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ABSTRACT 18 

Medical acts, such as imaging, generally lead to the production of several medical text reports 19 

that describe the relevant findings. Such processes induce multimodality in patient data by 20 

linking image data to free-text data and consequently, multimodal data have become central to 21 

drive research and improve diagnosis of patients. However, the exploitation of patient data is 22 

challenging as the ecosystem of available analysis tools is fragmented depending on the type of 23 

data (images, text, genetic sequences), the task to be performed (digitization, processing, 24 

exploration) and the domain of interest (clinical phenotype, histology…). To address the 25 

challenges, the analysis tools need to be integrated in a simple, comprehensive, and flexible 26 

platform. Here, we present IMPatienT (Integrated digital Multimodal PATIENt daTa), a free and 27 

open-source web application to digitize, process and explore multimodal patient data. IMPatienT 28 

has a modular architecture, including four components to: (i) create a standard vocabulary for a 29 

domain, (ii) digitize and process free-text data by mapping it to a set of standard terms, (iii) 30 

annotate images and perform image segmentation, and (iv) generate an automatic visualization 31 

dashboard to provide insight on the data and perform automatic diagnosis suggestions. Finally, 32 

we demonstrate the usefulness of IMPatienT on a corpus of 40 simulated muscle biopsy reports 33 

of congenital myopathy patients. IMPatienT is a platform to digitize, process and explore patient 34 

data that can handle image and free-text data. As it relies on a user-designed vocabulary, it can 35 

be adapted to fit any domain of research and can be used as a patient registry for exploratory 36 

data analysis (EDA). A demo instance of the application is available at https://impatient.lbgi.fr. 37 

KEYWORDS 38 

Patient data, free-text medical reports, NLP, OCR, data formatting, data processing, image 39 

segmentation, exploratory data analysis 40 

https://impatient.lbgi.fr/
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INTRODUCTION 41 

Patient data now incorporates the results of numerous modalities, including imaging, next-42 

generation sequencing and more recently wearable devices. Most of the time, medical acts 43 

produce imaging data, such as echography, radiology or histology result in the production of 44 

medical reports that describe the relevant findings. Thus, multimodality is induced in patient 45 

data, as imaging data is inherently linked to free-text reports. The link between image and report 46 

data is crucial as raw images can be re-interpreted during the patient’s medical journey with new 47 

domain knowledge or by different experts leading to different reports. Thus, patient multimodal 48 

data needs to be processed in an integrated way to preserve this link in a single database. 49 

Useful tools to centralize, process and explore multimodal data are essential to drive research 50 

and improve diagnosis. The use of multimodal data has been shown to increase disease 51 

understanding and diagnosis [1–4]. For example, Venugopalan et al. integrated genetic data with 52 

image data and medical records (free-text data) to improve diagnosis of Alzheimer’s disease [4]. 53 

In Mendelian diseases, integration of multiple levels of information is key to the establishment of 54 

a diagnosis. For instance, in congenital myopathies (CM), a combination of muscle biopsy analysis 55 

(imaging information) with medical records and sequencing data is essential for differential 56 

diagnosis between CM subtypes [5–7]. Centralization of multimodal data using dedicated 57 

software is essential to implement such an approach. 58 

However, the ecosystem of tools for the exploitation of patient data is heavily fragmented, 59 

depending on the type of data (images, text, genetic sequences), the task to be performed 60 

(digitization, processing, exploration) and the domain of interest (clinical phenotype, histology…). 61 

Exploitation tools can be divided in two main categories: (i) tools to process the data and (ii) tools 62 

to explore the data. 63 
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Clinical reports (free-text) processing relies on the use of a standard vocabulary, such as the 64 

Unified Medical Language System (UMLS) [8] or the Human Phenotype Ontology (HPO)[9]. 65 

Several tools have been developed to easily manage and extend these standard vocabularies, 66 

such as Protégé [10]. Text mining processes have been developed based on these standard 67 

vocabularies, that can automatically detect keywords from free-text data. For example, Doc2HPO 68 

[11] can extract a list of HPO terms from free-text medical records. Other software packages, 69 

such as Phenotips [12] have been developed to centralize and process general patient 70 

information, such as demographics, pedigree, common measurements, phenotypes and genetic 71 

results. SAMS [13] and RD-Connect PhenoStore [14] are other examples of web applications that 72 

aim to perform deep phenotyping of patients by building a single database of standardized 73 

patient data using well-established ontologies sur as HPO. Finally, for imaging data, software to 74 

process and annotate gigapixel-scale microscopy images are widely used, including Cytomine 75 

[15], SlideRunner [16] and Ilastik [17]. Cytomine is a powerful software package for gigapixel scale 76 

image annotation and analysis, that includes an ontology builder and complex image processing 77 

tools. However, it is restricted to image data only. 78 

A wide range of tools have been developed to analyze and explore patient data. For example, 79 

based on a list of HPO terms describing a patient’s specific phenotypic profile, Phenolyzer [18] 80 

and Phenomizer [19] can be used to help prioritize candidate genes or rank the best-matching 81 

diseases. However, these tools are restricted to the use of HPO terms to describe the patient’s 82 

profile and are not compatible with other ontologies. Ontology agnostic algorithms have also 83 

been developed that predict an outcome based on a list of terms from any normalized 84 

vocabulary, such as the Bayesian Ontology Query Algorithm (BOQA) [20]. For patient images 85 

exploitation, guidelines and frameworks have been proposed to standardize the measurement of 86 

pathological features from DICOM lung images [21]. Some multimodal approaches such as 87 

ClinPhen [22] and Exomiser [23] have successfully combined multiple levels of information with 88 
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both phenotype information (HPO terms) and genetic information (variants) to rank candidate 89 

genes in Mendelian diseases. Other tools such as INTEGRO [24] have been developed to 90 

automatically data-mine disease-gene associations for a specific input disease from multiple 91 

curated sources of knowledge. 92 

This large ecosystem of tools highlights the need for an integrated tool that can: (i) both process 93 

and explore patient data, (ii) manage multimodal data (text and images), and (iii) work in any 94 

domain of interest. 95 

In this study, we present IMPatienT (Integrated digital Multimodal PATIENt daTa), a free and 96 

open-source web application that aims to be an integrated tool to digitize, process and explore 97 

multimodal patient data. IMPatienT is a turnkey solution that aims to aggregate patient data and 98 

provides simple tools and interfaces for a clinician to extract information from multimodal 99 

patient data in a single endpoint. Using a modular architecture, we developed four components 100 

to: (i) create a standard vocabulary describing a domain of interest, (ii) digitize and process free-101 

text records by automatically mapping them to a set of standard terms, (iii) annotate and 102 

segment images with standard vocabulary, and (iv) generate a dashboard with automatic 103 

visualizations to explore the patient data and perform automatic diagnosis suggestions. 104 

Finally, we demonstrate the usefulness of IMPatienT on a set of congenital myopathy (CM) cases. 105 

CM are a family of rare genetic diseases, including multiple distinct subtypes, that still lack proper 106 

diagnosis with more than 50% of patients without a genetic cause identified[25]. We exploited 107 

IMPatienT to create a list of standard muscle-histology terms that were then used to process 108 

patient histological records and annotate biopsy images. Finally, multiple exploratory 109 

visualizations were automatically generated. 110 
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 111 

Figure 1: IMPatienT web application organization 112 
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MATERIALS AND METHODS 113 

IMPatienT is a web application developed with the Flask micro-framework, which is a Python-114 

based web framework. Figure 1 illustrates the global organization of the web application. The 115 

web application is composed of four modules: (i) Standard Vocabulary Creator, (ii) Report 116 

Digitization, (iii) Image Annotation, and (iv) Automatic Visualization Dashboard. All modules 117 

incorporate free, open-source and well-maintained libraries that are described in detail in the 118 

corresponding sections. 119 

Module 1: Standard Vocabulary Creator 120 

The standard vocabulary creator module allows to create and modify a hierarchical list of 121 

vocabulary terms with rich definitions that can be used as an image annotation class, for text 122 

reports processing, or suggestion of diagnosis. The standard vocabulary is an essential module of 123 

IMPatienT as it interacts with all subsequent modules. 124 

Figure 2 shows a screenshot of the page used to create and manage the standard vocabulary 125 

tree. The ergonomic drag and drop system using the graphical user interface (GUI) allow the user 126 

to intuitively and quickly edit and reorganize the vocabulary to add new terms or modify existing 127 

ones. Also, the vocabulary term (node) detailed form makes it easy to edit term properties. 128 

The tree is generated and rendered with the JavaScript library JSTree (version 3.3.12). Each node 129 

(term) can have only one parent. For each created node (vocabulary terms), the user can assign a 130 

name and organize the tree structure (hierarchy) through the drag and drop interface. Each term 131 

in the tree is associated with nine optional properties. Four properties are defined by the user: 132 

description, list of synonyms, translation in another language, show the term as annotation class. 133 

Two properties are automatically generated: the term’s unique identifier (ID) and the 134 

hexadecimal color associated with the term (for image annotation). Additional term properties 135 
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(associated diagnosis/disease class, associated genes, list of positively correlating terms [i.e. co-136 

occurring terms in reports]) are extracted from patient records registered in the database. 137 

Finally, if the user defines an alternative translation for terms, there is an “invert vocabulary 138 

language” button to conveniently switch between standard vocabulary languages. For instance, 139 

the user can create a vocabulary in any language and define the translation in English, then 140 

switch between the two display modes easily.  141 
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 142 

Figure 2: Screenshot of the Standard Vocabulary Creator module (module 1). (a) The 143 

hierarchical structure viewer and editor tool that supports drag and drop modification and 144 

creation/deletion/modification using the mouse. (b) The properties of the selected term node 145 

with its unique ID, display name, alternative language translation, synonyms, description, 146 
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associated genes and diseases and correlating terms extracted from the application instance 147 

database. 148 

Module 2: Report Digitization 149 

The standard vocabulary terms are used to process documents that are in a free-text format. 150 

Module 2 uses a semi-automatic approach for digitization and processing of free-text reports 151 

that combines fast automatic detection of terms with manual reviewing of the detection. The 152 

interface of Module 2 is a form divided into four parts (Figure 3). 153 

In the first part of the digitization form (Fig 3a), a PDF file of the free-text report can be uploaded 154 

for natural language processing (NLP) of the content. The text of the PDF report is automatically 155 

extracted and processed with NLP. The NLP method is only used to detect histological terms 156 

defined in the standard vocabulary. Detected standard vocabulary terms are highlighted (see 157 

corresponding section below “Optical Character Recognition and Vocabulary Terms Detection”). 158 

Highlighted terms allow to easily identify what standard vocabulary terms were detected as 159 

present or in negative form. This is useful for quantitative performance assessment. 160 

The second part (Fig 3b) of the digitization form contains patient informations, such as patient ID, 161 

document ID, age of the patient. This section also allows the user to input patient information 162 

that are not defined in by the standard vocabulary and thus, not processed in the NLP section. 163 

For example, IMPatienT exploits well-established ontologies to normalize the genetic diagnosis 164 

and phenotypes (Fig 4). For example, in the gene field, when the user input characters, gene 165 

symbols are retrieved from the HUGO Gene Nomenclature Committee (HGNC) and 166 

suggested.[26] Mutation notations are formatted according to the Human Genome Variation 167 

Society (HGVS) sequence variant nomenclature[27]. Phenotypes are retrieved and suggested 168 

using the HPO ontology. None of these fields contain patient-identifying data and are optional. 169 

  170 
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 171 

Figure 3: Screenshot of the report digitalization module. (a) PDF upload section for automatic 172 

keyword detection in the text. Detected keywords have a green background, detected and 173 

negated keywords have a red background. (b) Patient information section (age, document ID, 174 

gene, mutation, phenotype). (c) Standard vocabulary tree viewer to select keywords with 175 

associated slider to manually indicate keyword value (absence or presence level). Keywords 176 

marked as present are indicated with a green check mark, absent keywords are marked with a 177 

red cross. (d) Final section with an overview of all annotated terms, diagnosis selection and 178 

commentary part with automatic diagnosis suggestion using BOQA algorithm.  179 
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 180 

Figure 4: Overview of the ontologies used by IMPatienT to process patient data in the report 181 

digitization module (module 2). 182 

 183 

The third part of the digitization form (Fig 3c) contains the standard vocabulary tree viewer with 184 

an absence/presence slider. This section allows the user to correct the automatic detection of the 185 

NLP method or to add new observations. Each vocabulary term can be marked as present, 186 

absent or no information. For terms marked as present, the slider is used to indicate a notion of 187 

quantity or certainty of the term. For example, the statement “There is a small number of fibers 188 

containing rods” can be annotated by hand by setting the vocabulary “Rods” to the value 189 

“Present” with a low quantity value. For terms that have been automatically detected, this slider 190 

value is automatically set to 0 (present in a negated sentence) or 1 (present). 191 
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Finally, the fourth part (Fig 3d) of the form allow the user to input comments and a final diagnosis 192 

for the patient, disease name are suggested from the Orphanet [28] knowledge base. It also 193 

includes an automatic suggestion of the diagnosis based on already registered patients using 194 

BOQA [20] (see the corresponding section below “Patient Disease Suggestions Method”). 195 

Optical Character Recognition and Vocabulary Term Detection 196 

The patient report digitization in module 2 is facilitated by the automatic text recognition and 197 

keyword detection method. The user uploads a PDF version of the text reports to perform Optical 198 

Character Recognition (OCR), followed by Natural Language Processing (NLP) to automatically 199 

detect terms from the standard vocabulary in the report. The NLP method is only match the raw 200 

text to the standard vocabulary defined in Standard Vocabulary Module 1. Figure 5 describes the 201 

workflow of the vocabulary terms detection method. First the PDF file is converted to plain text 202 

using the Tesseract OCR (implemented in python as pyTesseract). Then, the text is processed 203 

with Spacy, an NLP python library, by splitting the text into sentences and then into individual 204 

words. The resulting list of sentences is then processed to detect negation using a simple 205 

implementation of the concept of NegEx [29]. An n-gram (monograms, digrams, and trigrams) 206 

procedure is applied  207 

to the list of words to identify contiguous words in the context of all the sentences of the report. 208 

The n-grams are then mapped against the user-created standard vocabulary using fuzzy partial 209 

matching (using Levenshtein distance) with a score threshold of 0.8. Matched keywords are kept 210 

and shown on the interface with a green or red highlight of the detected text using Mark.JS 211 

JavaScript library (green indicates the presence of the keyword, red indicates the presence in a 212 

negated sentence). Keywords are also automatically marked as present or absent (negated) in 213 

the vocabulary tree. 214 
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 215 

Figure 5: Optical character recognition and vocabulary term detection method used in the report 216 

digitization module (module 2) to automatically analyze free-text reports. 217 

 218 

Disease Suggestions  219 

The report digitization module 2 contains a disease recommendation algorithm inspired by the 220 

BOQA algorithm described by Bauer et al. [20]. Basically, the algorithm computes the similarity 221 

between a list of input vocabulary terms annotated as “present” for a patient (the query) and a 222 

simulated patient profile for each disease class (model report) that is generated based on the 223 

data from already registered patients. 224 

We implemented this algorithm in python, and we modified it to use the frequencies of 225 

vocabulary terms per disease for the generation of the model report instead of the initial 226 

deterministic way (not frequency aware). This means that the model report is generated based 227 

on the probability (frequency) of each vocabulary term. For example, if disease A is annotated 228 

with vocabulary term B at a frequency=0.9 and vocabulary term C at a frequency=0.1, the 229 
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generated model report for disease A will have a probability=0.9 of containing vocabulary term B 230 

and a probability=0.1 of containing vocabulary term C. 231 

Due to the stochastic nature of the generation of the model report, for any given prediction, the 232 

generation and computation of the similarity with the query is repeated 50 times. For each 233 

repetition, if a disease has a prediction probability>0.5, it is considered to be the best prediction, 234 

otherwise the prediction is “no prediction”. Finally, of the 50 repetitions, the prediction with the 235 

highest occurrence is taken as the final prediction. 236 

Module 3: AI-Assisted Image Annotation Using Automatic Segmentation 237 

To process patient image data, we developed the image annotation module (module 3) to 238 

upload, annotate and perform image segmentation with standard vocabulary terms. This module 239 

is based on the “interactive image segmentation with Dash and Scikit-image” demonstration 240 

application [30–32]. The original source code was modified to be compatible with the standard 241 

vocabulary tree and the database. 242 

The interactive interface to annotate image features with standard vocabulary terms is presented 243 

in figures 6a and 6b. The interface allows the user to draw a free-shape area (annotation) 244 

associated with a standard vocabulary term (class). Then, with a minimal number of user 245 

annotations, the whole image is segmented based on the annotations (shapes) provided by the 246 

user.  247 

To perform image segmentation, on the server side, local features (intensity, edges, texture) are 248 

extracted from the labeled areas of the image and are used to train a dedicated AI random-forest 249 

classifier model. This dedicated model is then applied to predict similar areas in the whole image. 250 

Finally, every pixel of the image is labeled with a standard vocabulary term corresponding to the 251 

AI prediction based on the annotations.   252 
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The segmentation is entirely interactive. After the initial segmentation, the user can correct the 253 

classification by adding more annotation shapes to the image and can modify the paintbrush 254 

width setting to make more precise annotation marks. In addition, the stringency range 255 

parameter of the model can be adapted using the slider to modify the model behavior and 256 

automatically recompute the segmentation in real time.  257 

Results of the segmentation are retrievable as a single archive including the raw image, the 258 

annotations (JSON), the random-forest trained classifier, the blended image and the 259 

segmentation mask image. 260 

 261 

Figure 6: Screenshot of the image annotation module. (a) Image viewer used to navigate, 262 

zoom and annotate the histology image. (b) Menu interface to select the annotation label, brush 263 

width and segmentation parameters.  264 
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Module 4: Automatic Visualization Dashboard 265 

The automatic visualization dashboard module is designed to perform exploratory data analysis 266 

by generating multiple graphs based on the patient data in the database. All visualizations are 267 

created using Plotly, a python graph library, that allows to make interactive graphs.  268 

Interaction Between the Modules 269 

IMPatienT is divided into four modules that are interconnected. The standard vocabulary module 270 

provides the vocabulary used for the image annotation module and for the NLP method used for 271 

the (histologic) standard vocabulary terms detection in the report digitization module. Any 272 

modification in the vocabulary is automatically propagated to these modules, updating the form 273 

templates and triggering the recalculation of all visualizations with the latest vocabulary 274 

information. Any modification to the standard vocabulary also updates all patients in the 275 

database to the latest version of the vocabulary, meaning that term names and definitions will be 276 

updated, and deleted terms will be marked as outdated. Adding patient information in the 277 

database, whether they are text reports (module 2) or images data (module 3), will automatically 278 

update the visualization dashboard with the latest patient information in the database. The term 279 

frequency statistics calculated by the visualization dashboard and used by the disease suggestion 280 

algorithm are automatically updated as well, providing live performances increase. The 281 

visualization dashboard is also directly linked to the standard vocabulary and during the 282 

generation of the visualizations, the rich definition of the standard terms is updated with newly 283 

associated genes, diagnosis and positively correlating terms. 284 

Application Security and Personal Data 285 

IMPatienT is developed as a free and open-source project meaning that the code can be audited 286 

by anyone in the GitHub code repository. The code is regularly scanned for known issues and 287 

outdated libraries to mitigate security issues. There is no patient-identifying data kept in the 288 

database, only a custom identifier and age. No name or date of birth are required or stored. 289 
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Additionally, access to all modules and data entered via the web application is restricted by a 290 

login-page and user accounts can only be created by the administrator of the platform. No user 291 

information is stored except for the username, email and salted and hashed passwords. 292 

RESULTS 293 

IMPatienT is an interactive and user-friendly web application that integrates a semi-automatic 294 

approach for text and image data digitization, processing, and exploration. Due to its modular 295 

architecture and its standard vocabulary creator, it has a wide range of potential uses. 296 

IMPatienT Main Functionalities 297 

Table 1 shows the main functionalities of IMPatienT compared to other similar tools used in the 298 

community. IMPatienT integrates tools that are simple, portable, easy to implement and similar 299 

to multiple state-of-the-art solutions but in a single platform. Out of 18 selected features, 300 

IMPatienT integrates 14 of them versus a mean of 4.4 for other software with the best one being 301 

SAMS and PhenoStore integrating 6 features each. However, software such as SAMS, PhenoStore, 302 

Phenotips and Cytomine each integrates features that are not yet present in IMPatienT. 303 

IMPatienT implements novel functionalities to process and exploit patient data. For example, 304 

IMPatienT is compatible with any domain of research thanks to its standard vocabulary builder. 305 

Also, with the OCR/NLP method, IMPatienT can process histologic text reports, allowing the user 306 

to exploit scanned documents. Finally, IMPatienT also provides useful utilities to exploit patient 307 

data with the various visualizations, the term, frequency table, correlation matrix and the 308 

automatic enrichment of the vocabulary terms definition (associated genes and diseases).  309 
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Table 1: Comparison of functionalities from IMPatienT compared to common state-of-the-art tools. 310 

311 
  312 
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IMPatienT Usage 313 

Figure 1 shows how the user can interact with the web application to digitize, process, and 314 

explore patient data. In IMPatienT, modules can be used independently, allowing users to only 315 

use the tools they need. For example, a user might only have text report data, in this case they 316 

would be able to use the standard vocabulary creator, the report digitization tools and the 317 

visualization dashboard to process and explore their data. In another scenario, a user could only 318 

be interested in annotating an image dataset using a shared standard vocabulary that can be 319 

modified and updated collaboratively. In this use case, they would be able to only use the 320 

standard vocabulary creator and the image annotation module. However, the main strength of 321 

IMPatienT lies in the multimodal approach it provides and the module interactions. 322 

For the complete multimodal approach, the first step is to create a standard vocabulary using the 323 

Standard Vocabulary Creator interface (module 1). The user only needs to create a few terms 324 

(nodes) to begin using the web application. Defining the properties of the terms (definition, 325 

synonyms…) is optional, and organizing them in a hierarchical structure is also optional.  326 

Then, the user can start digitizing patient reports using module 2 (step 2). This can be done 327 

manually by filling out the form in module 2 and checking terms as present or absent in a given 328 

report, or the user can employ the Vocabulary Term Matching method by uploading a PDF 329 

version of the report. Using module 3, the user can also upload, annotate, and segment image 330 

data. 331 

Finally, the user can view multiple exploratory graphs (histograms, correlation matrix, confusion 332 

matrix, frequency tables) that are automatically generated in module 4. All data entered via the 333 

web application are retrievable in standard formats, including the whole database of reports as a 334 

single SQLite3 file or CSV files, the images and their segmentation models and masks as a GZIP 335 

archive, the standard vocabulary with annotation as a JSON file and various graphs and tables as 336 

JSON or PNG files.  337 



   

 

21 

 

Use Case: Congenital Myopathy Histology Reports 338 

As a use case of IMPatienT, we focused on congenital myopathies (CM). We used the standard 339 

vocabulary creator to create a sample muscle histology standard vocabulary based on common 340 

terms used in muscle biopsy reports from the Paris Institute of Myology. Then, we inserted 40 341 

generated digital patients in the database with random sampling of standard vocabulary terms 342 

and associated a gene and disease class among a list of common CM genes and three recurring 343 

CM subtypes (nemaline myopathy, core myopathy and centronuclear myopathy). All these data 344 

are available on the demo instance of IMPatienT (https://impatient.lbgi.fr/).  345 

For text data, Supplementary Figure S1 show the results of the automatic NLP method applied to 346 

an artificial muscle histology report. Twenty-two keywords were detected and match to the 347 

standard vocabulary and seven of them were detected in negated sentences (red highlight). 348 

Among the 22 vocabulary terms detected. Out of the twenty-two keywords, eighteen were 349 

correctly detected and one was detected in the wrong state of negation: “abnormal fiber 350 

differentiation” is highlighted as negated while it is present is a non-negated sentence part. Three 351 

keywords (fiber type, internalized nuclei, centralized nuclei) were detected as matching for 352 

multiple keywords from the vocabulary at the same time due to high similarity. For example, the 353 

keyword “internalized nuclei” and “centralized nuclei” have a similarity score of 86 using the 354 

Levenstein distance. Two keywords defined in the standard vocabulary were missed and not 355 

highlighted: “biopsy looks abnormal” (“abnormal biopsy” in the vocabulary) and “purplish shade” 356 

(“purplish aspect“ in the vocabulary). 357 

For the image data, figure 7 shows an example of the segmentation of a biopsy image, where we 358 

annotated the cytoplasm of the cells (green), intercellular spaces (black) and cell nuclei (red). The 359 

raw image (Fig 7a) is annotated with free-shape areas associated with standard vocabulary terms 360 

(Fig 7b). Then, the whole image is automatically segmented based on the annotations, producing 361 

the segmentation mask where each pixel is associated with a class (Fig 7c 7d). 362 

https://impatient.lbgi.fr/
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The automatic visualization dashboard was used to generate the six visualizations provided in 363 

figure 8. These visualizations include a breakdown of the patients in the database by age, genes, 364 

or diagnosis (Fig 8a). A correlation matrix (using Pearson correlation coefficient) between the  365 

occurrence of standard vocabulary terms is generated (Fig 8b), which can serve as a starting 366 

point for exploration of co-occurrence of features in patients. The confusion matrix of the final 367 

diagnosis of patients versus the suggested diagnosis with BOQA (Fig 8c) allows the user to 368 

monitor the accuracy of the disease suggestion function. In addition, a histogram showing the 369 

classification of patients without a final diagnosis is provided to indicate possible prognosis of 370 

undiagnosed patients (Fig 8d). Finally, the frequency of each standard vocabulary term by gene 371 

and by disease is automatically calculated and shown in two tables (see supplementary tables S2 372 

and S3). 373 

 374 

Figure 7: Image segmentation process in the image segmentation module. (a) Raw image 375 

input before annotation. (b) Image with limited manual annotation of cytoplasm (green), cell 376 

nucleus (red) and intercellular space (black). (c) Blended image of the raw image and segmented 377 
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image after automated segmentation with a random-forest classifier. (d) Segmented image mask 378 

alone.  379 
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 380 

Figure 8: Automatic visualization of 40 generated congenital myopathy reports. (a) 381 

Histogram of the number of reports by age group, by diagnosed gene (top 9) or by congenital 382 

myopathy class. (b) Correlation matrix of standard vocabulary terms after annotation for all 383 

reports. (c) Confusion matrix of BOQA algorithm performance for suggestion of the three main 384 

congenital myopathy classes (NM, COM, CNM, n=32). Colors indicate the number of reports for 385 

each cell of the matrix, the lighter the color the more reports. (d) Histogram of the reclassification 386 

by BOQA of reports without a final diagnostic (n=8).  387 



   

 

25 

 

DISCUSSION  388 

IMPatienT is a platform that simplifies the digitization, processing, and exploration of both textual 389 

and image patient data. The web application is centered around the concept of a standard 390 

vocabulary tree that is easy to create and used to process text and image data. This allows 391 

IMPatienT to work with patient data from domains that still lack a consensus ontology and rely 392 

on well-established ontologies for patient data, such as HPO for phenotypes, Orphanet for 393 

disease names or HGCN/HGVS for genetic diagnoses. 394 

The semi-automatic approach implemented in IMPatienT offers faster digitization processes 395 

while ensuring accuracy through manual review. This is achieved by analyzing text data using 396 

OCR and NLP to automatically match the text to the standard vocabulary, followed by manual 397 

correction. For image data, the user first provides sparse annotations on the image, which are 398 

then used to compute an automatic segmentation of the whole image. For data exploration, 399 

IMPatienT uses a fully automatic approach including various visualizations as well as diagnosis 400 

suggestions, while allowing the user to extract the processed data in a standard format for 401 

further analysis (database, images, frequency tables). 402 

IMPatienT aims to integrate multiple approaches in a unified platform with two main objectives: 403 

universality (i.e not restricted to a specific domain) and multimodality (i.e. integration of multiple 404 

data types). To our knowledge, other tools similar to IMPatienT do not fulfill both objectives.   405 

We performed a comparison of the main functionalities of IMPatienT with other tools used in the 406 

community. Phenotips, SAMS and PhenoStore are similar to IMPatienT as they are designed as a 407 

patient information database. However, they are restricted to processing patient phenotype data 408 

by using HPO and do not integrate multimodal data. IMPatienT goes further by allowing for 409 

custom observations with the vocabulary builder and with automatic digitization with OCR/NLP 410 

as well as integrating tools to exploit image data. 411 
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Other tools are similar to one or two modules only of IMPatienT. For example, Doc2HPO is a tool 412 

that also uses a semi-automatic approach to digitize clinical text according to a list of HPO terms, 413 

based on NLP methods and negation detection. However, as Doc2HPO is also restricted to HPO, 414 

it does not provide custom vocabulary tree facilities. In contrast IMPatienT is suitable for 415 

digitization of text data from any domain of interest.  416 

For image data, software such as Cytomine and Ilastik are widely used and perform well on 417 

biological data, but they do not allow the user to take into consideration the multimodal aspects 418 

of patient data by keeping the raw image and the expert interpretation (histological report) in a 419 

single database along with a collaborative and rich-defined custom ontology. 420 

Finally, in IMPatienT we reimplemented the diagnosis suggestion algorithm called BOQA that is 421 

also used in Phenomizer, a tool to rank a list of the top matching diseases based on a list of input 422 

HPO terms. We modified the algorithm to consider frequencies of terms by disease to have 423 

meaningful predictions. However, BOQA uses binary states for terms (terms are marked as 424 

present or absent) and is not compatible with numeric features. In the future, it will be necessary 425 

to implement a more complex system such as explainable AI with learning classifier systems [33]. 426 

This should improve accuracy, explainability, and handling of quantitative values, although at the 427 

cost of computational power. 428 

IMPatienT still lacks some feature compared to other tools, such as a pedigree editor, support for 429 

DICOM and gigapixel images and phenotypic data export to the Phenopacket format. In the 430 

future, we plan to further develop IMPatienT by adding these features to the interface. We also 431 

want to explore the automatization of the standard vocabulary creation with the analysis of a 432 

complete corpus of text. For text analysis, we wish to implement additional context 433 

comprehension, i.e. not only negation but also hypothetical statements, uncertainty and family 434 

context as well as better text-vocabulary terms matching. Finally, we plan to expand the scope of 435 
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the OCR/NLP method by integrating existing NLP tools to automatically detect HPO terms, gene 436 

symbols and disease name the report text. 437 

CONCLUSIONS 438 

With IMPatienT, we have developed an integrated web application to digitize, process and 439 

explore multimodal patient data. Thanks to its standard vocabulary creator module, it can be 440 

adapted to any domain that currently lacks a standard vocabulary. It provides automation of the 441 

task of processing free-text patient data and annotating images. It also provides automatic data 442 

exploration with the diagnosis suggestion algorithm and the visualization dashboard. IMPatienT 443 

can serve as a research tool to find new associations of patient features that might be relevant 444 

for diagnosis. A demonstration instance of the web application is available at 445 

https://impatient.lbgi.fr. 446 

Source-code and Data Availability 447 

The source-code for IMPatienT v1.5.0 is available in its GitHub repository 448 

(https://github.com/lambda-science/IMPatienT). The datasets generated and analyzed during the 449 

current study are also available in the same repository. 450 
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Supplementary Materials 458 

 Figure S1 - nlp_qualtitative_results.pptx - Qualitative assessment of the 459 

performances of the NLP method matching text to the standard vocabulary.  (a) 460 

Raw muscle histology report text with detected keywords highlighted in green and red. A 461 

red highlight indicated that the keyword is in a negated sentence. (b) Table of some 462 

highlighted keywords and the details of the match (matching vocabulary ID and term, 463 

position in the raw text, matching n-gram [raw text] and the similarity score of the 464 

comparison). Green and red colors correspond to keywords detected as present and 465 

present in negated sentence respectively. 466 

 Table S2 - table_frequencies_per_gene.csv - Table of frequencies of standard 467 

vocabulary per genes. This CSV file contains all frequencies of standard vocabulary 468 

terms for each gene with the total number of reports per gene and the number of 469 

occurrences of each term if not 0. 470 

 Table S3 - table_frequencies_per_diag.csv - Table of frequencies of standard 471 

vocabulary per diagnosis. This CSV file contains all frequencies of standard vocabulary 472 

terms for each diagnosis with the total number of reports per diagnosis and the number 473 

of occurrences of each term if not 0. 474 
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