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Abstract

Modeling cyber-physical systems is known to be a challenging task. Model-based programming frame-
works for CPS are an appealing approach to tackle this challenge, by providing languages close to engi-
neers. However, these tools usually lack formal semantics, causing simulation results to vary from one
version to another. A second particularity in the design of CPS is the presence of uncertainties due to
parameters not well known at design-time. Monte-Carlo methods are classically used to circumvent this
issue but they do not provide a complete coverage. Another solution is to rely on set-based simulation
methods. On the one hand, control command systems find an elegant programming solution in syn-
chronous languages. Zélus is such a language extended to deal with CPS, with a well-defined semantics.
On the other hand, many set-based simulation libraries exist with a lack of proper front-end to make
them suitable for industrial use. We propose to bridge the gap between set-based simulation and devel-
opment frameworks for CPS by designing a new backend and runtime for Zélus, using set-based methods
and guaranteed arithmetic. This runtime is described by very simple set-based primitives in order to be
implemented in any set-based simulation library. An instance of the runtime is given with the DynIbex
library to prove the effectiveness of the proposed approach. Finally, a mechanism of contracts is added
to state and verify properties on the simulated system.

1 Introduction
Hybrid systems are commonly defined as dynamical systems mixing discrete events and continuous-time.
They are widely present in control command systems, or more generally in cyber-physical systems (CPS),
where a continuous physical process is controlled or monitored by software components which run at discrete
instants. Designing CPS is a challenging process as the coupling of continuous and discrete components may
generate subtle behaviors. Model-based programming frameworks for CPS are an appealing approach to
tackle this challenge [12]. Many industrial development frameworks exist (such as Modelica, Simulink/S-
tateflow or LabVIEW) which bring a solution for end-users by considering an input language close to
engineers. An important limitation of these tools is their lack of formal semantics. Hence the simulation
behaviors of a model in these tools may vary from one version to another.

A second particularity in the design of CPS is the presence of uncertainties. Indeed, models of physical
processes, as differential equations, rely on parameters which are usually not well known at design-time.
These parameters may have an influence on the whole CPS behaviors. A classical solution to address
these uncertainties is to apply Monte-Carlo methods which may be time consuming and do not provide a
complete coverage. Another approach, used in the present work, is to use set-based simulation methods,
as in tools such as [21]. Set-based simulation propagates sets of values instead of points in order to collect
all the possible system’s behaviors at once. This specialized approach makes possible to perform worst-case
analysis of systems, which is useful, for example, to prove safety properties. The main drawback of these
approaches is that the input language associated to these tools is generally not suitable for engineers as its
relies on mathematical modeling such as hybrid automata.

On the one hand, control command systems find an elegant programming solution in synchronous lan-
guages [20] but relies on floating-point simulation engine. Synchronous programming approach gives a formal
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semantics of embedded software.Zélus [10] is such a programming language, extended to deal with CPS, hence
is an interesting candidate for input language. On the other hand, many set-based simulation libraries exist
such as [2, 13, 1, 14] with a lack of proper front-end to make them suitable for industrial use.

Our main objective is to develop a complete toolchain, from the (high-level) model of a CPS to the
verification of its properties, even if uncertainties occur. For this, we selected Zélus for its formal semantics
and its open source compiler, and DynIbex for its set-based approach allowing to verify constraints under
uncertainties.

The contribution of this article is then to bridge the gap between set-based simulation and development
frameworks for CPS.

In details, the proposed approach extends the Zélus compiler in order to have two runtimes for Zélus
programs: one with a floating-point simulation engine and one with a set-based simulation engine. The
set-based runtime is described by very simple set-based primitives, as those given in interval analysis, in
order to be implemented in any set-based simulation library. A simple instance of the set-based runtime is
given with the DynIbex library to prove the effectiveness of the proposed approach, relying on techniques
very similar to existing ones in various reachability frameworks. Indeed, DynIbex has the particularity of
offering constraint verification and set-based simulation in a single tool, which will be useful for contracts
verification on CPS.

Related Work
The mechanisms used for event detection and handling are rather similar to the ones used in other works.
Several frameworks exist for reachability analysis of hybrid systems, though few have a high-level program-
ming language in which to directly describe the systems.

JuliaReach [22] is a Julia library performing set-based reachability analysis on both linear and non-
linear systems. The description of the system to analyze has to be manually encoded in Julia using the
tools provided by the library.

CORA [2] is a toolbox written in MATLAB providing advanced data-structures and reachability algo-
rithms for linear and non-linear systems. It has been extended with intervals and Taylor models [3, 4]. The
modeling of a system is manually done in MATLAB, hence considering floating-point arithmetic as exact.

SpaceEx [16] is a verification platform to model linear (or piece-wise linear) hybrid systems and compute
the sets of reachable states using different reachability algorithms. It relies on floating-point arithmetic,
though it fails to account for rounding errors. Systems are modeled in a dedicated interface (or in a XML
file). A graphical WEB interface is available to set parameters, run simulations and visualize the results. A
translator from a subset of Simulink to SpaceEx is also available [27].

FLOW* [13] allows one to model non-linear hybrid systems with uncertainties and compute an over-
approximation of reachable states using Taylor models and guaranteed floating-point arithmetic.

Hyson [9] allows one to perform set-based simulations of Simulink hybrid models (continuous and
discrete, linear and non-linear, using a subset of the language). It provides guaranteed integration based on
Runge Kutta methods with handling of floating-point rounding errors. It can be considered as an ancestor
of this work, without automata and extensions of Runge Kutta methods provided by DynIbex. The event
detection is also performed by checking the sign of the guard. To refine the event location, an interpolation
of the guard is used instead, which may be more efficient than our simple bisection mechanism. However,
such a technique would require the automated generation of this interpolation at compile-time.

dReal [18, 19] encodes hybrid systems as SMT modulo ODEs problems. A system has to be encoded
as a first-order logic formula with the properties it must respect in the SMT-LIB format. It is then able to
check if the properties of the system hold. However, it does not provide high-level constructs to write the
systems.

The Acumen [34, 24] framework provides ways to express various kinds of hybrid systems in a Domain
Specific Language. It allows point-wise simulations to provide very fancy dynamic visual representations.
It also provides an enclosure interpreter supporting intervals to handle uncertainties for system verification
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purposes. The main differences with our work come from the nature of the input language and the integration
mechanism. Using Zélus provides various static analyses and advanced constructs. Though we do not handle
some of these constructs here, work is underway to address a larger subset of the Zélus language, including
hierarchical automata, and thus model more complex systems. DynIbex was chosen as a simulation framework
as it provides guaranteed integration methods which handle floating-point issues.

In [26], the fine detection of event is performed in a very similar way than we do. Especially, it performs
a bisection on time for each box crossing the guard. Then a contraction is performed to reduce the boxes
according to the guard condition. However, the reset is applied on each box containing an event before
running the simulation with the new dynamics.

The notion of tree is also present in [24] to compute enclosures of solutions and initial conditions to
restart a simulation over multiple time extents where a guard intersects the dynamics.

[33] develops an assume-guarantee contracts framework to check invariance properties. Contracts are
attached to components of a system and can be combined (in cascading or feedback modes). Contracts
are given by hypotheses on the inputs and guarantees on both the state and output of the system. Both
hypotheses and guarantees are represented by set inclusions. This allows to synthesize the global properties
of the system from the ones of its sub-systems. Such a compositional approach is not feasible in our case
since the final model obtained after the compilation by Zélus is flat. Hence, we verify at runtime, properties
on the whole system at once.

[7] proposes to model hybrid systems using the Heterogeneous Rich Component to achieve contract-based
design. The model is not coded in a programming language. Contracts hypotheses and guarantees are repre-
sented by constraints (set membership or inequalities). Components are connected by ports and combination
rules are given for cascading and feedback connections. The verification of the contract satisfaction of the
whole system is achieved by reachability analysis on the obtained state machine using the ARIADNE tool[6].
Contrary to our approach, the verification is performed by an external tool while it is done by the internal
runtime on our side.

In [30], extending [29], a component-based modeling and verification formalism with properties expressed
in differential dynamic logic are presented. Contracts are set on components which can be combined. Some
compatibility proof obligations must be done to ensure that the combined components provide system-wide
safety properties if their contracts hold. Two kinds of contracts allow to state interesting safety properties:
change contracts to relate previous and current values of a variable ; delay contracts to deal with the delay
between information exchange between components. This widens the kind of properties that can be verified.
Contracts of modeled components can be verified using KeYmaera X [17].

[32] presents a library extending Modelica to allow verification of requirements on models. The design of
this library is based on the FORM-L requirement modeling language [31], featuring temporal logic operators.
The obtained framework can be used as a high-level (and graphical) systems modeling tool that can simulate
models and check their compliance with stated properties. Thanks to the temporal logic operators, it is
possible to express more complex contracts than in our current work. Simulations are performed in a point-
wise manner with non-guaranteed arithmetic, so dealing with uncertainties has to be manually carried out
by running several simulations.

CE2E [15] is a tool allowing to verify properties on hybrid models with non-linear dynamics, transitions
and resets. Properties are bounded time linear invariants from linear bounded initial sets. Models can be
built using a GUI or by importing from Stateflow. The verification algorithm builds, from an initial set, a
cover and then determines if it is safe or not. If the cover cannot be classified in one of the two classes, it is
recursively refined. At each step a simulation is generated, using guaranteed tools (VNODE-LP or CAPD).

Our compilation process shows correct results on several examples, however in the future, it is important
to provide a correctness theorem to strengthen the confidence in the tool. This formal topic is obviously
important since it determines the confidence one may have in the obtained simulation results. Various
approaches may be adopted to get a formal confidence. One possibility is to model, in a theorem prover, the
semantics of Zélus, then to implement the runtime in this framework and prove preservation of the semantics
between any Zélus program and its simulation through the transforms performed by the compilation. The
compiler and runtime could then be automatically extracted if the theorem prover provides such a mechanism.

4



Such an approach is used in [36] or, in another domain, in [25].
Another approach, used in [5] consists in modeling the physical environment, the physical system, its

behavior and the software components in a logical framework. Then proofs of correct behavior can be carried
out by the user on the basis of this modeling. In such an approach, a new proof has to made for each system
but the code of the controller can automatically be extracted.

Differently, [8] proposes to strengthen the confidence in a controller by applying a pipeline of transforms
using several theorem provers or formally proven software bridges between tools (some of them forming a
trusted base). In this framework, a CPS is modeled in differential dynamic logic and the various compila-
tion/transformation steps produce in fine a verified controller executable guarded by a proven safe fallback
controller.

The rest of the paper is organized as follows. In Section 2, we briefly present Zélus and the features we
handle. Section 3 provides a quick introduction to DynIbex and demonstrates how to encode and simulate
a differential equation with an initial value using the library. Section 4 addresses the issues of simulating
automata with intervals, the simulation runtime and its related automaton architecture. The compilation
schema is presented in Section 5. In Section 6, some experimental results are given. Contracts are studied
in Section 7. Finally, we conclude and comment on possible further works in Sections 8 and 9.

2 Zélus Succinctly, Used Features
Zélus [10] is a synchronous programming language extended with ordinary differential equations (ODEs).
It provides a wide range of features like synchronous dataflow equations, hierarchical automata, signals,
data-types, pattern-matching, functional features, etc. In this paper, we will only address the constructs
required to implement simple hybrid systems having several dynamics. Zélus allows to describe hierarchical
automata (i.e., nested) which are not considered in this work. Zélus makes it possible to model systems
in which there is an interaction between discrete-time and continuous-time dynamics. Currently we do not
address arbitrary discrete-time behavior (i.e. reactions to event cannot be arbitrary Zélus code: only jumps
involving expressions without side-effects, conditional, pattern-matching, discrete-side variables, etc) so we
consider a class of continuous-time dynamical systems with discontinuity.

A program in Zélus is a hierarchy of nodes, possibly parameterized, containing equations relating the
inputs and outputs of each node. A node can be instantiated in another one to import the equations of the
former in the latter, where parameters are replaced by the effective arguments provided at the instantiation
point. This mechanism allows the reuse of sets of equations with different parameters. The equations of a
node are those defined in it and those imported from instantiated nodes.

A system with several dynamics is represented by an automaton with states containing systems of coupled
equations and transitions between states, triggered by events. By convention in Zélus, an event related to a
transition arises when its guard expression e changes from negative to positive values (zero-crossing). Note
that a node may contain equations outside states: we call them toplevel equations. The initial state of an
automaton is the first one in the automaton construct.

We consider three kinds of equations. An ODE der x =e1 init e2 is defined by ẋ = e1 with the initial
condition e2 (only Initial Value Problems are considered in Zélus). If der x =e1 init e2 belongs to a state s,
each time s is entered the value x is set to the value of the expression e2, causing a jump. A regular dataflow
equation x =e binds x to an expression. Finally, we handle initialization equations init x =e allowing to
provide an initial value to an equation, which makes possible to omit later the initial value of an ODE in a
mode if it does not need to be reset when entering the mode.

Let us now present the example which will also be used to illustrate the final generated code. This
example is intentionally simple to allow one to recognize its structure in the produced code. In particular,
it is not a benchmark to compare the accuracy or performances of our framework with other reachability
analysis tools. The model of a simplified rocket launched vertically and burning its fuel until exhaustion
can be described in Zélus by the automaton of Figure 1, containing three states. The ODE describing the
evolution of the power is global to the automaton. In the state EngOn the fuel is used to contribute to the
elevation. When the power becomes close to 0, within an ε (for instance 0.001) representing the inaccuracy
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l e t hybrid main ( ) = zpos where
rec in i t zpos = 0 .0
and in i t speed = 0 .0
and der power = −. 2 .0 ∗ . power in i t 100 .0
and g = −9 .81
and automaton

| EngOn −> do
der speed = g +. power
and der zpos = speed
until up (−. ( power −. 0 .001 ) ) then EngOff

| EngOff −> do
der speed = g
and der zpos = speed
until up (−. zpos ) then Crashed

| Crashed −> do
der speed = 0 .0
and der zpos = 0 .0
done

end

Figure 1: Model of a simple rocket in Zélus

of the sensor (up (-. (power -. 0.001)) meaning that −(power−0.001) goes from negative to positive,
hence power decreases to 0.001), the automaton goes into the state EngOff where no more fuel is available.
The equation of the speed is then different from the one in the state EngOn. Finally, when the altitude
reaches 0 the rocket stops moving. In this model, no ODEs in the states are reset when entering their state
and no node instantiation is present. Note that floating-point arithmetic operators are suffixed by a dot in
Zélus.

3 DynIbex in a Few Words, Used Features
DynIbex [1] is a C++ library that builds on the Ibex library. Ibex provides tools to develop programs for non-
linear constraint processing over real numbers using interval arithmetic and affine arithmetic. DynIbex adds
validated numerical integration methods (including handling of floating-point rounding errors), internally
computing using zonotopes. To describe a dynamical system, one defines objects of predefined classes
to represent the initial values and the (possibly non-linear) ODEs of the system, using a vector-valued
representation. That is, initial values are a vector of intervals and the ODEs are “merged” into one unique
function whose domain and codomain are vectors of intervals. Note that intervals may have infinite endpoints
but in practice, to get significant results one prefers to use bounded intervals. Once these objects are defined,
a dedicated function is called to perform the simulation with the desired parameters (integration method,
duration, precision, etc.). The representation of an automaton has to be manually encoded which will
motivate the creation of a generic runtime described in Section 4.
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In Figure 2, we show how to encode the simulation of a simple system of two equations ṡ = c and ċ = −s
with the initial values 0 and 1, whose solutions are sine and cosine.

The variable dim represents the number of equations of the system, y represents the continuous state of
the system, ydot encodes the differential equations.
#define T0 ( 0 . 0 )
#define TEND (6 . 0 )
#define TOL (1 e−8)
#define METH (HEUN)

int main ( ) {
const int dim = 2 ;
Var iab le y (dim) ;
In t e rva lVec to r y i n i t (dim) ;
Function ydot = Function (y , Return (y [ 1 ] , − ( y [ 0 ] ) ) ) ;
y i n i t [ 0 ] = I n t e r v a l ( 0 . 0 ) ; y i n i t [ 1 ] = I n t e r v a l ( 1 . 0 ) ;
ivp_ode problem = ivp_ode ( ydot , T0 , y i n i t ) ;
s imu la t i on simu =

s imu la t i on (&problem , TEND, METH, TOL) ;
simu . run_simulation ( ) ;
simu . export_y0 ( " export . dat" ) ;
return 0 ;

}

Figure 2: Code for ODEs simulation in DynIbex

The mapping from the coupled equations s and c to the vector-valued representation assigns s to the
dimension 0 (y[0]) and c to the dimension 1 (y[1]). All the numerical constants are transformed into trivial
proper rounded intervals (i.e., the smallest interval containing the translated float). The initial conditions
of the problem are stored in yinit. An IVP (Initial Value Problem) object problem is created to group the
initial values, the equations and the initial time. A simulation object simu is created and run. Finally, the
results are exported as plain text, providing for each time interval of the simulation the intervals representing
the solution of each equation. Such an encoding will be the basis for automata simulation using DynIbex.

4 Simulation Runtime and Automaton Architecture

4.1 Notations
An interval [x] = [x, x] defines the set of reals x such that x 6 x 6 x. Intervals with infinite endpoints are
possible but will lead in practice to deteriorated results. We denote by IR the set of intervals on reals. A
box, [x] ∈ IRn, is the Cartesian product of n intervals of reals. The interval union of two intervals is defined
as [x1, x2]∪ [y1, y2] = [min (x1, y1),max (x1, y2)]. We lift the union on two boxes as the union of the intervals
in each dimension of the product.

Let us consider a function g : Rn → Rk and a set Z ⊂ Rk. A contractor Cc : IRn → IRn, associated to
the constraint c : g(x) ∈ Z, is a function taking a box [x] as input and returning a box Cc ([x]) satisfying i)
Cc ([x]) ⊆ [x] and ii) g ([x]) ∩ Z = g (Cc ([x])) ∩ Z. Cc provides a box containing the solutions of g(x) ∈ Z
included in [x]: i) ensures that the returned box is included in [x] and ii) ensures that no solution of g(x) ∈ Z
in [x] is lost. Many interval contractors exist [23] such as Forward-Backward for algebraic constraints or
Picard operator for ODE constraints.

A dynamics of an hybrid system is given by ẏ = f(y) with the initial condition y(0) = y0. The exact
solution of this equation is denoted by y (t;y0). An interval-based simulation approximates y by computing
a sequence of time instants t0 < t1 < · · · < tn and a sequence of boxes [y0], [y1], · · · , [yn] such that
∀i ∈ [0, n− 1], y (ti; [yi]) ⊆ [yi+1]. A tube X is the sequence of pairs ([y0], [y1]), ([y1], [y2] · · · , ([yn−1], [yn]).
The safe approximation between time instants is [ỹi] such that ∀t ∈ [ti, ti+1], y (t;y0) ⊆ [ỹi], obtained with
the Picard-Lindelöf operator [28], sometimes called Picard box.

A hybrid system is given by the tuple (Q, n, T ,D,R). Q is a set of states. n : N∗ is the dimension of
the system. T : Q → ((IRn → IRn)×Q) is a map from states to transitions where a transition contains the
guard and the destination state. D : Q → (IRn → IRn) is a map from states to dynamics where a dynamics
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is represented by a vector function. R : Q → (IRn → IRn) is a map from states to reset functions (functions
applied to y when entering automaton states, coming from the init statements of der equations).

4.2 Point-Wise versus Interval-Based Simulation
During a point-wise simulation, a transition (g, q2) from a state q1 to a state q2 occurs at a precise instant
tz, when the guard g becomes equal to 0 (from negative to positive). Hence, the dynamics D (q2) starts at
tz, with precise initial conditions corresponding to R (y(tz)).

During an interval-based simulation, the transition from q1 to q2 may span over several boxes, making
both the instants and the values of the continuous state imprecise. In other words, we do not know anymore
when the change exactly occurs and what is the state of the system to start D (q2) [35]. Moreover, since
g crosses 0 “somewhere” in some boxes, both dynamics D (q1) and D (q2) must be considered active at the
same time. D (q2) may start at any instant in these boxes, with the initial condition computed by R (q2)
applied to any values of y in these boxes. Finally, to be correct with respect to the semantics of Zélus, when
a guard crosses 0, we must ensure that the direction is from negative to positive values. We postpone this
issue until Section 4.4.

y

D (q2)

g

t
102 6 8

D (q1)

y

g

t
2 6 8 10

Figure 3: Point-wise simulations vs interval simulation
In Figure 3, to ease the representation, instead of drawing the boxes of g to monitor zero-crossings, we

plot g in a point-wise manner and check instants where the boxes of D (q1) traverses g from negative to
positive. This is simply a change of point of view since g is a function depending on y. In the left part of
the figure, the dynamics D (q1) is plotted point-wise with the thin section corresponding to the part that
would not exist in a point-wise simulation because of the switch to D (q2) (drawn dashed). The boxes of
the interval-based simulation are filled in red when they cross g. The crossing occurs on several contiguous
boxes between t = 2 and t = 6. Since parts of these boxes are below g, D (q1) is considered still valid, leading
to other crossing boxes between t = 8 and t = 10. On the right part of Figure 3, the green parts of boxes
are those relevant for the simulation of D (q1) while the dashed red ones must be eliminated because their
values are for sure not reachable due to the change of dynamics. Orange regions represent parts of boxes that
should have been eliminated but that cannot to preserve the shape of the boxes. In all the boxes crossing g,
one may be in both states of the automaton: the simulation must fork to represent the two possible futures.
Hence we no longer have one unique linear simulation but a tree of simulations. Obviously, such forks may
lead to an exponential number of sub-trees which can dramatically slow down the simulation. In this work,
we decided to favor accuracy instead of speed. More complex techniques allow to merge several futures in a
unique one. They may be explored in a future refinement.

4.3 Switching Dynamics
The problem to address is to simulate D (q2) on some time intervals T where boxes of D (q1) cross g and
determine the initial condition that must be used once g is totally crossed to run the simulation with only
D (q2). Having the tube ofD (q1), we will traverse its boxes to transform the temporal uncertainty represented
by T into the spatial uncertainty representing the initial condition of D (q2) after T.

The simulation of D (q2) must include all the reachable behaviors independently of the instant of the
transition and of the continuous state [y] at this instant. Indeed, as shown in Figure 4, different behaviors
may occur if g is crossed after t = 2 or after t = 3.

8



Only D (q2) Only D (q2)

D (q2) active since t = 3
y
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102 6 8
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y

g
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102 6 8

D (q1) still active D (q1) still active

D (q2) active since t = 2

T T

ti−1

ti
ti+1 ti−1

ti
ti+1

Figure 4: New dynamics starting at different times

For ti ∈ T, we denote by [yi]|g=0 the box [yi] restricted to intervals respecting g = 0. This restriction, by
application of a contractor, is called a contraction and formally respects the properties [yi]|g=0 ⊆ [yi] and
g−1(0)∩ [yi] = g−1(0)∩ [yi]|g=0. This guarantees that such a filtering reduces intervals in boxes without any
solution loss. We lift the notation to the safe approximation on a time interval [ti, ti+1] as [ỹi]|g=0.

For each time interval [ti, ti+1] ∈ T, R ([ỹi]|g=0) represents the initial condition if D (q2) starts in [ti, ti+1].
However, D (q2) may also have started in the time interval [ti−1, ti]. Hence, the initial condition must also
contain all the values obtained during the simulation of D (q2) on [ti−1, ti].

Indeed, as shown in the left part of Figure 5, since D (q2) may have started at any time in [ti−1, ti], by
shifting the evolution depending on the effective beginning instant, any value reachable on this interval may
reach the instant ti . As shown in the left part of Figure 5, this sub-simulation process iterates all along
the intervals of T, computing the initial conditions of the sub-simulation on [ti, ti+1] as the union of all the
boxes of the sub-simulation on [ti−1, ti] and the reset applied on [ỹi] at ti:

[y0]
′
0 = R (q2) ([ỹ0]|g=0)

[y0]
′
i+1 =

⋃
j

[yj ]
′
i | [yj ]′i 3 y (ti, [y0]

′
i ∪R (q2) ([ỹi]|g=0))

where a box [x] is obtained by simulating D (q1), [x]′i by simulating D (q2) on the interval [ti, ti+1].

D(q2)

g

R(q2)([ỹ0]|g=0)

...

Regular simulationD(q2)

t0 t1 t2 t3

T

[y
0
]′ 0

[y
0
]′ 1

[y
0
]′ 2

g

[ỹ
0
]

[ỹ
1
]

R(q2)([ỹ0]|g=0)

Figure 5: Sub-simulations principle
At the end of T, the regular simulation of D (q2) can be ran until the ending time of the global simulation

or until a guard of a transition of q2 is triggered. During each sub-simulation on T, a guard may cross
0, requiring to consider again several dynamics in parallel. Hence, the simulation algorithm detailed in
Section 4.5 is naturally recursive, each call creating nodes of the aforesaid tree.

The sub-simulation mechanism serves two purposes. First, it allows to compute the initial conditions to
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simulate D (q2) once g is totally crossed. It also builds the successive tubes representing the state of the
system. To obtain a correct tube, all the boxes of a sub-simulation must be extended by union with the
initial value of the sub-simulation. Indeed, since the effective transition may have occurred at any time on
the sub-simulation interval, the initial value may belong to any box of the tube. Without this extension, the
tube of the sub-simulation (which will be recorded in the tree of simulations) would not represent all the
reachable values of the system.

A part of simulation with no automaton state change leads to a node containing the tube of this simula-
tion. When a guard crosses 0 on time intervals T, new nodes are created and chained for each sub-simulation
in T. Then the last node of these sub-simulations is the parent of the node that will be created for the
simulation once the guard totally crossed 0. Because during each sub-simulation a guard can cross 0, nodes
of sub-simulations may be themselves roots of other sub-simulations trees.
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Figure 6: Tree of simulations
An example of simulation with sub-simulations and the related tree is given in Figure 6. We consider

an automaton with three states. The state q1 has a guard g1 to enter the state q2 which has a guard g2 to
enter the state q3. Sub-simulations corresponding to a same interval crossing a guard are drawn in the same
color. Dashed vertical lines represent time extents where a guard is crossed, hence where to compute some
sub-simulations. Nodes of the tree are colored according to the tube of the sub-simulation they contain.
Note that such a tree does not represent temporal relations between siblings for several reasons. First, two
siblings may represent different futures, with different integration durations. Second, sub-simulation nodes
are produced while computing the new initial condition of a new dynamics once the related guard is strictly
above 0: they are not parents of the node hosting the tube of the new dynamics. For instance, the nodes 6
and 7 serve to compute the initial condition to compute the simulation of Node 8 but are not its ancestors.
They are children of the Node 4, like Node 8, but they represent a time extent ending before the one of
Node 8. However, the tree allows to keep trace of all the possible behaviors.

4.4 Event Detection with Semantics of up
To respect Zélus semantics (see the meaning of up in Section 2), an event has to be detected if a guard crosses
0 from negative to positive values. Simply checking the intersection of the guard with 0 is not sufficient since
it does not provide the crossing direction. This would trigger a spurious event if the guard indeed crossed
from positive to negative values. Hence, one must evaluate the guard and track instants where it was negative
and becomes positive. Using the Picard box (i.e., looking at the sign of g ([ỹi])) is not accurate enough since
knowing that a box crosses 0 does not provide the direction of the crossing. Moreover, the extent of the
Picard box may hide real events.

In Figure 7, the evaluation of a guard g is given. Boxes represent the interval-based evaluation while red
curves represent possible point-wise simulations. The case (a) leads to an event pretty late in the middle
of the second box: one can expect that a simulation with a smaller step size would allow to reduce the size
of the box really crossing 0. The case (b) does not trigger any event. Finally, the case (c) also leads to an
event despite the global shape of the boxes seems to indicate a crossing from positive to negative values.
The guard crosses 0 several times, one being in the expected direction.
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Figure 7: Event detection

The first step of refined event detection performs a dichotomic search on the time interval [ti, ti+1] for
each box such as 0 ∈ g ([ỹi]) (left side of Figure 8). At each iteration on an interval [tn, tn+1], we compute
the middle time tm = (ti + ti+1)/2. Then we integrate to compute [ym] at time tm. If g ([yn]) < 0 and
g ([ym]) > 0 then the search goes on [tn, tm]. Otherwise, if g ([ym]) < 0 and g ([yn+1]) > 0 then the search
goes on [tm, tn+1]. This process ends when the time interval size reaches a user-defined threshold ε and we
make the assumption that only one crossing exists in this interval. As a consequence, this method will fail
to accurately detect an event caused by a hump in an interval of size ε (right side of Figure 8) : the whole
box will be kept.
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0

g(t)

t
0

tn tn+1tm

g(t)

t
0

ε ε

Figure 8: Event detection by refinement on time
Once the refinement process is over, the second step detects events by looking for the leftmost time

interval where g ([yi]) was previously strictly below 0 and is now above (or containing 0). The duration of
the event lasts until g ([yi]) goes strictly above 0 or strictly below 0. In the first case, the guard totally
crossed 0, hence, the old dynamics will be no longer active. In the second case, the new dynamics will be no
longer active. The detection algorithm can be represented by the automaton of Figure 9.

Init NoEvt Evt

Error

0 ∈ g([yi])

g([yi]) < 0∧
g([yi+1]) ≥ 0

g([yi+1]) < 0

g([yi]) ≥ 0

Evt
End

Figure 9: Event detection automaton
If the evaluation of g on the first box of the tube contains 0, it becomes impossible to detect a crossing

since g will have never been strictly negative before being positive or null. In this case, the simulation is
aborted and an error is raised. This may happen if in the initial or a restart state the guard directly crosses
zero. Examining the successive boxes of the tube allows to progress in the automaton until the end of the
tube or the end of an event. Depending on the context where event detection is used, the end of an event
may lead to different actions (in algorithms 3 and 4).

With the process of detection of beginning/ending of events, it is possible to apply the mechanisms of
contraction (to compute [yi]|g) and sub-simulations presented in Section 4.3 in order to compute the initial
condition of the new dynamics. Indeed, these two mechanisms are triggered by the detection of an effective
event.

4.5 Simulation Algorithm
We now present the algorithm implementing the simulation with switches of dynamics. We use the notations
introduced in the previous section to represent an automaton. This recursive algorithm relies on two mutually
recursive main functions: Run which performs the simulation of one dynamics and ComputeBranchingSeeds

11



which performs sub-simulations. The other important function is GetEventRegions which detects time
intervals where a guard crosses 0. Three utility functions are also involved: BisectOn0 and Split to
perform the refinement of intervals where a guard crosses 0; ContractOnEvent to contract the boxes of a
tube when an event is in progress.

We call branching seed the information computed during sub-simulations on a contiguous time extent
where a guard crosses 0. As shown in Figure 6, several sets of such extents may exist for a same simulation,
leading to several crossings of a guard (the two red boxes parts). A branching seed is a tuple ([t], [y], ns, ne)
containing the global time extent [t] covered by the sub-simulations, the first and last nodes (ns, ne) created
by these sub-simulations on the time extent and [y] the box to use as initial condition to carry out the next
simulation (i.e., when the guard is totally over 0 and only one dynamics is active).

We make the choice of a top-down presentation of the functions to ease the global understanding of the
algorithm. We assume given (by the DynIbex library) a function DynIbex_Simulation able to simulate a
dynamics on a time extent from an initial value.

Algorithm 1 Run (q, t0, te, [y0], union[y0])

1: if t0 > te then return none
2: X ← DynIbex_Simulation (y,D (q), t0, te)
3: if union[y0] then
4: for [yi] ∈ X do [yi]← [yi] ∪ [y0]

5: if T (q) = ∅ then return (X , ∅)
6: else
7: for (g,_) ∈ T (q) do BisectOn0 (X ,D (q), g) end for
8: changed← true
9: while changed do

10: changed← false
11: for (g,_) ∈ T (q) do
12: changed← changed ∨ ContractOnEvent (X , g)
13: n← node (X , ∅)
14: for (g, q′) ∈ T (q) do
15: X ′ ← copy of X
16: LLER ← GetEventRegions (X ′, g)
17: LBS ← ComputeBranchingSeeds (q′,LLER)
18: for ([_, t′], [y], ns, ne) ∈ LBS do
19: add ns to the children of n
20: n′ ← Run (q′, t′, te, [y], false)
21: add n′ to the children of ne

22: return n

The function Run takes five arguments: the cur-
rent state q of the automaton, t0 and te the starting
and ending times of the simulation, the initial value
[y0] of the system and a flag telling if the boxes of the
computed tube must be extended by union with the
initial value of the sub-simulation (cf. Section 4.3). It
computes the simulation of D (q) on the time interval
[t0, te] with the initial condition [y0]. If some guards
cross 0, it calls GetEventRegions to detect effective
events (0-crossings), then ComputeBranchingSeeds to
perform the sub-simulations and recurses with each
new dynamics once its related guard is above 0. It re-
turns the node containing the tube of simulation whose
children are the trees produced by the sub-simulations.
The reset of the initial state must be applied before
the initial call to Run.

If the end of the simulation time is reached, the
empty node (none) is returned (lines 1−3). At Line 2,

a simulation of the current dynamics is run using the dedicated function of DynIbex which returns a tube X .
Between lines 3 − 4, the boxes of the tube are extended with the initial condition if needed (i.e., if we are
computing a sub-simulation). At Line 5, if no transitions exit the current state, no change of dynamics is
possible until the end of the simulation. Hence a new node is created (and returned) with no children. At
Line 7, we refine the simulation’s boxes on time intervals where the guard crosses 0 (in whatever direction).
Between lines 8 − 12, for all the guards of the current state, we contract the tube to keep parts of boxes
respecting the guard 6 0. This process is applied with each guard until a fixpoint is reached. At this point,
parts of the tube not respecting the guards are removed. At Line 13, a new node n is created, recording the
contracted tube. Between lines 14− 21, we process all the transitions exiting the current state. At Line 15,
we make a copy of the tube since subsequent processing will perform side effects on the boxes. At Line 16,
we get the list of sequences of consecutive boxes where an event is spanning. During this process, the tube
is contracted to enclose the most precisely boxes [y]i such as g ([y]i) = 0. At Line 17, for each event, we
compute by sub-simulations the time and initial condition to carry on the simulation once the related guard
will have totally crossed 0. We recover the starting and ending tree nodes representing the sub-simulations.
Between lines 18 − 21, we process each branching seed. The first node of the seed is added as child of the
node n. Line 20, a new simulation is run on the seed’s time extent, with its spatial values as initial condition
and the new dynamics (i.e., the guard totally crossed 0, only the new dynamics is now active). This creates
a new node n′ which is added as child of the seed’s last node. Finally, the node n is returned as root of the
simulation step.

The function ComputeBranchingSeeds takes two arguments: the target state q of the transition whose
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guard crossed 0 and the list of sequences of consecutive boxes where an event is spanning. For each sequence
of boxes, it computes, by sub-simulations, the time and the initial condition to be used to start the related
dynamics once the related guard will be above 0. It returns a list of initial times and conditions that will be
used by Run to recurse.

Algorithm 2 ComputeBranchingSeeds (q,LLER)
1: LBS ← ∅
2: pending ← false # Ongoing seed?
3: t0 ← ? # Pending seed start time.
4: [sa]← ? # Seed restart conditions.
5: t−1 ← ? # Previous box end time.
6: ns ← none # Seed’s first node.
7: ne ← none # Seed’s last node.
8: for LER ∈ LLER do
9: pending ← false

10: for ([ta, tb], [v]) ∈ LER do
11: if ¬pending then
12: t0 ← ta
13: [sa]← vector of empty intervals
14: pending ← true

15: [y0] = R (q)([v]) ∪ [sa]
16: n← Run (q, [y0], ta, tb, true)
17: if ns = none then ns ← n
18: if ne <> none then add n to the children of ne

19: ne ← n
20: [sa]← [sa] ∪ Collapse (tube of n)
21: t−1 ← tb

22: LBS ← LBS + ([t0, t−1], [sa], ns, ne)
23: ns ← none

24: return LBS

Line 1 the accumulator of seeds is initialized to
the empty list. At Line 2, we signal that no seed
is currently under construction. Lines 3 − 7, various
variables are set to non significant values that will be
erased when a seed will be under construction. Be-
tween lines 8 − 23, we process each sequence of con-
tiguous boxes crossing the guard. At Line 9, since
we begin processing a new sequence, no seed is under
construction. Between lines 10− 23, we iterate on the
consecutive boxes representing the extent of an event.
Between lines 11 − 14, if no seed is pending we start
a new one, recording its initial time. At Line 15, the
initial condition of the sub-simulation is computed.
Line 16 a sub-simulation is performed on the dura-
tion of the current box. The Boolean flag is set to
true to ensure that the boxes of the tube of the sub-
simulation will be extended with the initial condition.
Lines 17− 18 we record the starting node of the seed
if none is already recorded and add the new node as a

child of the currently recorded ending node of the seed. Line 19, we update the ending node as being the new
node coming from the sub-simulation. Line 20, the future seed’s initial condition is accumulated by union
with all the reachable values in the tube of the sub-simulation. The function Collapse (X ) =

⋃
[ỹi]∈X [ỹi]

lifts the union on a tube, making the union of all the boxes of the tube. Line 21, we update the ending time
of the future seed as being the upper bound of the time interval of the current box. Line 22, once all the
contiguous boxes are processed, we can end the seed and append it to the seeds accumulator. Finally, the
seeds accumulator is returned as result.

The function ContractOnEvent must detect when a guard g crosses 0 from negative to positive values
and contract the boxes of the tube during the event extent. It takes two arguments: the tube and the guard.
It returns a Boolean value telling if a contraction occurred, hence the tube changed. This is used by Run to
detect when the fixpoint is reached.

Algorithm 3 ContractOnEvent (X , g)
1: crossing, changed← false
2: if X 6= ∅ then
3: let ([y0],_) = X (0)
4: if 0 ∈ g ([y0]) then error
5: for ([yi], [yi+1]) ∈ X do
6: if g ([yi]) < 0 ∧ g ([yi+1]) > 0 then
7: [ỹi]

′ ← [ỹi]
8: contract [ỹi] with respect to g 6 0
9: changed← changed ∨ ([ỹi]

′ 6= [ỹi])
10: crossing ← true
11: else
12: if crossing then
13: if g ([yi+1]) < 0 then crossing ← false
14: else
15: if g ([yi]) > 0 then
16: changed← end of X not reached
17: discard the next boxes of X return changed
18: else
19: [ỹi]

′ ← [ỹi]
20: contract [ỹi] with respect to g 6 0
21: changed← changed ∨ ([ỹi]

′ 6= [ỹi])

22: return changed

Between lines 2−4, we ensure that the evaluation
of g on the first box of the tube does not contain 0.
If so, it will be impossible to detect an event since g
will have never been strictly negative before becom-
ing positive. In this case the simulation is aborted.
Between lines 5− 21 each pair of consecutive boxes
are processed to detect beginnings and endings of
events. At Line 6, we check for an event starting,
i.e., the guard being below 0 at time ti and becom-
ing above 0 at time ti+1. Between lines 7 − 10 a
starting event is detected, hence the contraction is
applied. We check if it changed the box and we note
that an event is ongoing. Starting from Line 11, an
event is ongoing, started earlier. Line 13 we check
for the end of the event in case g went back below 0.
Between lines 15− 17, we check if g is totally above
0. If so, then the remaining boxes of the simulation
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are not reachable since g forbid them. Hence we must delete these boxes from the tube. If the deletion mod-
ified the tube we know that the fixpoint of contractions is not yet reached. Finally, between lines 18 − 21,
the event started earlier is still ongoing and the current box must be contracted.

Algorithm 4 GetEventRegions (X , g)
1: crossing ← false
2: LER,LLER ← ∅
3: for ([yi], [yi+1]) ∈ X do
4: if g([yi]) < 0 ∧ g ([yi+1]) > 0 then
5: contract [ỹi] with respect to g = 0
6: LER ← LER + ([ti, ti+1], [ỹi])
7: LLER ← LLER + LER

8: crossing ← true
9: else

10: if crossing then
11: if g ([yi+1]) < 0 then
12: LER ← ∅
13: crossing ← false
14: else
15: if g ([yi]) > 0 then return LLER

16: else
17: contract [ỹi] with respect to g = 0
18: LER ← LER + ([ti, ti+1], [ỹi])

return LLER

The function GetEventRegions computes the list
of sequences of consecutive boxes where an event is
spanning for a guard. Its result is the input of
ComputeBranchingSeeds. It takes two parameters: a
tube and a guard.

At Line 1, the list representing the ongoing se-
quence and the list of detected sequences are empty.
The algorithm processes each pair of consecutive boxes
with a structure very similar to ContractOnEvent
since it also needs to detect starting/ending events.
The major difference is the contraction with respect
to g = 0 to obtain the boxes of the dynamics at the
moment where the new dynamics must start. As long
as an event lasts, the safe approximation [ỹi] of two
continuous boxes is recorded in the list LER with its

related time interval. When the event stops, this list is added to the LLER accumulator.

The function BisectOn0 takes two arguments: a tube and a guard g. For each box [ỹi] of the tube, if
the evaluation of g on [ỹi] contains 0, then the effective dichotomic refinement is launched by calling Split.
This refinement will modify the boxes of the tube by side effect.
Algorithm 5 BisectOn0 (X , f, g)
1: for ([yi], [yi+1]) ∈ X do
2: if 0 ∈ g ([ỹi]) then
3: Split (X , f, g, [ti, ti+1], [yi], [yi+1])

The function Split is in charge of refining the boxes of a tube when a guard crosses 0. It takes six
arguments: a tube, a dynamics f , a guard g, the time interval on which the refinement must be done, the
boxes obtained by simulating f at times ti and ti+1.

Algorithm 6 Split (X , f, g, [ti, ti+1], [yi], [yi+1])
1: if ti+1 − ti 6 a given ε then return
2: tm ← (ti + ti+1)/2
3: [ym]← evaluate f at time tm
4: insert [ym] in X
5: if g ([yi]) < 0 ∧ g ([ym]) > 0 then
6: Split (X , f, g, [ti, tmid], [yi], [ym])
7: else
8: if g ([ym]) < 0 ∧ g([yi+1]) > 0 then
9: Split (X , f, g, [tm, ti+1], [ym], [yi+1])

If the time interval is smaller than a given
ε, the refinement process stops. Otherwise,
we compute tm the time in the middle of the
time interval and evaluate the dynamics f
at this middle time. The obtained box [ym]
must be inserted in the tube (by side effect)
with respect to the temporal ordering. Then
a usual dichotomic search is performed de-
pending on which time sub-interval causes the

evaluation of guard to be negative then positive or null.

5 Compilation Principle
To be executed by the simulation algorithm, a program written in Zélus must be compiled to create the
data-structure representing the automaton. This section presents this compilation process.

5.1 Overview
For several reasons, we cannot simply rewrite Zélus’s backend to make it generate C++ code instead of
OCaml code and get hybrid systems for free with DynIbex.

First, the generated OCaml code is very dependent on the ODE solver used by Zélus and the solving
runtime is extremely different from DynIbex’s mechanisms. Second, the runtime simulation code is deeply
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mixed with the code related to the hybrid model, making impossible to distinguish between code to be
translated into C++, code to be transformed into intervals and code which should be ignored. Finally, as
described in Section 4, intervals are strongly incompatible with point-wise simulation.

For these reasons, we need a dedicated compilation scheme to bind Zélus and DynIbex. In the current work,
we decide to ignore systems with arbitrary discrete behavior, i.e. with arbitrary discrete code representing the
controller part of the system. Taking this part into account clearly requires other techniques (for example
abstract interpretation) to obtain an interval-based evaluation mechanism for Zélus general instructions.
Moreover, some constructs, even without intervals, require advanced compilation techniques to produce
C++ code (pattern-matching, datatypes, etc).

The compilation of a Zélus program requires three steps. The first one builds an intermediate repre-
sentation of each node of the program. We call this representation a pre-automaton. During this pass, a
node with no automaton is transformed in an automaton with one unique state. Equations outside the
automaton states are pushed into the states, with their initial value removed (if they are ODEs and have an
initial value). The redefinition of init equations is controlled. The reset of each state and the inits of the
pre-automaton are computed.

Once the pre-automaton is obtained, the hierarchy of nodes must be flattened. In each node of the pre-
automaton, node instantiation expressions must be replaced by the body of the node where the occurrences
of its parameters are replaced by the effective expressions provided at the instantiation point. This process
implies a recursive inlining mechanism which terminates since Zélus forbids recursive nodes. Regular and
init equations are also inlined. The reset of each state is computed from the initial values of ODEs. The
output of this pass is an intermediate automaton suitable for C++ code production.

Finally, the C++ code generation is in charge of converting the multiple equations into a unique vector-
valued function. Each differential equation corresponds to one dimension of the DynIbex Function data-
structure. During this process, Zélus expressions are compiled to C++ expressions. This process mostly
consists of a translation of arithmetic expressions into C++, mapping the identifiers to the appropriate
vector component, and converting real constants into trivial intervals. The structure of the intermediate
automaton is translated into static C++ structures and arrays to encode Q, T ,D,R introduced in Section 4.
These C++ data-structures are used by the generic simulation library implementing the algorithm given in
Section 4.5. The generated code and the library are linked together in the final executable.

5.2 Pre-Automaton Generation
The restricted syntax of programs addressed in this work is given in Figure 10.

program ::= node+

node ::= hybrid f (x∗) = y where init∗ equation∗ automaton
equation ::= der x = e1 init e2 | let x = e
init ::= init x = e
automaton ::= automaton state+

state ::= name -> equation+ transition∗

transition ::= until up e then name
e ::= r | x | op e | e1 op e2 | f (e∗)

Figure 10: Syntax subset of Zélus for automata
A program is a list of nodes. A node is the definition of a parameterized component returning a value

y which is the result of one of the equations defined in this node (possibly in its automaton). A node may
contain init statements providing the initial value of an equation, equations, an automaton. An equation
may be a differential equation with an initial value e2 or a regular dataflow equation binding an expression
e to an identifier x. An automaton contains named states containing equations and possibly transitions. A
transition is made of a guard expression e allowing to reach a destination state when e changes from negative
to positive. Expressions are numeric constants, identifiers, arithmetic expressions or the instantiation of a
node named f with expressions. Node instantiations cannot be self-recursive.

The pre-automaton synthesis computes, for each node in the source code, the representation of the
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pre-automaton of this node. This intermediate representation is structured as follows.
A node is described by (f,A, {x1 . . . xn}, y) where A is the description of its automaton and the xi are

the node’s formal parameters. An automaton A is a pair (I,Q) where I is the set of its inits and Q is
the set of its states. An init is a pair (x, e) describing the initial value of the (differential) equation named
x. A state is a tuple (N, E , T ,R) where N is the name of the state, E the set of equations running in this
state, T the set of transitions exiting from this state and R is the set of init expressions of the equations
when entering the state (hence producing a reset/jump effect). A transition is a pair (N, e) where N is the
name of the destination state and e the expression triggering the transition when crossing 0 (from negative
to positive values). An equation is either an ODE der (x, e) or a regular dataflow equation reg (x, e).

The compilation rules of the pre-automaton elaboration given in Figure 11 use an environment E recording
the toplevel equations of the current node. The judgment E ` c1  c2 means that, in the environment E,
the construct c1 is transformed in the construct c2. The relations  are indexed to reflect the syntactical
class of the constructs they handle. When it is not needed, we omit the environment. In the rules, we use a
set notation to denote lists and the meta-variable _ to denote non meaningful parts of expressions.

(Let) let x = e E reg (x, e1) (Der) der x = e1 init e2  E der (x, e)

(Tra) until up e then N  T (N, e) (Ini) init x = e I (x, e)

(St)

eq1  E eq
′
1 · · · eqn  E eq

′
n tr1  T tr

′
1 · · · trm  T tr

′
m

R = {
n⋃

i=1

(x, e) | eqi = der x = _ init e} RE = {
⋃

(x, x) | der x = _ init _ ∈ E}

EE = {
⋃

der (x, e) | der x = e init _ ∈ E} ∪ {
⋃

reg (x, e) | let x = e ∈ E}
E ` N -> eq1 · · · eqn tr1 · · · trm  Q (N, {eq′1 · · · eq′n} ∪ EE , {tr′1 · · · tr′m},R∪RE)

(Aut)
E ` q1  Q q′1 · · ·E ` qn  Q q′n WFI (I, {q′1 · · · q′n}) IE = {

⋃
(x, e) | der x = _ init e ∈ E}

E, I ` automaton q1 · · · qn  A (IE , {q′1 · · · q′n})
where:
WFI (I,Q) = ∀ (x,_) ∈ I,

(∀ (_, E ,_,_) ∈ Q, ∃ eq | eq = der (x,_) ∨ eq = reg (x,_))
∨
(∀ (_, E ,_,_) ∈ Q, 6 ∃ eq | eq = der (x,_) ∨ eq = reg (x,_))

(Nod)

in1  I in
′
1 · · · inm  I in

′
m

eq1  E eq
′
1 · · · eqp  E eq

′
p I = {in′1 · · · in′m} E = {eq′1 · · · eq′p} E, I ` aut A A

hybrid f (x1 · · ·xn) = y where in1 · · · inm eq1 · · · eqp tr1 · · · trq aut N
(f,A, {x1 · · ·xn}, y)

Figure 11: Pre-automaton construction rules
The rules for equations, transitions and inits are pretty straightforward. One only note that initial

conditions of ODEs are discarded. Let us remark that even if the rules Tra and Ini both return a pair, they
do not contain the same kind of information since in Tra the first component is a state name although in
Ini it is a regular identifier.

The rule St handles states. It is in charge to compute the equations and the reset of the state. The
equations of the state are those explicitly defined inside it, extended by those defined at toplevel. The reset
of the state is the union of the initial conditions of the ODEs defined in the state and the identity for those
defined at toplevel (belonging to E). Indeed, ODEs defined at toplevel are initialized once before entering
in the automaton and are never reset when changing of state. Hence the reset of a state must not touch the
values of these equations.

The rule Aut processes an automaton. It performs the translation of the states and computes the init of
the automaton as the union of the initial conditions of the toplevel ODEs. This rule relies on the predicate
WFI (I,Q) ensuring that each init in I is either redefined in all the states in Q or in none of them.
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rec in i t a = 1
and automaton
| A −> der x = a in i t . . .

until up ( . . . ) then B
| B −> der x = a in i t . . .

and a = 2
until up ( . . . ) then A

Figure 12: Rejected redefinition

This well-formedness condition is required to ensure that in the
future inlining pass of the inits, they will have a predictable value in
all the states. If we consider the automaton of Figure 12, when in
the state A, it is impossible to know if we previously went in B, hence
updated a with the value 2 or if it is still 1. One solution would be to
consider the interval [1, 2] in both states which would dramatically add
pessimism and mix two unrelated dynamics. This mix would possibly

lead to behaviors impossible in the real dynamics.
Finally, the rule Nod handles nodes. It initializes the environment E with the translation of the toplevel

equations and builds the representation of the pre-automaton of the node.

5.3 Intermediate Automaton Generation
The structure of the intermediate automaton is pretty close to the one of the pre-automaton. The only
changes are in expressions where there is no more node instantiations and in equations where there only
remains ODEs, hence described by pairs (x, e). A set of such ODEs is denoted D. A node is now described
by the triplet (A, {x1 . . . xn}, y) where its name does not appear compared to the representation in the
pre-automaton.

The compilation rules for creating the intermediate automaton rely on an environment E mapping a
node name to its pre-automaton.

5.3.1 Node Instantiation Inlining

As sketched in Section 5.1, an inlining mechanism is required to flatten the hierarchy of nodes. The rules
for inlining in expressions are given in Figure 13. The judgment E ` e ↪→e (e′, E ,R) means that, in the
environment E, the expression e is transformed into the expression e′ and produces the set of equations E
(differential or regular) and the set of reset expressions R.

(Cst)E ` r ↪→e (r, ∅, ∅) (Id)E ` v ↪→e (v, ∅, ∅)

(Op)
E ` e1 ↪→e (e′1, E1,R1) E ` e2 ↪→e (e′2, E2,R2)

E ` e1 op e2 ↪→e (e′1 op e′2, E1 ∪ E2,R1 ∪R2)

(Inst)

E ` e1 ↪→e (e′1, E1,R1) · · · E ` en ↪→e (e′n, En,Rn) ϕ = [xi ← e′i] E(f) = (A, {x1 · · ·xn}, y)
A = (I, {(N,D,RA)}) EA = {der (x, ϕ(e)) | (x, e) ∈ D} R = ϕ(I nRA)

E ` f (e1, . . . , en) ↪→e (y, E1 ∪ · · · En ∪ EA,R1 ∪ · · · ∪ Rn ∪R)

where: I nR = I ∪ {(x, e) ∈ R | (x, e′) 6∈ R}
Figure 13: Instantiation inlining in expressions

The rule Cst handles a real numeric constant and produces the same constant with empty sets of
equations and resets. The rule Id handles identifiers the same way.

The rule Opp recursively processes the two sub-expressions to rebuild an arithmetic expression. The
equations and resets sets are the unions of those obtained for each sub-expression.

The rule Inst handles the node instantiation and is in charge of the effective inlining. The name f is
expected to be bound in the environment to a node description. This rule assumes that the automaton of f
has only one state because we do not handle hierarchical automata in this work. This allows to instantiate
nodes syntactically containing no automaton for whose the compilation will have created a pre-automaton
with one unique dummy state. The expression returned by the rule Inst is the identifier naming the output
of f . The equations set is the one of f in which all the occurrences of the formal parameters xi of f have
been substituted by the corresponding effective argument expressions e′i. Note that by construction, the set
D coming from the intermediate automaton bound to f only contains differential equations. The set of reset
expressions is built by a non-symmetric union (written n) of the inits and the resets of the automaton of
the inlined node. If a binding exists in both, we keep the one coming from the inits. Indeed, in the node to
inline, one may have a non-empty intersection between these two sets since its toplevel equations, pushed in
its dummy state, have their initial values set as inits of the automaton and the resets of its dummy state are

17



set to the identity. The replacement of the formal parameters by the effective argument expressions is also
applied on the obtained resets set. Note that in this rule, to simplify the presentation, we omit the renaming
of all the identifiers of the inlined node by fresh variables (i.e., not appearing anywhere in the program).
This renaming is mandatory to avoid variable capture.

The compilation rules for equations are given in Figure 14. The judgment E ` eq ↪→E (eq′, E ,R) means
that, in the environment E, the equation eq is transformed into the equation eq′ and produces the sets of
equations and resets E and R. They are pretty straightforward.

(Der)
E ` e ↪→e (e′, E ,R)

E ` der (x, e) ↪→E (der (x, e′), E ,R)

(Reg)
E ` e ↪→e (e′, E ,R)

E ` reg (x, e) ↪→E (reg (x, e′), E ,R)

(Eqs)
E ` eq1 ↪→e (eq′1, E1,R1) · · · E ` eqn ↪→e (eq′n, En,Rn)

E ` {eq1 · · · eqn} ↪→E ({eq′1 · · · eq′n}, E1 ∪ · · · En,R1 ∪ · · ·Rn)

Figure 14: Instantiation inlining in equations
5.3.2 From Pre-automaton to Intermediate Automaton

We now address the rules transforming the pre-automaton of each node into an intermediate automaton.
We assume given a function TopoSort () performing topological sorting of the equations and a function
CanonSort () sorting equations or inits by their name.

As presented in Section 5.1, inits also have to be inlined. However, some can depend on other ones
(non-recursively). A first step is then to inline inits in themselves. This inlining is performed by the function
InlInit (I) defined by:

InlInit (∅) = ∅
InlInit ((x, e) + I) = (x, e) + InlInit (I[x← e])

Note that there is no node instantiation in inits. The Zélus typechecking mechanism allowing to separate
discrete and continuous computations forbids to use an hybrid node in an init equation. Only continuous
nodes may be used, which are not considered in this work. For this reason we process inits before and apart
the node instantiations inlining.

The regular equations will also have to be inlined to let only differential equations in the final automaton.
This operation is achieved by the function InlReg (E) defined by:

InlReg (∅) = (∅, id)
InlReg (der (x, e) + E) = der (x, e) + InlReg (E)
InlReg (reg (x, e) + E) = let (ϕ, E ′) = InlReg (E [x← e]) in (E ′, [x← e] ◦ ϕ)

The rules for the translation of the pre-automaton to the intermediate automaton are given in Figure 15.
They rely on an environment E mapping a node name to its intermediate automaton. Some rules also require
a set I representing the init equations of the processed pre-automaton.

The rule Sta handles a state of a pre-automaton. It builds the set of equations E ′ by applying node
instantiations inlining on the equations of the state. It then sorts the regular equations of E ′ to ensure
that an equation eq1 used in eq2 will appear before eq2 in the sorted set. This ensures that InlReg () will
properly inline the regular equations together. The set E3 represents the conversion into regular equations of
the inits that are not redefined by equations in the state. The list E4 stacks in head all the regular equations
followed by the differential ones obtained during instantiations inlining and those explicitly defined in the
state. The inlining of regular equations is then performed on E4 to finally obtain the set D5 only containing
differential equations which is also sorted using the aforementioned CanonSort (). This sorting ensures that
the equations are ordered the same way in all the states, hence making easy a consistent mapping to a
vector-valued representation of the functions. The substitution ϕ obtained during regular equations inlining
is applied on the transitions and the resets. The resulting state contains the set of only differential equations
D6 and its resets are those explicitly defined in this state plus those obtained by instantiations inlining. The
substitution ϕ is also returned for a consistency verification in the rule Nod.
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(Sta)

E ` E ↪→E (E ′,D′,R′)
E2 = TopoSort ({eq ∈ E ′ | eq = reg (x, e)}) E3 = {reg (x, e) | (x, e) ∈ I ∧ 6 ∃ reg (x,_) ∈ E ′ ∧ 6 ∃ der (x,_) ∈ E ′

E4 = E3 ∪ E2 ∪ {eq ∈ E ′ | eq = der (x, e)} ∪ D′
(D5, ϕ) = InlReg (E4) D6 = CanonSort (D5) T ′ = ϕ(T ) R′r = ϕ(R′ ∪R)

E, I ` (N, E , T ,R) Q ((N,D6, T ′,R′r), ϕ)

(Aut)

I′ = TopoSort (I)
II = InlInit (I′) E, II ` q1  Q ((N1,D1, T1,R1)︸ ︷︷ ︸

q′1

, ϕ1) · · · E, II ` qn  Q ((Nn,Dn, Tn,Rn)︸ ︷︷ ︸
q′n

, ϕn)

|D1| = · · · = |Dn| ϕ = ϕ1 ◦ · · · ◦ ϕn

I1 = ϕ(II) I2 = {(x, e) ∈ I1 | der (x,_) ∈ D1 I3 = CanonSort (I2)
E ` (I, {q1 · · · qn}) A ((I3, {q′1 · · · q′n}), {ϕ1 · · ·ϕn})

(Nod)
E ` A A (A′, {ϕ1 · · ·ϕn}) ∀ i ∃ e, ϕi(y) = e ϕ = ϕ1 ◦ · · · ◦ ϕn

E ` (f,A, {x1 · · ·xn}, y) N (f, (A′, {x1 · · ·xn}, ϕ(y))) + E

(Prg)
E ` n1  N E1 . . . En−1 ` fn  N En

E ` {f1 · · · fn} P En

(Top)
∅ ` p P E ∃ (main, (A, {x1, . . . , xm }, y)) ∈ E {(z1,_) · · · (zm,_)} = A.st1.D σ = [zi 7→ i]

t0, tf ` (A, {x1, . . . , xm }, y), t0, tf , σ

Figure 15: Rules for constructing the intermediate automaton

The rule Aut handles a pre-automaton. It topologically sorts the inits of the pre-automaton then inlines
them together to build the set II . Each state representation is built and we ensure that they contain the
same number of equations. This is mandatory to ensure that all the dynamics are well-defined in all the
states. As inits of the resulting automaton, we only keep the ones related to differential equations. Since
all the states contain equations with same names we can filter inits by looking in the equations of the first
state. Once filtered, inits are sorted using CanonSort () to ensure a consistent ordering with the equations.

The rule Nod handles nodes. It computes the automaton representation then ensures that if the node
output is the result of a regular equation y, then y has been inlined with the same value in all the states
otherwise we would not know by which expression we should substitute the output in the resulting node
representation. As result, this rule returns the environment extended by a binding of the node name to the
node representation.

The rule Prg simply iterates on the nodes making a program, extending the environment.
Finally, the rule Top processes all the nodes of the program p, then looks for a node named main. It

builds a substitution σ mapping each equation identifier to an integer representing the rank of the equation.
It will be used during the C++ code generation. Since all the equations in the states have been sorted
according to the same order and since the number of equations is the same in all the states, we can build σ
by only looking at the equations of the first state. We note A.st1.D the set of differential equations of the
first state of the automaton A. The final result is a tuple containing the intermediate automaton as defined
in Section 5.3, the initial (t0) and final (tf ) dates of the simulation and the substitution σ.

5.4 C++ Code Generation
There remains to produce the C++ structures representing the automaton and the initial call to the function
of the runtime implementing the function Run described in Section 4.5. The C++ type definitions of the
automaton are given in Figure 16. The type StateId is an enum generated from the names of the states.
The class Function is the DynIbex construct representing the syntax tree of a vector-valued function from
several arithmetic expressions.

The code generation process iterates on the components of the intermediate automaton to generate the
final automaton in C++ by emitting the corresponding definitions. Arithmetic expressions representing
dynamics, guards and resets are mostly translated trivially in C++, DynIbex providing overloaded operators
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struct t r { struct t r s_set { struct automaton {
State Id next_st ; int nb_trans ; Function ∗dyn_of_state ;
Function guard ; struct t r ∗ t r s ; struct t r s_set ∗∗trs_by_state ;

} ; } ; Function ∗∗ re se t_of_state ;
} ;

Figure 16: C++ type definition representing an automaton

dealing with intervals. The substitution σ returned by the rule Top allows to replace identifiers by accesses
in the arrays used for DynIbex’s vector-valued representation of the equations.

We illustrate the generated code, on the basis of the example given in Section 2. Note that the resets
of the automaton are the identity for each state since this system contains no ODE local to a state with an
initial value. The description of the main node is (A, ∅, zpos) where:

A = ({ (power, 100), (speed, 0), (zpos, 0) },Q)
Q = { (EngOn, E1, T1,R1), (EngOff, E2, T2,R2), (Crashed, E3, ∅,R3) }
E1 = { (power,−2 ∗ power), (speed,−9.81 + power), (zpos, speed) }
E2 = { (power,−2 ∗ power), (speed,−9.81), (zpos, speed) }
E3 = { (power,−2 ∗ power), (speed, 0), (zpos, 0) }
T1 = { (EngOff,−(power − 0.001)) }
T2 = { (Crashed,−zpos) }
R1 = R2 = R3 = { (zpos, zpos), (speed, speed), (power, power) })

Instead of giving formal code generation rules, we prefer to discuss on the basis of the generated code.
This makes easier the global understanding of the structure of the code and gives the intuition of the easy
translation from the intermediate automaton structure to C++ code. Some parts of the code are omitted
and replaced by the ellipsis (...) to shorten the listing. In the following listing, the mapping (σ) from the
coupled equations zpos, speed, power to the vector-valued representation assigns zpos to the dimension 0,
speed to the dimension 1 and power to the dimension 2.
1 enum State Id { EngOn , EngOff , Crashed } ;
2
3 int main ( ) {
4 const int dim = 3 ;
5 Var iab le y (dim) ;
6
7 Function EngOn_dynamics =
8 Function (y , Return (−2 ∗ y [ 0 ] , −9 .81 + y [ 0 ] , y [ 1 ] ) ) ;
9 (... Idem with dynamics of states EngOff, Crashed)
10
11 Function dyn_of_state [ ] = { EngOn_dynamics , EngOff_dynamics ,
12 Crashed_dynamics } ;
13
14 struct t r tra_EngOn [ ] = { { EngOff ,
15 Function (y , − ( y [ 0 ] − 0 .001 ) ) } } ;
16 struct t r tra_EngOff [ ] = { { Crashed ,
17 Function (y , −y [ 2 ] ) } } ;
18 struct t r tra_Crashed [ ] = { } ;
19 struct t r s_set trs_EngOn = { 1 , tra_EngOn } ;
20 struct t r s_set trs_EngOff = { 1 , tra_EngOff } ;
21 struct t r s_set trs_Crashed = { 0 , NULL } ;
22 struct t r s_set∗ trs_by_state [ ] = { &trs_EngOn , &trs_EngOff ,
23 &trs_Crashed } ;
24
25 Function reset_EngOn = Function (y , Function (y [ 0 ] , y [ 1 ] , y [ 2 ] ) ) ;
26 (... Idem with resets of states EngOff, Crashed)
27
28 Function ∗ re se t_of_state [ ] = { &reset_EngOn , &reset_EngOff ,
29 &reset_Crashed } ;
30 struct automaton automaton = { dyn_of_state , trs_by_state ,
31 reset_of_state } ;
32
33 In t e rva lVec to r y i n i t (dim) ;
34 y i n i t [ 0 ] = I n t e r v a l ( 1 0 0 . ) ; y i n i t [ 1 ] = I n t e r v a l ( 0 . ) ;
35 y i n i t [ 2 ] = I n t e r v a l ( 0 . ) ;
36 i f ( re se t_of_state [EngOn ] )
37 y i n i t = ( autom−>re se t_of_state [ s t a t e ] )−>eval_vector ( y i n i t ) ;
38 SimuNode ∗ root =
39 run_state (&automaton , EngOn , dim , y in i t , 0 . , GLOBAL_T_END) ;
40 return 0 ;
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41 }

At Line 1, an enum is defined from the names of the states. The dimension of the system is defined at
Line 4. At Line 5, y represents the continuous state of the system. It is a vector of intervals that will be
accessed in accordance with the aforementioned mapping. At Line 7, the data-structure representing the
dynamics of the state EngOn is created as a DynIbex Function object which represents the equations. This
code is also emitted for the dynamics of the other states. Line 11, all the dynamics are grouped in an array
indexed by states (values of the enum which are integers starting from 0). Lines 14− 18, the transitions are
defined. The one from EngOn goes to EngOff with a Function object representing the guard−(power−0.001).
Lines 19− 21, sets of transitions are created for each state. This is mostly a utility data-structure to record
the number of transitions in each array. Line 22, transitions sets are also grouped in an array indexed by
states. Line 25, the resets of the EngOn state are created in a way similar to the creation of the dynamics.
One especially sees that resets are identity in this system since for each dimension the Function returns the
continuous state of this dimension. This code is also emitted for the dynamics of the other states. Line 28,
resets are grouped in an array indexed by states. Line 30, the complete automaton is created by grouping
all the previously created data-structures. Lines 34 − 35, the initial condition of the automaton is created.
It is a vector of intervals initialized according to the aforementioned mapping. Lines 36− 37 the reset of the
initial state is applied. Finally, lines 38− 39 the call to the simulation function of the runtime is performed,
returning the root of the tree of simulations.

Aside this core code, a few additional lines are generated, some in a separate header file, to specify
some external settings given when compiling the Zélus program (integration method, starting and ending
simulation dates, number of noise symbols, integration precision, etc.).

6 Experimental Results
We extended the Zélus compiler to implement the described compilation process. This new backend operates
on the intermediate representation obtained after type, causality and initialization analyses and does not
interfere with the standard compilation.

Based on the rocket example given in Section 2, the first experiment is to simulate the system with
Zélus native point-wise computation and with our generated code, then to compare the results. Despite the
internal computation is performed using zonotopes, the final display is rendered using rectangular boxes.

Figure 17: Simulations with/without intervals

In Figure 17, the Zélus simulation until t =
15 is represented by the black curve and the
simulation obtained using intervals is shown
by the colored boxes. Both simulations be-
have consistently. The results obtained with
the standard integration runtime of Zélus al-
ways remain inside the boxes obtained using
the intervals mechanism. This suggests that
the native integration runtime of Zélus is pre-
cise enough in this example to avoid inaccu-
racies that could be caused by float rounding
errors. Note that we draw Picard boxes which
look quite large. However the boxes at each
ti are really smaller. Plotting them instead
would have rendered a less clear visual effect,

with small rectangles scattered at each discretization point.
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Figure 18: Zooming on sub-simulations

Figure 18 makes a zoom on the extent
where the guard of fuel exhaustion crosses
0. It is possible to see, by transparency,
the part of the initial simulation (green)
where the guard crosses 0. During this
time interval, different sub-simulations are
performed, each one on a green box cross-
ing the guard. Once the guard totally
crossed 0, the new dynamics (EngineOff)
can start with the initial conditions being
the union of reachable values during the
sub-simulations. Note that a similar behav-
ior occurs when going in the state Crashed,
however this is not visible on the picture
because zpos becomes constant and null,
which makes very thin boxes covered by the

plot of the point-wise simulation.
The tree of simulations is shown in Figure 19. Since no guard is crossed during the sub-simulations, the

tree does not branch and remains linear. The time interval of the simulation is displayed in each node. We
can remark that the 11th node (marked with an asterisk) corresponds to a simulation with the new dynamics
once the guard is totally above 0 since its time interval spans until the end of the global simulation.
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Figure 19: Tree of simulations for the rocket example

We extended the syntax of Zélus to specify an alternative interval value for any float value. This interval is
only taken into account when compiling toward DynIbex. It is then possible to add uncertainty on the initial
value of zpos to make it belonging to [0; 20] by modifying its definition into rec init zpos =0.0 [0.0; 20.0] .

Figure 20: Point-wise simulations vs interval simulation

The simulation obtained is displayed in
Figure 20. The effects of uncertainty are visi-
ble as soon as the simulation begins since the
initial altitude is now a box ranging from 0
to 20. This uncertainty also affects the future
of the simulation with taller boxes indicating
that the rocket may reach a higher altitude.

Despite a loss of precision, simulating with
intervals to model uncertainties allows one to
run one unique simulation instead of several
point-wise simulations to try to cover the en-
tire range of uncertainty (and possibly miss an
important point such as a singularity). The
simulation result is less accurate but safe and
guaranteed. Running several point-wise simu-

lations raises the question of how many to run and which values to chose, with no guaranty that the chosen
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strategy covers all the possible behaviors. Figure 20 shows the inclusion of several point-wise simulations in
a single interval-based simulation. We plot several point-wise simulations in the range of uncertainty of zpos
(0, 10, 15 and 20). As one expects for safety purposes, the interval-based simulations cover all the point-wise
ones.

7 Contracts
Visualization of the tree of simulations becomes complicated as soon as there are branches. It is difficult
to plot several disjoint futures in a linear way. However, an interesting use of the tree is the verification of
properties since it contains all the possible evolutions of the modeled system.

We extended the syntax of Zélus to allow two simple forms of contracts on nodes. A contract is a property
that must hold during all the simulations: it is implicitly an “always” property. Contracts must appear above
the node definition they are related to. If a node has several contracts, they must all hold: it is implicitly a
conjunction.

contract ::= safe (x in [b1, b2])
∗ Interval belonging

| constraint a Constraint < 0
a ::= r | x | op a | a1 op a2 Arithmetic expression
b ::= r | −oo | +oo Bounds

Figure 21: Syntax for contracts
The syntax of contracts is given in Figure 21. A contract may be a belonging constraint, giving for each

relevant equation of the program the interval it must stay in. Otherwise, it may be an arbitrary arithmetic
expression that must implicitly be lower than 0. A bound b of interval is a float r or two constants representing
infinities. An arithmetic expression a can be a float, an identifier or the application of an unary or binary
arithmetic operator (including standard math functions).

7.1 Overview of Contracts Compilation
Compiling contracts does not change the compilation principle described in Section 5. We do not provide
the formal rules for the handling of the contract in the pre-automaton and intermediate automaton since
the compilation is pretty trivial.

Expressions in contracts are handled the same way as in other parts of a program. The various substi-
tutions built during the compilation are also applied to the identifiers in contracts to keep consistency with
the remaining of the code. When a node with a contract is instantiated, its contracts are added to those of
the instantiating node (with the right renaming of its identifiers).

During the C++ code generation, if contracts are detected, an extra function check is generated. This
function is a recursive traversal of the tree of simulations, checking if the compiled properties hold on each
box of the tubes of the tree nodes. Contracts are compiled differently according to their shape. They lead
to Boolean results that are finally combined by a logical “and” to obtain the global truth value.

safe contracts rely on the function stayed_in of DynIbex. This function takes a tube t, a vector v of
intervals and returns a Boolean value indicating if all the boxes of t are included in v. The vector v is
built from the in clauses of the contract. Since the user only specifies safety bounds for the equations he is
interested in, v must be filled with [−∞; +∞] for the dimensions of equations not appearing in the contract.

constraint contracts rely on the method eval_vector of a Function object f of DynIbex. This method
takes a vector v of intervals and returns the result of f applied to v. The object f is created by translating
the arithmetic expression of the contract, the same way than other expressions. There simply remains to
check if the upper bounds of the resulting intervals are lower than 0. This verification is performed by a
function stayed_below_zero of the simulation runtime.

To illustrate the translation of contracts, we consider the simple Zélus program in Figure 22. It defines
four trivial ODEs and states three contracts on the system.
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{ | s a f e x1 in [ 0 . 0 , +oo ] x2 in [ 0 . 0 , +oo ] ;
s a f e x4 in [ 0 . 5 , 1 0 0 . 0 ] ;
c on s t r a i n t x2 −. x3 −. 1 . ; | }

l e t hybrid main ( ) = x1 where
rec der x1 = 1 .0 in i t 1 .0 and der x2 = 2 .0 in i t 1 .0
and der x3 = 3 .0 in i t 1 .0 and der x4 = 3 .0 in i t 1 .0

Figure 22: Contracts in Zélus
The first safe contract involves only 2 of the 4 variables. The second contract shows that is it possible

to have several safe contracts, even if it could have been merged with the first one. Due to node instanti-
ation inlining, it is possible to get several distinct contracts. The third contract illustrates the constraint
construct. The function check obtained after the compilation follows, in which the variable mapping σ to
vector-based representation is [x1← 0 ; x2← 1; x3← 2; x4← 3].

void check (SimuNode ∗node , int dim) {
i f ( node != NULL) {

std : : cout << "Check␣on␣ [ " << node−>t0 << "␣ : ␣" << node−>tend << " ] " << std : : endl ;
In t e rva lVec to r safe_0 (dim) ;
safe_0 [ 3 ] = I n t e r v a l (NEG_INFINITY, POS_INFINITY) ;
safe_0 [ 2 ] = I n t e r v a l (NEG_INFINITY, POS_INFINITY) ;
safe_0 [ 0 ] = I n t e r v a l ( 0 . , POS_INFINITY) ;
safe_0 [ 1 ] = I n t e r v a l ( 0 . , POS_INFINITY) ;
bool contractp_0 = stayed_in ( node−>tube , &safe_0 ) ;
In t e rva lVec to r safe_1 (dim) ;
safe_1 [ 2 ] = I n t e r v a l (NEG_INFINITY, POS_INFINITY) ;
safe_1 [ 1 ] = I n t e r v a l (NEG_INFINITY, POS_INFINITY) ;
safe_1 [ 0 ] = I n t e r v a l (NEG_INFINITY, POS_INFINITY) ;
safe_1 [ 3 ] = I n t e r v a l ( 0 . 5 , 100 . ) ;
bool contractp_1 = stayed_in ( node−>tube , &safe_1 ) ;
Var iab le y_2 (dim) ;
Function constraint_2_fun =

Function (y_2 ,
Return (y_2 [ 1 ] − y_2 [ 2 ] − 1 , I n t e r v a l (NEG_INFINITY) ,

I n t e r v a l (NEG_INFINITY) , I n t e r v a l (NEG_INFINITY) ) ) ;
bool contractp_2 =

stayed_below_zero (dim , node−>tube , constraint_2_fun ) ;
i f ( ! ( contractp_0 && contractp_1 && contractp_2 ) )

std : : cout << "Vio lated ! " << std : : endl ;
}

}

The two first contracts are compiled into two separate checks despite they are of the same kind. For each,
a vector of intervals representing the safe zone is created, with [−∞; +∞] in components not involved in the
contract (for x3 and x4 in the first contract). The truth value of each contract is obtained by the aforesaid
function stayed_in of DynIbex. The third contract is compiled into a Function expression representing the
constraint. Since the dimension of the system is 4, even if the constraint’s result is of dimension 1, it must be
compiled as a Function of dimension 4. The three remaining dimensions are filled with an interval trivially
always below 0 (NEG_INFINITY). Finally, the conjunction of the truth values of the contracts is tested to
emit an error message in case of violation of one of the contracts on the tube of the current node.

8 Future Work
This work is the continuation of [11] (which only handled IVPs without jumps, modes and contracts), with
noticeable differences in the compilation process and the handled constructs. Several extension directions
are possible. The first one is to consider reset on differential equations as they are supported by Zélus. This
would allow, for instance, to easily write the well-known “bouncing ball” model. The second direction is to
handle hierarchical automata. This would certainly require deep modifications in the simulation runtime.
Currently, we think we can’t take benefit from the transformation already performed by Zélus. The third
direction is to increase the expressiveness of the contracts, allowing explicit temporal properties. Currently,
the property of a contract must be valid on all the boxes of a tube: it implicitly means “always” (or “never”).
Finally, a last extension of this work is to address the discrete behavior it is possible to model in Zélus. The
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programs currently supported only contain continuous computation, which allows to model the dynamics of
a physical system but not a controller coupled to this system.

9 Conclusion
We presented a mechanism to simulate systems having several dynamics, modeled in Zélus using automata, a
generic runtime supporting the simulation, the compilation schema translating Zélus programs into C++ code
using DynIbex and the extension of the language with some forms of contracts. This shows the possibility to
build tools allowing the simulation of programs written in a high-level programming language with interval-
based validated numerical integration methods. Various parameters can be set at compile-time to tune the
simulation accuracy. This work is fully implemented in the Zélus compiler.
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