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INTRODUCTION

A hundred years ago, seminal studies introduced the gen-
eral idea of a niche that still motivates current ecological 

investigations. In 1917, Joseph Grinnell proposed one of 
its first definitions by declaring the niche as the environ-
mental conditions needed by a given species to survive 
(Grinnell, 1917). However, because such a description 
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Abstract

Standard niche modelling is based on probabilistic inference from organismal oc-

currence data but does not benefit yet from genome-scale descriptions of these 

organisms. This study overcomes this shortcoming by proposing a new conceptual 

niche that resumes the whole metabolic capabilities of an organism. The so-called 

metabolic niche resumes well-known traits such as nutrient needs and their de-

pendencies for survival. Despite the computational challenge, its implementation 

allows the detection of traits and the formal comparison of niches of different or-

ganisms, emphasising that the presence–absence of functional genes is not enough 

to approximate the phenotype. Further statistical exploration of an organism's 

niche sheds light on genes essential for the metabolic niche and their role in under-

standing various biological experiments, such as transcriptomics, paving the way 

for incorporating better genome-scale description in ecological studies.
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did not consider the impact of the species on its environ-
ment, Charles S. Elton (1927) proposed a complemen-
tary description examining the niche as the place of the 
species in its biotic environment. We have to wait 1957 
for G. E. Hutchinson to publish his Concluding Remarks 
(Hutchinson, 1957) that formalises the n-dimensional 
niche space, where each axis describes an environmen-
tal variable and excludes trophic interactions. The set of 
conditions allowing a species to survive defines its niche, 
forming an n-dimensional volume in the niche space. 
This definition is referred to as the fundamental niche. It 
aims to reason on the biological system requirements and 
to highlight its impact on its environment. Nevertheless, 
modelling such n-dimensional volume is challenging be-
cause of the nature of biological data. To overcome these 
limitations, many heuristics, leading to different defini-
tions of the niche, are proposed. However, these numerous 
formalisations contribute to the complexification of the 
niche concept (McInerny & Etienne, 2012) and an over-
simplification of the phenotype or organism's physiology.

Indeed, DNA sequencing techniques have changed 
the global perception of physiology and ecosystems 
(Coles et al., 2017; Green et al., 2008; Joyce & Palsson, 
2006; Levering et al., 2017; Sunagawa et al., 2020). 
Nowadays, metabolic engineering targets understand-
ing of internal machinery of organisms described orig-
inally via their gene content. This knowledge is then 
synthesised into the organism's metabolic network. It 
regroups all the metabolic reactions encoded in the gen-
otype and their intertwining. By focusing only on bio-
chemical properties, this metabolic modelling strives to 
investigate a phenotype linked to metabolic processes 
called the metabolic phenotype. These metabolic pre-
dictions from omics data have shown significant suc-
cesses in biotechnology (Orth et al., 2010; Pál & Papp, 
2017; Smith et al., 2019; Zelezniak et al., 2015). However, 
these predictions assume the biological system to adopt 
optimal behaviours such as growing at their maximal 
rate, which is not suited for the niche concept, where 
organisms show their plasticity to survive, not their 
ability to overgrow.

Here we proposed a novel computational framework 
where we extract the fundamental niche of an organism 
from its metabolic phenotype. Contrary to standard niche 
models, the metabolic niche does not consider a unique 
optimal solution. Still, it explores all metabolic exchange 
flux values with its environment that allow an organism to 
survive (i.e. nutrient uptakes) and impact the biotope (i.e. 
nutrient excretions). We first use the quantitative descrip-
tion of this metabolic niche to recover biological features 
of Escherichia coli such as conditions for aerobic or an-
aerobic growth. We then extend our computations to nu-
merous prokaryotes, exhibiting metabolic niche inclusion 
and its putative link with ecotype. Finally, we investigate 
the metabolic niche of Phaeodactylum tricornutum show-
ing the importance of particular reactions and pathways 
in the survival of the organism. Notably, we show that 

we can gather different kinds of omics data around our 
theoretical framework for improving our understanding 
of previous biological results in the light of the ecological 
success of diatoms.

M ETHODS

Genome-scale metabolic modelling: a general 
definition

A metabolic reaction is a chemical transformation that oc-
curs in living organisms allowing them to feed and grow. 
The substrates and products of metabolic reactions are 
called metabolites. When considering an organism, the 
products of one reaction are often the substrates of other 
reactions. A metabolic network of an organism is then a 
set of interconnected reactions that transforms step by 
step the nutriments imported from the environment to 
convert them into molecules needed by the organism. 
When modelling a metabolic network, we often distin-
guish between two categories of metabolites: external 
and internal. Those that are imported (resp. exported) 
from (resp. to) the environment are called external me-
tabolites. They are not represented in our models and 
are responsible for uptake or secretion. Once they are in 
our model, they are called internal metabolites, as all the 
other metabolites involved in a reaction of the network. 
A metabolic reaction involving at least one external me-
tabolite is called an exchange reaction.

Given a metabolic network containing n reactions and 
m internal metabolites, the corresponding Stoichiometric 
matrix, is an m × n matrix S, such that for each internal 
metabolite Mi for i ∈ {1,⋯,m} and each reaction Rj for 
j ∈ {1,⋯, n}:

By convention exchange reactions are written as: 

where Miex is the external metabolite Mi. Hence, the for-
ward reaction means that the system is producing M

i
ex 

into the environment, whereas a reverse reaction means 
that the system is consuming M

i
ex from the environment. 

According to kinetic theory, the change over time of the 
concentration of the metabolite i is given by the mass bal-
ance equation: 

where vj is the reaction rate or flux associated to reaction 
Rj . Fluxes can be positive or negative, there is no constraint 

Sij =

⎧⎪⎨⎪⎩

−� ifRjconsumes �molecules ofMi in its forward direction,

� ifRjproduces �molecules ofMi in its forward direction,

0 ifRjneither produces nor consumesMi .

Mi ↔Miex,

d [Mi ]

dt
= si1v1 + si2v2+ . . . + sinvn =

∑
j =1...n

sijvj ,
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a priori. A positive flux means that the reaction is occur-
ring in its forward direction, whereas a negative flux means 
that it is occurring in the reverse direction. In our formal-
ism, fluxes are expressed in mole of product formed (resp. 
mole of reactant consumed) by gram of dry weight of the 
considered organism by hour, that is mol.gDW-1.h-1. Using 
a vector notation, the above equation can be written as: 

where S is the stoichiometric matrix, v ∈ ℝ
n stands for the 

flux vector where each component vj is the flux through 
the reaction Rj and M ∈ ℝ

m is the metabolites concentra-
tion vector where component i is the concentration [Mi ].

When analysing metabolic networks using constraint-
based approaches, we often assume that most of metabolic 
reactions are much faster than the environmental changes 
(Varma & Palsson, 1994). One can thus assume the system 
at quasi-steady-states (Varma & Palsson, 1994), leading to:

In addition to this system of linear constraints, one 
also considers the bounds on fluxes that state that no 
reaction can have an infinite rate. All fluxes must satisfy 
an inequality like:

where ubi represents the upper bound of the flux, meaning 
the highest rate of the direct reaction, and lbi represents the 
lower bound of the flux, that is the highest rate of the reverse 
reaction. One can also encode thermodynamic information 
by tweaking those bounds. For instance, if the reaction is 
known to be direct and irreversible, it means that the flux 
cannot be negative. In that case, the inequality becomes:

For further reading on the mathematical framework 
in constraint based modelling the interested reader is re-
ferred to Price et al. (2004).

All solutions of v that satisfy the steady state equation 
(1) and the thermodynamic constraints (2) are biochem-
ically feasible. The set of solutions describes a steady-
state flux space  defined by:

where lb and ub are lower and upper bounds of reaction 
fluxes. Those values may not be known. In that case, a very 
high value (or a very low value for reversible reactions) is 
generally used. The corresponding space is then an over-
approximation. Each solution of  is a point satisfying all 
chemical and physical constraints in terms of fluxes. Thus, 
mathematically, points of  are feasible, as they satisfy all the 
constraints. Biologically, we will call them functional, as they 

represent fluxes distribution that allow the organism to sur-
vive. We propose herein to investigate the whole set of solu-
tions instead of focusing on one solution proposed by other 
mechanistic and ultra-parameterised biological models.

General formulation of the metabolic niche

All solutions from  are feasible but represent different 
phenotypes as the distributions of fluxes indicate differ-
ent uses of metabolic pathways, or uptakes, or secretions. 
However, solutions belonging to  do not form a proper 
functional niche space. Indeed, two additional constraints 
must be added to restrain  that are described below.

The survival condition

State-of-the-art metabolic modelling techniques consider 
a chimeric metabolic reaction, called the biomass reaction 
(Feist & Palsson, 2010). This reaction summarise all precur-
sors required to create a new cell, including DNA, amino 
acids, lipids and polysaccharides (O’Brien et al., 2015). 
Usually, the determination of precursors coefficients is made 
experimentally or, when data are not available, by estimation 
from genome data. By ensuring that stoichiometric coeffi-
cients are normalised by mol.gDW-1, biomass flux unit is in 
h-1, matching a growth rate � (Oberhardt et al., 2009). The 
survival of a species is ensured as long as the species grows at 
least as fast as it is dying, meaning that its growth rate should 
be above its death rate. As the flux through the biomass re-
action is our surrogate of the growth rate, we can model this 
constraint by forcing the biomass reaction flux to be over a 
value representing the natural death of the organism: 

We add this new inequality to the previous set of con-
straints on flux bounds lb ≤ v ≤ ub. The corresponding 
solution flux space is noted  (niche flux space).

The environmental space

The metabolic niche space is constrained by the envi-
ronment, which implies decomposing the flux vector v 
into two parts: one concerning the exchange reactions 
(x), and the other concerning the internal reactions (y). 
Hence, we seek for the set of acceptable x such that there 
exists a y so that v is in . Thus, if among the n reac-
tions of the metabolic network, p are exchange reactions, 
we define the metabolic niche by:

dM

dt
= Sv,

(1)Sv = 0

(2)lbi ≤ vi ≤ ubi ,

0 ≤ vi ≤ ubi

(3) : ={v∈ℝ
n,Sv=0, lb≤ v≤ub},

vbiomass ≥ vdeath

(4)

 : = {v ∈ ℝ
n,Sv = 0, lb ≤ v ≤ ub, vbiomass ≥ vdeath}

(5)
 : = {x ∈ ℝ

p|∃y ∈ ℝ
n−p,S

(
x

y

)
= 0, lb ≤

(
x

y

)
≤ ub}
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Noting �ex:ℝ
n
↦ ℝ

p the orthogonal projection of ℝn 
onto ℝp, the metabolic niche would be the image of  
by �ex: = �ex( ).

Intuition of the projection

One property worth mentioning on   is its to-
pology. This space is convex by definition and also 
bounded as reactions cannot carry infinite f luxes. 
Moreover, all its constraints are linear, making it a 
convex polytope that can be described through the 
enumeration of its vertices. This representation is 
called the V-representation (Ziegler, 1995). Let us call 
 the set of vertices generating  . We can write  
as a convex combination of the vertices in , that is, 
 = conv(). From this description, the projection 
of   can be done through the projection of each 
v ∈  and we have:

This formulation is well suited for understand-
ing the origin of the niche space in our formalism. 
However, vertex enumeration is a computationally 
challenging problem, and its complexity grows expo-
nentially with the number of metabolic reactions in-
volved in the system.

Metabolic niche computation

This projection of the niche flux space onto the niche 
space is general as it relies on the seminal definitions of 
Elton (1927) of the fundamental niche that considers all 
exchange reactions. However, exploring this space is a 
complicated numerical task. Therefore, we propose to 
reduce the complexity of the above projection by refor-
mulating the original niche flux space , allowing its 
computation through the resolution of a linear program-
ming problem.

Polytope formulation

As  is a polyhedron, one can change its representa-
tion from the vertices description to the half-spaces in-
tersection, called the H-representation:

with A ∈ ℝ
q,n and b ∈ ℝ

q. A is the matrix composed by 
the vectors defining the half-space constraints (as rows), 
such that for each row Ai., the corresponding constraint 
is ⟨Ai.�v⟩ ≤ bi. The new formulation is similar as equation 
(4) if A and vector b are specific matrices defined as 
follows:

with In the identity matrix of ℝn,n and 0m the column vector 
of ℝm with all its components set to 0.

Projection through multi objective linear 
programming

Assuming p exchange reactions of interest that represent 
axes for the metabolic niche space. Defining the meta-
bolic niche following the formulation of Hutchinson 
consists in projecting  onto the nutrient flux space ℝp 
defined by those exchange reactions. Formally, it is the 
polyhedron defined by:

with the two matrices H ∈ ℝ
q,p and G ∈ ℝ

q,n−p being sub-
matrices of A. H is composed of the k columns corre-
sponding to the exchange reactions; G corresponds to the 
remaining columns taking credit for interior reactions. 
Biologically speaking, H is responsible for the interaction 
of the organism with its environment, and G accounts for 
the inner mechanism of the organism.

In practice, computing this projection is similar 
to solve the following multi-objective linear program 
(MOLP) (Löhne & Weißing, 2016) for which efficient 
solvers (Löhne & Weißing, 2017) are available:

with 1p the column vector of ℝp with all its components set 
to 1. For passing from the MOLP solution to the solution of 
the projection problem, one only needs to get rid of the last 
component of the former to get the latter. Computing the 
niche following the formulation of Hutchinson is therefore 
equivalent to solve a multi-objective problem in the context 
of genome-scale metabolic modelling. The detailed pipeline 
and models used can be found in Supplementary Text S1.

RESU LTS

Rationale of the metabolic niche and its 
application on a state-of-the-art metabolic model

The metabolic niche is a new computational result es-
timated from the sole genomic composition of an or-
ganism. Contrary to other niche estimations (Guisan & 

 = �ex( ) = �ex(conv()) = conv(�ex())

 = {v ∈ ℝ
n|Av ≤ b} ,

A=

⎛
⎜⎜⎜⎜⎝

S

−S

I
n

−I
n

⎞
⎟⎟⎟⎟⎠

and b=

⎛
⎜⎜⎜⎜⎝

0
m

0
m

ub

− lb

⎞
⎟⎟⎟⎟⎠
,

(6) = {x ∈ ℝ
p|∃y ∈ ℝ

n−p:Gy +Hx ≤ b} ,

(7)

⎧⎪⎪⎨⎪⎪⎩

min

�
Ip
−1T

p

�
x

subject to

�
x

y

�
∈

,
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Thuiller, 2005), our modelling does not consider statisti-
cal distributions over a range of parameters but rather 
a theoretical phenotype, synthesised in a metabolic 
network.

From genomic data (Figure 1a), metabolic network 
reconstruction techniques infer an organism's metabolic 
abilities. Reactions intertwine with products of reac-
tions that are substrates of others, forming a metabolic 
network (Figure 1b). Some metabolites are constituents 
of the biomass reaction. This synthetic reaction models 
the growth rate of the organism. Exchange reactions are 
responsible for the organism's interaction with its envi-
ronment, defining the limits of the biological system. 
The set of all biological constraints, such as (i) the in-
terconnectivity of reactions, (ii) the stoichiometry, and 
(iii) a classical steady-state approximation, describes 
a solution space (Figure 1c). From this solution space, 

state-of-the-art systems biology approaches focus on 
distinct points of interest, generally minimising or max-
imising one particular flux (e.g. the red dot in Figure 1c 
which maximise the flux through the biomass reaction). 
The fundamental niche focuses on the species’ inter-
action with its environment and survival (Figure 1d). 
Projected in a metabolic modelling framework, consid-
ering the niche space implies abstracting the network's 
inner reactions and focusing on the exchange reactions 
while maintaining a minimal growth rate (Figure 1e). 
The former metabolic solution space is therefore further 
constrained by a death rate. Hence, the corresponding 
space describes all fluxes combinations that satisfy the 
fundamental niche constraints, so-called the metabolic 
niche (Figure 1f).

For the sake of application, a metabolic niche was 
estimated for the core E  coli metabolic network. An 

F I G U R E  1   Formalising the metabolic niche from omic knowledge and application on E. coli. From the genomic content of an organism 
(a), we could infer the corresponding encoded catalytic proteins. These proteins support metabolic reactions that interplay (i.e. products are 
substrates for others). The resulting metabolic network (b) integrates all the physiological abilities of one species. Projected into a constraint-
based paradigm, solving the corresponding linear problem depicts a solution space (c) that describes all the fluxes in each metabolic reaction 
that satisfy all given constraints. Ecological traits define the axes of Hutchinson's niche space. The niche volume (d) guarantees that the species 
survives as long as its environmental conditions belong to this volume. If we apply this formalism to the metabolic network, we abstract the 
organism's inner mechanism and focus only on its exchange reactions (e). Using constraint-based modelling on this new system, we have a new 
constraint, which is the survival of the species; that is, the flux through the growth rate reaction needs to be at least as high as the death rate of 
the species (f). Therefore, a formal description of the metabolic niche explores the solution space in which axes (or traits) are exchange reaction 
fluxes. When applied on E. coli, we reduced the number of axes of the niche space to allow visualisation of the volume of its niche (g)

(a) (b) (c)

(d)

(g)

(e) (f)
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estimation of the maximum growth rate via flux balance 
analysis (Heirendt et al., 2019) is 0.874 h-1. The metabolic 
niche was estimated for a death rate equals to 0.01 h-1 
and on six dimensions that correspond to exchange re-
actions for the following metabolites: CO2, O2, H2O, 
NH4, phosphate and glucose. The death rate value is 
herein strictly arbitrary, and results may vary for other 
values. For instance, a value of 0.7 h-1 would shed light 
on high growth rate behaviour, whereas a lower value 
would add behaviours representing less than 2% of the 
growth rate range. A finer parameterisation of this rate 
is necessary to represent biotic interactions better, such 
as predation, but does not interfere in the fundamental 
niche definition.

The topology of a metabolic niche is complex. We 
could describe its volume with more than 210 vertices. 
In favour of representation, we clustered close vertices, 
dividing by three their number (64 vertices) while main-
taining more than 95% of the niche volume for the rep-
resented axes. For the sake of simplicity, we represent 
the metabolic niche (a blue-grey area) and its vertices in 
the CO2 versus ammonium and CO2 versus O2 exchange 
spaces (Figure 1g). As a companion illustration, we 
also represented the metabolic niche in the front of the 
growth rate as a 3D shape to picture each environmental 
condition's theoretical growth.

For approximating the state-of-the-art niche space 
in the context of the metabolic network, we performed 
a flux variability analysis (FVA) (Heirendt et al., 2019) 
on the same exchange reactions with a minimum flux 
through the biomass reaction set to 0.01 mmol.gDW-1.h-1 
to keep the same survival constraint as the one used 
for the metabolic niche. It defined the feasible range of 
fluxes for each exchange reactions (Figure 1g red lines). 
As a modelling validation, estimated ranges of fluxes 
embed the projection of the metabolic niche. The vol-
ume defined by the Cartesian product of each segment 
of the feasible range is called the Cartesian niche. The 
Cartesian niche volume is more than 86×106 units in the 
six dimensions, whereas the metabolic niche volume is 
less than 72×103. Thus, it occupies less than 1‰ of the 
approximate Cartesian niche, emphasising all the con-
straints that are not taken into account in the Cartesian 
niche approximation, in particular those that define phe-
notypic traits. This supports the previous results (Díaz 
et al., 2016) where models span trait space much bigger 
than the space occupied by in vivo observations.

The metabolic niche indicates an overall uptake 
of ammonia by E.  coli (i.e. negative exchange fluxes), 
whereas CO2 could be produced (i.e. positive exchange 
fluxes) by respiration, or uptaken but in small ampli-
tude for anaplerotic reactions and other carboxylation 
reactions. Flux distributions in this part of the meta-
bolic niche are associated with lower uptake of oxy-
gen (15  mmol.gDW-1.h-1), emphasising the anaerobic 
growth conditions. As a biological validation, the met-
abolic niche description correctly shows lower maximal 

growth rates in anaerobic than in aerobic conditions. 
Furthermore, the metabolic niche's overall shape exhib-
its a positive relationship between O2 consumption and 
CO2 production that defines respiration (i.e. a negative 
relationship between both fluxes), whereas the relation-
ship between CO2 and ammonia is less obvious. This sys-
tem's characteristic is a straightforward consequence of 
considering whole intracellular biochemical reactions, 
leading to mechanistic interdependencies between up-
take reactions, that by construction, Cartesian niches 
could not consider. Furthermore, the metabolic niche 
extracts essential numerical descriptors of E. coli, mainly 
physiological switches of regime in function of available 
nutrients. These switches between regimes are traits, 
usually identified after extensive and tedious experimen-
tal efforts.

Comparing organisms via their metabolic niches

We arbitrarily defined traits for a systematic compari-
son of metabolic niches (i.e. exchange reactions for the 
following metabolites: NH4, SO4, H2S, glucose, NO3). 
We randomly selected 39 prokaryotic metabolic models 
(Machado et al., 2018) that share those reactions. When 
possible, we associated each model with its habitat (Davis 
et al., 2020). We then compared the metabolic niche dis-
tance (see Supplementary Text S2), a surrogate to the 
metabolic niche volume overlap, versus different state-
of-the-art distances between organisms (Figure 2a–c). 
Identical or included metabolic needs imply similar or 
included metabolic niches, and a metabolic niche-based 
distance equals to 0. Conversely, a distance equals to 1 
emphasises distinct niches and distinct metabolic needs. 
Each point describes a comparison between two bacte-
ria. Coloured points indicate bacteria from similar habi-
tats (respectively blue, brown and red for marine, soil 
and host-associated). When removing inclusion cases, 
we show a strong positive correlation between Cartesian 
niche overlaps and metabolic niche overlaps (Figure 2a; 
R: 0.82, p-value: 2.68×10-181, slope: 0.98). This result was 
expected as the Cartesian niche embed the metabolic 
niche. Furthermore, most of the comparisons are above 
the scatter plot's diagonal. Several metabolic model com-
parisons are spread over vertical lines: showing the same 
Cartesian niche overlap but different metabolic niche 
overlaps, stressing an overall refinement in the distance 
brought by the use of the metabolic niche.

Similarly, we compared the metabolic distance with 
the phylogenetic distance based on 16S rRNA sequence 
pairwise comparison (Figure 2b). The comparison ex-
hibits a decoupling between the metabolic niche and 
taxonomy as already shown for marine prokaryotes 
(Louca et al., 2016). Because seminal genomic studies 
extrapolate organismal functionalities from their ge-
nomic content (Fahimipour & Gross, 2020; Louca et al., 
2016), we further compared the metabolic niche overlap 



      |  7RÉGIMBEAU et al.

with a genomic composition distance by computing 
pairwise organismal reactions sets’ Jacquard distances 
(Figure 2c). In this context, high distance means low 
cardinality of the intersection of the sets. This straight-
forward metric stresses the topologies’ differences from 
a metabolic network perspective by emphasising simi-
lar reactions between organisms but not their use. Our 
computations reveal no significant relationship between 
the metabolic niche overlap and the presence-absence of 
reactions, emphasising that the exclusive metabolic abil-
ities do not approximate the organismal metabolic needs 
or phenotype.

To scale up this strong result in a more specific habi-
tat, we applied the same protocol for 502 metabolic mod-
els of bacteria found in Tara Ocean Datasets (Vernette 
et al., 2021). Their pairwise comparison implies consid-
ering more than 105 points described by the logarithm 

of point densities (Figure 2d). This result confirms the 
lack of overall relationship between the metabolic niche 
overlap and the presence–absence of shared reactions 
for marine prokaryotes. Furthermore, the metabolic 
niche overlap computation showed several cases of dis-
tances near 0 (Figure 2a–d). This result implies that 
some metabolic niches were included in others. Due 
to numerical imprecisions, we stated that an intersec-
tion covering more than 999‰ of the smallest niche is 
an inclusion. We used this metric to depict a metabolic 
niche inclusion graph (Figure 2e), where nodes are ma-
rine bacteria with a node size proportional to the meta-
bolic niche volume, and edges describe the inclusion of 
a bacteria niche into another. For the sake of clarity, the 
directed graph follows an isomeric layout driven by the 
out-degree, and nodes are partitioned into four catego-
ries based on the z-score that approximates the capacity 

F I G U R E  2   Comparison of the metabolic niche overlap with other pairwise distances and niche inclusion. (a) Comparison between 
metabolic niche overlaps and Cartesian niche overlaps estimated with a Jacquard distance. This comparison is performed for bacteria from 
different or common habitats. (b) Absence of a relationship between metabolic niche overlaps and pairwise phylogenetic distances based on 16S 
rRNA gene. (c) Absence of a relationship between metabolic niche overlaps and presence–absence of common reactions estimated via a Jaccard 
distance. (d) Absence of a relationship between metabolic niche overlaps and presence–absence of common reactions estimated for 502 marine 
bacteria metabolic models. Instead of a scatter plot, it shows concentrations for more than 105 pairwise comparisons. For bacteria that show 
metabolic niche overlaps almost null, we investigate potential niche inclusion. (e) Metabolic niche inclusion graph of marine bacteria. The node 
size is proportional to metabolic niche volume, and an edge indicates a metabolic niche's inclusion into another. The graph layout follows an 
isomeric distribution driven by the out-degree of the inclusion graph. Bacteria are divided into four categories based on the z-score from most 
embedded metabolic niche (i.e. turquoise) to the least (i.e. purple). Labels of bacteria known for being associated with a host are in red/bold and 
underlined

(a)

(d)

(b) (c) (e)
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to include other metabolic niches. Bacteria known for 
being associated with a host are depicted in red/bold. 
Mainly distributed at the bottom of the layout and co-
loured in purple (i.e. metabolic niche included in oth-
ers), these bacteria show significantly smaller metabolic 
niche volume (Figure S1). These features indicate less 
phenotypic plasticity for the bacteria associated with 
host, potentially following more stable environmental 
conditions or gene loss (Mas et al., 2016).

In-depth study of the metabolic niche flux 
space of a ubiquitous diatom

To assess the impact of primary metabolism on the 
metabolic niche and apply our approach beyond 
prokaryotes, we used one of the most comprehensive 
and ubiquitous eukaryotic models: the diatom P.  tri-
cornutum (Broddrick et al., 2019). Its metabolic model 
covers more than 2000 reactions and 1700 metabolites 
(Supplementary Text S3), which are suited to charac-
terise the chimeric nature of diatom metabolism and 
incorporate compartmental targeting of biochemical 
reactions. We investigated the metabolic niche of P. 
tricornutum via a sampling procedure that estimates 
105  samples of fluxes distribution that belong to the 
metabolic niche flux space. This numerical explora-
tion is used to compute pairwise correlations between 
fluxes. This statistical score emphasises the relationship 
between flux variations of two reactions that results 
from mechanistic dependencies arising from metabolic 
constraints. Thus, a high absolute correlation value be-
tween two reaction fluxes indicates that a change in one 
of the reaction flux will induce a change in the other 
reaction flux, whereas not correlated (i.e. R2 = 0) fluxes 
designate mechanistic independence of both reactions 
in the niche flux space, allowing independent varia-
tions of their fluxes. We resumed this exploration in a 
correlation graph where reactions are vertices and cor-
relation between two reactions is an edge linking the 
corresponding vertices (Figure 3a). We assume that the 
reaction's importance to sustain the metabolic niche, 
that is organism survival, can be shown by the sum of 
all the correlation involving this particular reaction 
(as depicted in Figure 3a by the grey circular bar dia-
gram). We showed that most Calvin–Benson–Bessham 
(CBB) cycle reactions are essential to the metabolic 
niche by pointing out reactions belonging to notable 
metabolic pathways, biologically reassuring for photo-
synthetic organisms. To be able to get the same kind 
of results on metabolic pathways, we look at the distri-
bution of its correlation normalised by the number of 
reactions it is composed of (Figure 3b). All pathways 
show a modal distribution around 0, emphasising that 
no pathways are entirely dependent on the whole net-
work. Proportionally to others, sulphur and iron show 
smaller correlations, whereas chlorophyll, carotenoid, 

amino-acyl-tRNA, glycerolipids, fatty acid biosynthe-
sis and oxidative stress reactions exhibit higher cor-
relations, as these pathways target energy storage or 
consumption. Interestingly, the photorespiration, car-
bon fixation, TCA and amino acid metabolism path-
ways have less high absolute correlation values but still 
show a normal distribution of the correlations. This re-
sult indicates a potential role in acclimating while still 
having a pivotal role in the organism's survival.

We can benefit from previous extensive transcrip-
tomic analysis of P. tricornutum, in which modules of co-
expressed genes over distinct experimental conditions 
are defined by weighted gene co-expression network 
analysis (Ait-Mohamed et al., 2020). Because most met-
abolic reactions are linked to genes that encode for their 
enzymes, we are able to integrate the information of 
membership to a module to our analysis (coloured ring 
of Figure 3a). For some modules, targeted reactions show 
high pairwise flux correlations, which indicates that the 
metabolic dependencies could explain the clustering of 
these genes. Nevertheless, we also see high correlations 
between modules, indicating metabolic dependencies be-
tween different modules (Figure S2a), insights that are 
not accessible from the standard transcriptomic analy-
sis. Among others, the blue module is of particular inter-
est. It is the most prevalent in the metabolic network. It 
has the highest intra-module correlation sum and shares 
a high correlation with other modules, emphasising its 
importance in the metabolic niche. A previous study 
(Ait-Mohamed et al., 2020) showed its implication in sev-
eral metabolic pathways, mainly the CBB cycle, glycoly-
sis and fatty acid pathways (for details, see Figure S6 of 
Ait-Mohamed et al. (2020) that depicts the distribution 
of genes belonging to the pathways across all transcrip-
tomic modules). The use of the metabolic niche allows 
fostering the previous interpretations of these modules. 
It shows that the module is correlated with reactions di-
rectly linked with the TCA pathway (this pathway was 
essentially associated with cyan module, explaining in 
part the connection between these two modules), amino 
acid metabolism and chlorophyll biosynthesis (explain-
ing most of the connection with light steel module that 
encompasses genes associated with chlorophyll and iso-
prenoid synthesis). Notice that the connection with the 
dark grey module is primarily due to other pathways not 
labelled here (Figure S2b).

Finally, projecting the essentiality of genes for the 
metabolic niche at the chromosome level shows that all 
chromosomes contribute to the metabolic niche by con-
sidering the exact relationship between genes and essen-
tial reactions (Figure 4a). However, extraction of simple 
statistical parameters from the distribution suggests 
no particular pattern of gene essentiality for the niche 
among chromosomes (Figure 4b). Identifying these is-
lands of essential genes for the metabolic niche versus 
segments less constrained paves the way to understand 
evolutionary processes further.
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DISCUSSION

Our definition of the fundamental niche relies on the 
recent signs of progress of two recent complementary 
and productive fields. On the one hand, the genomic 
composition of organisms and ecosystems is now avail-
able via high throughput DNA sequencing fostering the 
identification of putative functions (Coles et al., 2017; 
Raes & Bork, 2008). Notably, a recent study formalises 
a metabolic niche space based on the presence–absence 
of microbe's metabolic traits, allowing well-defined 
comparison and clustering of organisms upon meta-
bolic abilities (Fahimipour & Gross, 2020). However, it 
does not investigate the dependency between metabolic 
capabilities and growth rate (Smith et al., 2019), put-
ting aside one essential aspect of the niche: the survival 
of the considered organisms. By doing so, it steps away 
from Hutchinson's definition by throwing other niche 
specificities into the pool (McInerny & Etienne, 2012). 

On the other hand, systems biology takes advantage of 
using some of the most efficient computational solvers 
that enable new descriptions of biological systems phe-
notypes from networks. The complementarity between 
these fields allows analysing genome-scale metabolic 
models identified from their environment and extrap-
olating their niche. However, it is worth noting that 
this models’ identification is a tedious and challeng-
ing task, (Lieven et al., 2020; Thiele & Palsson, 2010) 
and few metabolic models are available compared to 
the number of annotated genomes. In particular, this 
study (Figure 2d,e) considers a fraction of marine 
prokaryotes, for which metabolic models are available 
(Machado et al., 2018), compared to available marine 
microbial genomes (Louca et al., 2016). Nevertheless, 
preliminary metabolic niche exploration is insightful. 
The metabolic niche inclusion depicts the relative plas-
ticity of bacteria compared to others (Figure 2e). In 
particular, it shows that bacteria associated with hosts 

F I G U R E  3   Correlation between Phaeodactylum reactions to support the metabolic niche. (a) Description of most significant dependencies 
between metabolic reactions. Metabolic reactions are ordered in an outer circle. Reactions associated with nitrogen, Calvin–Benson–Bassham 
and glycolysis cycles are emphasised. An edge between reactions corresponds to a correlation (positive or negative) between two fluxes’ 
reactions above 0.6. The inner-circle describes WGCNA modules to which the gene associated with the reaction belongs. A grey circular 
bar plot shows the correlation sum of each reaction as a proxy of the reaction essentiality for the metabolic niche. (b) Shows essentiality of 
pathways for the metabolic niche. We represent the correlation histogram normalised by the number of genes present in the pathway for 
distinct pathways. Y-axes are in log scale. The S score is the sum of the absolute correlation value of the histogram, which estimates pathway 
essentiality for the metabolic niche

(b)(a)
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rely on smaller niches and potentially more stable en-
vironmental conditions (Figure S1).

Our metabolic niche approach is a new formulation 
of Hutchinson's fundamental niche through the model-
ling of the metabolic phenotype of an organism. This 
mechanistic approach allows the identification of met-
abolic functional traits as it links exchange fluxes with 
the organism's growth rate. For instance, it identified 
the quantities of oxygen that lead E. coli to switch from 
anaerobic to aerobic growth by just considering its meta-
bolic network (Figure 1g). This trait description is possi-
ble thanks to the theoretical phenotype modelled by the 
metabolic network when available.

From a computational viewpoint, the metabolic 
niche relies on a formal description of the metabolic 
solution space. Contrary to other metabolic modelling 
tools designed for metabolic engineering (used to max-
imise the growth rate of specific organisms or the pro-
duction of given metabolites of societal interest), the 
metabolic niche investigates organismal behaviours 
considering all kinds of growth conditions, especially 
suboptimal. Previous studies advocate for these condi-
tions as more realistic for studying ecological systems 

or organisms in biotic interactions (Budinich et al., 
2017). This statement requires a more exhaustive and 
computationally challenging exploration of the solu-
tion space than extracting small sets of extreme points 
associated with the maximal growth rate. We pro-
posed the metabolic niche abstraction and the original 
niche f lux space sampling procedure for this purpose. 
However, the metabolic niche does not embed trophic 
interactions per se.

Interestingly, as shown for P. tricornutum, applying 
a fundamental ecological concept allows integrating 
a multi-omics data set, which is a fundamental issue in 
systems biology that often eludes us. In particular, the 
use of the metabolic niche explains causal dependencies 
between groups of co-expressed genes. In the case of 
P. tricornutum, it emphasises the role of the blue module 
for the diatom survival. Furthermore, when projected on 
its chromosomes, the metabolic niche concept shows that 
all chromosomes are necessary for the niche, but not all 
chromosomic regions are equivalent. This result has im-
plications about the evolution of the organism and how 
chromosome regions must be more constrained than oth-
ers for the sake of survival.

F I G U R E  4   Description of the gene essentiality for the metabolic niche on Phaedactylum tricornutum's genome. (a) For each 33 diatom's 
chromosome, we emphasise genes that encode for a metabolic reaction catalyser. For each gene, we report the correlation sum of its associated 
reaction at its genomic position. In addition, (b) describes statistics for each chromosome (i.e. specific colour line), such as the total number of 
genes, the sum of all correlation sums, the proportion of genes from the chromosome involved in the metabolic network, the highest correlation 
sum found in the chromosome and mean values considering solely genes involved in the metabolic network or all genes

(a)

(b)
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Despite biological validations, the metabolic niche 
remains conceptual and calls for further and extensive 
bioinformatics applications on large environmental 
genomic databases such as those provided by the Tara 
Oceans expedition (Sunagawa et al., 2020). This effort 
will be necessary to compare our formalism with in situ 
data about habitat. In addition, the metabolic niche for-
malisation allows precise estimation of the fundamental 
niche overlap between organisms. However, the work 
will be colossal as it needs to be performed on more than 
three thousand metabolic models built from the anno-
tated genomes of reconstructed metagenome-assembled 
genomes (MAGs) (Salazar et al., 2019).

The metabolic niche formalises the organismal func-
tion as a space in which an organism can survive. This 
new abstraction of the fundamental niche is an addition to 
other techniques that assess the niche from the presence-
absence of omics data (Fahimipour & Gross, 2020). In 
particular, this conceptual study illustrates the need for 
biological modelling to assess biological phenotype per 
se as it differs from the sole identification of functional 
genes. The metabolic niche is thus an essential step to-
wards the design of new omics-trait-based models. It aims 
to be applied at the organismal and ecosystem levels where 
we could encompass the whole biological complexity as 
enclosed in the metagenomic knowledge associated with a 
superorganism hypothesis (Liautaud et al., 2019).

CODE A N D DATA AVA ILA BILITY

The source code for the metabolic niche computation 
is available at https://gitlab.univ-nantes.fr/aregi​mbeau/​
metab​olic-niche. Metabolic networks used in this study 
can be found on BiGG database (http://bigg.ucsd.edu/) 
and on Github (https://github.com/cdani​elmac​hado/
embl_gems). Data and codes can be found on Zenodo: 
https://doi.org/10.5281/zenodo.5780029.
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