., Sivasubramaniam, A., Franke, H., Gautam, N., Zhang, Y., Nagar, S.: Synthesizing

representative I/O workloads for TPC-H. In: Software, IEEE Proceedings, pp. 142–142,

February 2004

27. Zhao, H., Ye, X.: A practice of TPC-DS multidimensional implementation on NoSQL

database systems. In: Nambiar, R., Poess, M. (eds.) TPCTC 2013. LNCS, vol. 8391, pp. 93–

108. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04936-6_7

