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ABSTRACT

Cardiac motion estimation from ultrasound images is an ill-

posed problem that needs regularization to stabilize the solu-

tion. In this work, regularization is achieved by exploiting the

sparseness of cardiac motion fields when decomposed in an

appropriate dictionary, as well as their smoothness through

a classical total variation term. The main contribution of

this work is to robustify the sparse coding step in order

to handle anomalies, i.e., motion patterns that significantly

deviate from the expected model. The proposed approach

uses an ADMM-based optimization algorithm in order to

simultaneously recover the sparse representations and the

outlier components. It is evaluated using two realistic simu-

lated datasets with available ground-truth, containing native

outliers and corrupted by synthetic attenuation and clutter

artefacts.
Index Terms—Cardiac motion estimation, dictionary learn-

ing, robust sparse coding, anomaly detection.

I. INTRODUCTION

According to the World Health Organization, cardiovas-

cular diseases are the leading cause of death in the world.

Analyzing the cardiac motion is of key importance for the

early detection and prevention of these diseases. In par-

ticular, useful information about abnormal motion patterns

can be extracted by analyzing the deformation of the heart

throughout the cardiac cycle.

There are a variety of medical imaging modalities used

for motion analysis such as magnetic resonance imaging

(MRI), computed tomography (CT), single-photon emission

CT (SPECT), positron emission tomography (PET) or ultra-

sound imaging (UI). Even though conventional UI presents

challenges, such as a high noise level, it is still the most

commonly used modality in cardiology. The wide use of

ultrasound is due to its low budget requirements, high ac-

cessibility, real-time acquisition, portability, non-ionization

and the reduced discomfort for the patient. In the context

of cardiology, ultrasound not only allows us to capture the

shape and size of the heart, but also its typical or abnormal

ventricular deformations and strain rates [1], [2].

Because of the major impact of the local analysis of

the cardiac deformation on the diagnosis and treatment

choice, there is a growing need for developing new motion

estimation techniques that limit the loss of structural and

local information. Most of the methods used for cardiac

motion estimation belong to one of the following three

categories: optical flow, speckle tracking or elastic image

registration. In optical flow algorithms, the motion of the

heart is computed using the velocities of the brightness

patterns. These methods assume that the illumination is

constant between consecutive images [3], [4]. However, this

assumption rarely holds for 2D UI, which is highly affected

by noise and out-of-plane motions. In elastic registration

algorithms, the image characteristics can be exploited to

define a specific similarity measure. The mapping between

pairs of images is achieved using a non-rigid geometric

transformation (e.g., B-splines [5], [6]). Finally, speckle

tracking-based techniques aim at matching patches between

two images at different time instants [7]. The matching

criterion is usually built using the statistical properties of

the images [8].

Motion estimation is an ill-posed problem, in the sense

that it does not have a unique solution. In order to overcome

this issue, additional constraints are used to regularize the so-

lution. Several regularization approaches have been proposed

in the literature, for example, based on parametric models

(affine, B-splines) or using the interpolation of coarse motion

fields to dense grids. Recently, the interest of imposing

patch-based sparsity of cardiac motion fields in appropriate

overcomplete dictionaries has been shown [9]. This paper

improves the method of [9] by robustifying the sparse coding

step. More specifically, we assume that the local cardiac

motion patterns to be estimated can be expressed as a linear

combination of a few atoms in an overcomplete dictionary.

We then address the problem of joint sparse coding and

detection of anomalies, i.e., motion patterns that significantly

deviate from the expected model [10].

The remainder of the paper is structured as follows. Sec-

tion II presents a brief overview of the dictionary learning-

based cardiac motion estimation method of [9]. Section III

summarises the theory related to robust sparse coding with

anomaly detection proposed in [10]. Section IV provides de-

tails about the proposed cardiac motion estimation algorithm.

Finally, experimental results and conclusions are reported in

Sections IV and V.



II. CARDIAC MOTION ESTIMATION USING

SPARSE REPRESENTATION AND DICTIONARY

LEARNING

The goal of a sparse representation is to express cardiac

motion patches up ∈ R
n, extracted from the dense motion

field to be estimated u ∈ R
N , as a linear combination of a

few elements of a dictionary D ∈ R
n×q , i.e.,

up ≈Dαp (1)

where αp ∈ R
q is a sparse vector and q > n. The learning of

a dedicated overcomplete dictionary can be performed either

offline, using a set of ground-truth motions, or online, using

the current estimation. In this paper, two dictionaries have

been trained offline using highly realistic simulated motion

fields [11]. The resulting dictionaries allow us to capture

typical patterns of vertical and horizontal cardiac motions.

The dictionary learning problem for motion estimation can

be formulated as follows

min
D,αp

∑

p

‖Pput −Dαp‖
2

2
subject to ∀p, ‖αp‖0 ≤ K (2)

where Pp ∈ R
n×N is a binary operator that extracts the pth

patch from a set of training motion fields ut, αp is the sparse

coefficient vector associated with the pth patch and K is

the maximum number of non-zero coefficients. A classical

way of solving this problem is by alternating between a

sparse coding step (where D is fixed and the vectors αp

are estimated) and a dictionary update step (where αp’s are

fixed and the dictionary D is updated).

As explained in Section I, the motion estimation problem

is ill-posed. Therefore, additional constraints are required for

its regularization such as constraining the estimation to a

specific type of displacements. In [9], these constraints were

incorporated in a regularization term denoted as Ereg. The

motion fields are finally obtained through the minimization

of an appropriate energy function as follows

min
αp,u

[Edata(u) + Ereg(u,αp)] (3)

where Edata is the data fidelity term, which is based on the

assumption of a Rayleigh distributed speckle noise [12], and

Ereg combines two types of regularizations, i.e,

Ereg(u) = λd

∑

p

‖Ppu−Dαp‖
2

2
+ λs‖∇u‖2

2
(4)

where ∇ denotes the gradient operator and λs, λd are

positive hyperparameters that balance the influence of the

regularization terms. Note that the first term in (4) expresses

the patch-wise sparsity of the motion field u in the learned

dictionary D and that the second term imposes spatial

smoothness using the standard ℓ2-norm total variation. Since

the problem (4) is hard to solve directly, an alternate op-

timization scheme can be adopted. More specifically, the

sparse coding problem is first solved for a fixed u. In a

second step, the obtained sparse codes αp are fixed, and the

motion field u is updated [9]. Note that after a few iterations,

the sparsity of the estimated motion patches is enforced by

increasing the value of λd [9].

III. ROBUST SPARSE CODING

Anomaly detection refers to the problem of finding ab-

normal patterns in a dataset. In this work, the anomalies

consist of cardiac motion patches that do not have a sparse

representation in the dictionary (i.e., (1) is not satisfied).

For example, anomalies can occur on anatomical boundaries,

which are characterized by a discontinuous motion, or in

regions affected by artefacts (e.g., attenuation or clutter). In

this work, we propose to detect such anomalies using the ro-

bust sparse coding model studied in [10]. More specifically,

this robust sparse coding model assumes that anomalies are

sparse, and thus, each patch of motion is approximated by the

sum of its sparse representation and an anomaly component

as follows

U = DA+E + V (5)

where U ∈ R
n×Np contains Np patches of motion of size

n, A ∈ R
q×Np are the corresponding sparse codes, the

matrix E ∈ R
n×Np denotes the anomalies that are possibly

affecting the motion patches and V ∈ R
n×Np is the additive

Gaussian noise. We assume there are few anomalies in the

dataset, i.e., that the matrix E is sparse with only few non-

zero columns.

In [10], the sparse codes A and anomalies E were esti-

mated jointly by solving the following optimization problem

{Â, Ê} = min
A,E

‖U −DA−E‖2F (6)

subject to ‖A‖0 < NpK

‖E‖2,0 6 L

where ‖E‖2,0 counts the number of non-zero columns in E

and L is the maximum number of anomalies. The problem

(6) promotes a sparse representation for most of the motion

patches in U and admits a maximum of L anomalies, i.e., a

maximum of L non-zero columns in E. This problem can be

solved using the alternating direction method of multipliers

(ADMM) as explained in [10].

IV. CARDIAC MOTION ESTIMATION WITH

ROBUST SPARSE CODING

In this work, we propose to combine the cardiac motion

estimation method of [9] with the robust sparse coding

algorithm of [10]. In [9], the sparse coding step was solved

using the OMP algorithm. In this work, this step is replaced

by the robust sparse coding problem (6), which allows us to

automatically mitigate the impact of anomalies. As in [10],

the robust sparse coding step is solved using ADMM after

relaxing the ℓ0 pseudo-norm to the convex ℓ1-norm. The

problem (6) is thus reformulated as follows

min
A,E

1

2
‖U −DA−E‖2F + β‖A‖1,1 + γ‖E‖2,1 (7)



where β ∈ R and γ ∈ R are two scalars controlling the

sparsity of A and the column-wise sparsity of E. In order

to solve (7), an auxiliary variable Z is introduced leading to

the equivalent problem

min
A,E,Z

1

2
‖U −DA−E‖2F + β‖Z‖1,1 + γ‖E‖2,1

subject to Z = A. (8)

The reader is invited to consult [10] for further details

about the way of solving (8). The resulting cardiac motion

estimation algorithm using robust sparse coding is detailed in

Algorithm 1. Note that this algorithm estimates the motion

field using the implicit Euler time marching method as in

[13].

Algorithm 1 Motion field estimation using robust sparse

coding

Input: D, λs, λd, OuterSteps, InnerSteps

Initialize: U = 0
for i = 1 To OuterSteps do

for j = 1 To InnerSteps do

% Sparse coding with anomaly detection

(Aj ,Ej) ← minA,E
1

2
‖U − DA − E‖2F +

β‖A‖1,1 + γ‖E‖2,1

% Motion estimation

uj ← min
u

Edata(u) + λd

∑
p ‖Ppu −DAp,j‖

2

2
+

λs‖∇u‖2
2

end for

% Increase λd

end for

Output: estimated motions u, sparse codes A and

anomalies E.

V. EXPERIMENTAL RESULTS

This section evaluates the performance of the proposed

motion estimation method based on a robust sparse coding

step (referred to as Robust) in comparison to the standard

sparse coding approach obtained for E = 0 (referred to as

Non-robust). The experiments were conducted on a dataset

of highly realistic simulations with an available ground truth

(i.e., with known motion vectors) [14]. The sequences con-

tain 34 images that span a full cardiac cycle. In a first step,

the LADdist sequence was used to learn the dictionaries.

The considered algorithms were then evaluated both on a

native sequence (i.e., LADprox) and on the same sequence

corrupted with synthetic attenuation and clutter artefacts.

For both methods, all the hyperparameters were tuned to

minimize the root mean square error between the estimated

and ground-truth motion fields leading to λs = 0.1 for both

methods and β = 0.05, γ = 0.1 for the robust sparse coding

approach. The dictionary learning and sparse regularization

parameters were adjusted as in [9].

Fig. 1 shows the ground-truth and estimated motions

for the 4th frame of the sequences (corresponding to the

maximum average displacements in the systole phase). This

figure shows that the obtained motion fields are overall

similar for the native sequence, while some differences can

be observed for the corrupted one, particularly, around the

attenuation artefact.

(a) Non-robust (b) Robust (c) Ground-truth

(d) Non-robust (e) Robust (f) Ground-truth

Fig. 1: Ground-truth and estimated motions (in pixels) for

the 4th frame of (a,b,c) the native sequence and (d,e,f) the

corrupted sequence.

In order to examine the local behavior of the proposed

algorithm, the error maps of the displacement estimates of

the 4th frame are shown in Fig. 2. These error maps show that

the proposed method results in a global decrease of the errors

for both sequences. In particular, the errors are smaller for

the corrupted sequence around the synthetic attenuation and

clutter artefacts. Fig. 2 (c,f) also show that these synthetic

artefacts, as well as some motion discontinuities in the

myocardial boundaries (near the valves), are captured in the

anomaly matrix E. Note that the vertical and horizontal

anomaly matrices Ex and Ey were merged in this figure

such that E = |Ex|+ |Ey|.
Tab. I provides some quantitative results for the robust

cardiac motion estimation algorithm in terms of the global

means and standard deviations of the errors (in pixels). This

table shows that the robust sparse coding step results in

a slight gain in performance for the considered sequences

when compared to the non-robust method, with the advan-

tage of detecting and localizing the anomalies.

VI. CONCLUSIONS

This paper introduced a robust cardiac motion estimation

method for ultrasound images using a regularization based

on a sparse representation and dictionary learning. A robust

sparse coding step allowed us to detect and discard abnormal



(a) (b) (c)

(d) (e) (f)

Fig. 2: Motion error maps for (a,d) the native sequence

and (b,e) the corrupted sequence with the corresponding

anomaly matrices E (for (c) the native and (f) the corrupted

sequences).

Non-robust Robust

LADprox 0.16 +/- 0.09 0.15 +/- 0.08

Corrupted 0.19 +/- 0.16 0.18 +/- 0.14

Table I: Average means and standard deviations of the errors

for the native and corrupted sequences.

motion patches. Our experimental results showed that the

proposed approach results in a slight gain in performance

when compared to the non-robust method. It also has

the advantage of automatically detecting anomalies such

as clutter, attenuation or motion boundaries that usually

affected cardiac motion estimation algorithms. An interesting

perspective would be to robustify the other terms of the cost

function, i.e., the data fidelity and the spatial regularization

terms as in [15].
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