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Abstract

Stress relaxation in the viscoelastic matrix influences the evolution of thermal expansion

and chemical shrinkage of polymer composites. Its effects are included into a viscoelastic

model of the generalized Maxwell type by means of time-dependent thermal expansion and

chemical shrinkage coefficients. A homogenization strategy is proposed to obtain these coef-

ficients of the composite from the constituent behaviors, taking into account the viscoelastic

effects. The homogenized behavior is validated by full-scale finite element simulations. It re-

produces features such as sign changes of the thermal strain rate close to the glass transition

temperature and thermal creep effects, which can have an important impact on the residual

stress formation in composites, but are not taken into account by classical thermo-elastic

homogenization methods.

Keywords: Homogenization, Time-dependent, Thermoelastic, Viscoelastic, Composite

materials, Relaxation, Thermal expansion, Chemical shrinkage

1. Introduction

The distinguishing advantage of composites of combining dissimilar constituents to form

a material with superior characteristics inevitably comes along with the issue of residual

stresses, which may affect shape and integrity of the composite part, but in some cases may

also be beneficial to its performance. In composites made of a reinforcement of strong and

∗Corresponding Author
Email address: martin.hirsekorn@onera.fr (Martin Hirsekorn)

Preprint submitted to International Journal of Solids and Structures April 8, 2022



stiff fibers (e.g., glass or carbon) held together by a thermosetting polymer matrix, the main

factor is the mismatch in the coefficient of thermal expansion (CTE) between the fibers and

the matrix, causing residual stresses mainly during the cooling phase at the end of the cure

cycle [White and Kim, 1998; Wisnom et al., 2006; Zobeiry et al., 2016]. Another important

contribution comes from the volume loss of the thermosetting resin with increasing degree

of cure (called chemical or cure shrinkage [Wisnom et al., 2006; Russell et al., 2000; Billotte

et al., 2013]), while the fibers are not influenced by the polymerization of the matrix. The

generated stresses depend on the mechanical behavior of the constituents. While glass or

carbon fibers can be considered in a good approximation as linear elastic and independent

of temperature over the range of the cure cycle, the behavior of the matrix strongly depends

on both temperature and degree of cure [O’Brien et al., 2001; Zarrelli et al., 2010; Courtois

et al., 2018], with transitions between the glassy and the rubbery state. Furthermore, the

behavior of the matrix is viscoelastic [O’Brien et al., 2001; Courtois et al., 2018; Kim and

White, 1996], which makes strain and stress evolve in time even when temperature and cure

are constant.

A large number of modeling strategies were published for the prediction of residual

stresses in thermoset composites. Some works focus on computationally efficient simplified

constitutive behaviors, like Cure Hardening Instantaneously Linear Elastic (CHILE) [John-

ston et al., 2001], path-dependent [Svanberg and Holmberg, 2004], or pseudo-viscoelastic

(PVE) [Zobeiry et al., 2010] models. These methods approximate the final stress and strain

state, but neglect the continuous evolution in time due to creep and relaxation effects within

the composite. They can give accurate predictions of residual stresses and the post-cure

shape of composite parts, but only for materials and cure cycles during which the modulus

increases all the time [Zobeiry et al., 2016]. Viscoelastic models are computationally more

expensive due to the more complex formulation and the large number of internal variables

that have to be stored, but since they take into account creep and relaxation effects, they are

more appropriate to give accurate predictions of residual stresses for arbitrary cure cycles.

For example, Benavente et al. [2017] showed that the distortion of asymmetric 3D woven

interlock composites evolves in time during post-curing, and that this effect is caused by

2



creep strains, which have an important impact even below the glass transition temperature

Tg of the resin.

In most studies that use viscoelastic approaches to predict residual stresses, the viscoelas-

tic behavior of the composite is modeled [e.g., White and Kim, 1998; Zhang et al., 2016;

Ding et al., 2016] without looking at the lower scales. In some recent works, the compos-

ite behavior is derived from the behavior of the constituents by homogenization [Benavente

et al., 2018; Hirsekorn et al., 2018; Courtois et al., 2019; Trofimov et al., 2021]. In the case of

textile composites, two scale changes are needed to obtain the homogenized behavior of the

composite [Hirsekorn et al., 2018]. The first homogenization step determines the behavior of

the consolidated tows from the elastic behavior of the fiber and the viscoelastic behavior of

the matrix, using a Representative Volume Element (RVE) at the microscopic scale (parallel

fibers embedded in a matrix, in most cases either in a periodic hexagonal array or random

distribution, with periodic boundary conditions (PBC)). In the second step, the behavior of

the composite is determined from the viscoelastic behaviors of the matrix and the tows (with

potentially different fiber volume fractions in different tows), using a RVE at the mesoscopic

scale, which takes into account the weaving architecture of the composite.

In the cited works, a time-dependent viscoelastic behavior is used for the average me-

chanical behavior of the composite, but time-independent average CTE and coefficients of

chemical shrinkage (CCS). However, it is easy to imagine that if residual stresses arise in

the matrix due to a temperature change or due to chemical shrinkage, these stresses cause a

gradual evolution of the matrix strain in time, due to its viscoelastic behavior. In interaction

with the fibers, the residual stresses and also the average strain of the composite evolve in

time. In a viscoelastic model of the composite with time-independent CTE and CCS, these

effects are not taken into account, as creep and relaxation are only caused by mechanical

loads applied to the composite. Temperature changes, however, only cause an immediate

thermal expansion, which does not further evolve when the temperature is kept constant.

While this consideration shows that there must be time-dependent thermal expansion effects

in composite materials with time-dependent constituent behaviors, only few studies actually

proposed time-dependent CTE [e.g., Zocher et al., 1997; Sawant and Muliana, 2008; Pet-
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termann and DeSimone, 2018]. Experimental evidence of the mentioned effects was found in

composites [Benavente et al., 2017] and also in other materials, such as concrete [BaÅ3
4
ant,

1970]. Logically, chemical shrinkage in composites with viscoelastic constituents should also

cause a time-dependent reaction.

In this paper, we use a viscoelastic model with time-dependent CTE and CCS, based on

the work of Sawant and Muliana [2008] and Pettermann and DeSimone [2018]. We show how

the parameters of such a model can be obtained by homogenization from the mechanical

behavior of the constituents (elastic for the fiber and temperature and cure-dependent vis-

coelastic for the matrix [Courtois et al., 2018]) with time-independent expansion coefficients

for the fibers and the matrix. The constitutive models and a numerical integration method

for the viscoelastic behavior and the time-dependent expansion coefficients are presented in

section 2. The homogenization technique based on the Laplace-Carson (LC) transform is

described in section 3. In section 4, it is shown how to apply the proposed method to the case

of a thermosetting matrix composite with a 3D woven reinforcement made of carbon fibers.

The results presented in section 5 show that there is indeed significant time-dependence

of the homogenized thermal expansion and chemical shrinkage of the composite. Taking

into account the influence of temperature on the viscoelastic behavior of the matrix, the

strain evolution of the composite when heated up to its Tg is simulated by full-scale Finite

Element (FE) simulations and the homogenized behavior. The results are in excellent agree-

ment, showing that the homogenized behavior of the composite takes into account the stress

relaxation and temperature effects at the lower scales.

2. Viscoelastic constitutive behavior with time-dependent expansion coefficients

Zocher et al. [1997] included time-dependent effects of thermal expansion into the classical

integral form of viscoelasticity, which expresses stress as the Stieltjes convolution of a fourth-

order tensor of anisotropic relaxation moduli E with the strain tensor ε over a reduced time

ξ (first integral in Eq. 1). The influence of time-dependent thermal expansion on stress is

expressed as a Stieltjes convolution of a second-order tensor βth with temperature, which is
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subtracted from the mechanical stress:

σ(ξ) =

∫ ξ

−∞
E(ξ − ξ′) :

∂ε(ξ′)

∂ξ′
dξ′ −

∫ t

−∞
βth(ξ − ξ′)∂T (ξ′)

∂ξ′
dξ′ (1)

The reduced time is defined as

ξ(t) =

∫ t

−∞

1

aT (t′)
dt′, ξ′ = ξ(t′) (2)

where aT is the shift factor of the time-temperature superposition principle.

Sawant and Muliana [2008] employed an additive decomposition of strain into a me-

chanical (viscoelastic) part εve and a thermal part εth as in the classical formulation of

thermo-viscoelasticity with time-independent CTE. The viscoelastic strain is given by the

Stieltjes convolution of a fourth-order tensor of anisotropic creep compliances with the stress

tensor. The thermal strain is the Stieltjes convolution of the second-order tensor αth of time-

dependent CTE with temperature. Pettermann and DeSimone [2018] used a combination

of both formulations to write stress as

σ(ξ) =

∫ ξ

−∞
E(ξ − ξ′) :

∂εve(ξ′)

∂ξ′
dξ′ (3)

with

εth(ξ) =

∫ ξ

−∞
αth(ξ − ξ′)∂T (ξ′)

∂ξ′
dξ′ (4)

Since relaxation and creep based integral forms are interconvertible [Park and Schapery,

1999; Schapery and Park, 1999], all three formulations can be converted into each other, if

the tensor βth of Zocher et al. [1997] is given by the Stieltjes convolution of the relaxation

tensor E with the time-dependent CTE αth

Note that for time-independent αth, the integral form of Eq. (4) resolves to the differential

form of the CTE

dεth = αthdT (5)

The numerical implementation of the integral form of viscoelasticity is largely simplified

if the relaxation modulus can be written in terms of a Prony series [Zocher et al., 1997;

Sawant and Muliana, 2008; Hirsekorn et al., 2010, 2011], i.e.,

E(ξ − ξ′) = E∞ +
N∑
k=1

E
k
e
− ξ−ξ

′
τk (6)
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where τk is called the relaxation time of the kth relaxation mechanism. In the case of thermo-

rheologically simple materials, in which the coefficients E
k

are constants, Eq. (3) resolves

to

σ(ξ) =

(
E∞ +

N∑
k=1

E
k

)
: εve(ξ)−

N∑
k=1

E
k

: εvek (ξ) (7)

with the tensorial internal variables εvek accounting for the strain history [Sawant and Mu-

liana, 2008]. Their evolution with the reduced time follows differential equations of the

form
dεvek (ξ)

dξ
=

1

τk
(εve(ξ)− εvek (ξ)) (8)

These equations correspond to a 3D formulation of a generalized Maxwell model. Note that

if the principle of time-temperature-cure superposition [Zarrelli et al., 2010; Courtois et al.,

2018; Kim and White, 1996; Ding et al., 2016] can be used, i.e., if the viscoelastic behavior

depends on temperature and degree of cure only through the shift factor aT defined in Eq.

(2), the derivative with the reduced time in these differential equations can be replaced by

a derivative with the real time if the relaxation times τk are multiplied by the shift factor.

Eq. (8) then refers to the evolution of the internal variables in time, and the arguments

with the reduced time are replaced by the respective time argument in the equations above.

The same procedure can be applied to the time-dependent αth [Pettermann and DeSi-

mone, 2018] (for convenience we use a different sign convention):

αth(ξ − ξ′, T (ξ′), c(ξ′)) = αth∞(T (ξ′), c(ξ′))−
N∑
k=1

αthk (T (ξ′), c(ξ′))e
− ξ−ξ

′
τk (9)

Here, we allow for temperature and cure depending tensors αth∞ and αthk . Note that this

dependence refers to the moment of the change of temperature (ξ′). The effect in time of

this temperature change is described by the Prony series.

We use the differential form of the CTE (5) and obtain the thermal strain by integration

over the reduced time ξ′

εth(ξ) =

∫ ξ

−∞
αth(ξ − ξ′, T (ξ′), c(ξ′))

∂T (ξ′)

∂ξ′
dξ′ + lim

ξ′→−∞
εth(ξ′) (10)
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If we express the thermal strain with respect to the state of the material at the beginning

of history (ξ′ → −∞), we can set the last term of the equation to zero. If we define

εthk (ξ) =

∫ ξ

−∞
αthk (T (ξ′), c(ξ′))e

− ξ−ξ
′

τk
∂T (ξ′)

∂ξ′
dξ′ (11)

and hence
dεthk (ξ)

dξ
= αthk (T (ξ), c(ξ))

∂T (ξ)

∂ξ
− 1

τk
εthk (ξ) (12)

inserting Eq. (9) into Eq. (10) and then differentiating yields

dεth(ξ)

dξ
=

(
αth∞(T (ξ), c(ξ))−

N∑
k=1

αthk (T (ξ), c(ξ))

)
dT (ξ)

dξ
−

N∑
k=1

1

τk
εthk (ξ) (13)

The tensorial internal variables εthk account for the history of temperature and the CTE.

Their evolution follows the differential equations (12), which are similar to the evolution

equations of the strain history variables. Like for the strain history variables, these equations

can also be converted into differential equations in time by multiplication of the relaxation

times with the shift factor.

Exactly the same formalism can be used to take into account the time-dependent effects

of a change in degree of cure on the evolution of the strain εch attributed to chemical

shrinkage. The effect of chemical shrinkage enters the viscoelastic behavior by means of

a decomposition of the total strain into a viscoelastic part εve, a thermal part εth, and a

chemical part εch:

ε = εve + εth + εch (14)

For numerical integration of the constitutive equations in a FE code, we assume that the

evolution of strain, CTE, and CCS over a given time step is linear. With this approximation,

the evolution equations of the internal variables can be solved analytically to obtain their

increments over the time step [Zocher et al., 1997; Hirsekorn et al., 2011]. More details on

the incremental procedure are given in Appendix A.
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3. Thermo-viscoelastic homogenization using the Laplace-Carson transform

3.1. Material behavior in the Laplace-Carson space

The LC-transform of a function f of the reduced time ξ is defined as

f̂(p) = p

∫ ∞
0

f(ξ)e−pξdξ (15)

As described in Hirsekorn et al. [2018], the LC-transform of the integral form of the vis-

coelastic behavior given in Eq. (3) is given by

σ̂(p) = Ê(p) : ε̂ve(p) (16)

Likewise, the LC-transform of Eq. (4) is

ε̂th(p) = α̂th(p)T̂ (p) (17)

In the LC-transform space, the constitutive behavior presented in section 2 takes the form

of a thermo-elastic behavior that depends on the transform parameter p. The proposed

homogenization strategy thus consists of the following steps:

• Calculate the LC-transform of the relaxation moduli, CTE, and CCS of each con-

stituent

• Determine the LC-transform of the homogenized relaxation moduli, CTE, and CCS

by thermo-elastic homogenization

• Apply the inversion of the LC-transform to obtain the coefficients of the time-dependent

relaxation moduli, CTE, and CCS of the homogenized behavior in time space

We assume in the following that the relaxation moduli of the constituent materials as well

as of the homogenized behavior can well be fitted by a Prony series of the form of Eq. 6

with a priori fixed relaxation times of one per decade on the logarithmic time scale. If the

coefficients of the Prony series plotted against the relaxation times lie on a smooth curve

without significant oscillations between adjacent relaxation times, the relaxation times can
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be freely chosen, as long as there is at least one relaxation time per decade. It is then still

possible to well fit the relaxation moduli by a Prony series with these freely chosen relaxation

times. Under these assumptions, we take the same relaxation times for all constituents and

for the homogenized behavior [Hirsekorn et al., 2018].

Of course, this is only an approximation to the exact homogenized behavior. Once

the relaxation times of the constituents are fixed, the relaxation times of the analytically

determined homogenized behavior are, in general, different from those of the constituents,

as shown by Beurthey and Zaoui [2000]. However, the results obtained in Hirsekorn et al.

[2018] show that for the material treated in this article, the relaxation spectra are sufficiently

continuous such that this procedure yields an accurate approximation of the homogenized

behavior obtained with full-scale FE simulations.

The LC-transform of the Prony-decomposition of the relaxation moduli (Eq. 6) at a

given transform parameter pi can be written as

Ê(pi) = E∞ +
N∑
k=1

LikEk
(18)

where N is the number of relaxation times used to reproduce the viscoelastic spectrum. The

LC-transform matrix is given by

Lik =
pi

pi + 1
τk

(19)

Likewise, the LC-transform of the time-dependent CTE is

α̂th(pi, T, c) = αth∞(T, c) +
N∑
k=1

Lik
(
−αthk (T, c)

)
(20)

The LC-transform of the CTE (and in the same way of the CCS) is calculated for a given

temperature and degree of cure. The homogenization procedure thus yields the coefficients of

the homogenized time-dependent CTE and CCS at that temperature and degree of cure. By

homogenization of the CTE and CCS at various temperatures and degrees of cure covering

the ranges of interest and interpolating the homogenized coefficients, the temperature and

cure dependence of the homogenized material can be obtained (see section 3.2).

Eqs. (18) and (20) take the form of equation systems with the coefficients of the LC-

transform matrix given by Eq. (19). The inversion of the LC-transform thus corresponds to
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the solution of these equation systems for the unknowns E
k

and αthk (T, c), respectively. The

tensors E∞ and αth∞(T, c) can be obtained directly from thermo-elastic homogenization of

the LC-transforms for p = 0. In addition, the thermo-elastic homogenization is carried out

for M different pi, such that the LC-transform matrix becomes a M ×N -matrix. From this

we can see that we need M ≥ N different pi, one of which is usually p =∞ (corresponding

to the instantaneous behavior). If M > N , the optimum solution of the associated least-

squares problem is calculated (see section 3.3). This problem corresponds to a least-squares

fit of Eq. (18) to the LC-transform of the homogenized behavior, of which we calculate M

points at the chosen pi by thermo-elastic homogenization. The more points pi, the better we

describe the LC-transform of the homogenized behavior. However, this does not necessarily

mean that we add more information. In fact, the condition of the least-squares problem and

thus the accuracy of the solution is influenced by the choice of the pi. The solution is thus

not unique but depends on the choice of the pi. The optimum choice for inversion algorithms

of the LC-transform that are based on approximations of the solution in time space by Prony

series was analyzed by Lévesque et al. [2007]. Some indications for the present method can

be found in [Hirsekorn et al., 2018].

3.2. Thermo-elastic homogenization

The concept of thermo-elastic homogenization is well known, but the equations are briefly

recalled here in order to explain the proposed methodology. In the following, an upper bar

will identify an average property, and properties without upper bar are local properties.

Angle brackets 〈· · · 〉 denote volume averaging.

The strain localization tensor Â is defined as the tensor relating the local strain change

ε̂′ due to an applied mechanical load to the global average mechanical strain ˆ̄ε
ve

caused by

this load:

ε̂′(~x, p) = Â(~x, p) : ˆ̄ε
ve

(21)

Here, the hat indicates that the homogenization acts on LC-transforms.

Likewise, the stress concentration tensor B̂ is defined as

σ̂′(~x, p) = B̂(~x, p) : ˆ̄σ (22)
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where ˆ̄σ is the global average stress and σ̂′ the local stress caused by ˆ̄σ. Note that while the

global stress ˆ̄σ is only caused by the mechanical load, the global strain ˆ̄ε is composed of a

part due to the mechanical load ˆ̄ε
ve

and a part due to thermal expansion (and possibly a

part due to chemical shrinkage).

In a linear elastic material, these tensors can be determined by FE analysis, if 6 linear

independent global strains (or stresses) are consecutively applied to the RVE. If we write

these 6 linear independent global strain states in Kelvin notation as columns next to each

other, we obtain a full-rank 6 × 6 matrix that we will denote by ˆ̄ε
ve

. The local strains

obtained from the FE analyses are likewise arranged in Kelvin notation in 6 × 6 matrices

ε̂′. The same is done for the local stresses σ̂′ and the average stress ˆ̄σ. In a linear elastic

material with a strictly positive definite stiffness tensor, the matrix ˆ̄σ also has full rank and

can thus be inverted.

We therefore can obtain the strain localization tensor at each integration point from the

solution of the 6 FE problems from

Â(~x, p) = ε̂′(~x, p) :
(
ˆ̄ε
ve)−1

(23)

and the stress concentration tensor from

B̂(~x, p) = σ̂′(~x, p) :
(
ˆ̄σ
)−1

(24)

The homogenized stiffness tensor relates average strain to average stress. It can be obtained

with the aid of the strain localization tensor:

ˆ̄E(p) =
〈
Ê(~x, p) : Â(~x, p)

〉
=
〈
Ê(~x, p) : ε̂′(~x, p)

〉
:
(
ˆ̄ε
ve)−1

=
〈
σ̂′(~x, p)

〉
:
(
ˆ̄ε
ve)−1

= ˆ̄σ :
(
ˆ̄ε
ve)−1

(25)

where Ê(~x, p) is the LC-transform of the relaxation tensor of the constituent material at the

position ~x.

The homogenized CTE can be obtained with the aid of the stress concentration tensor:

ˆ̄α
th

(p, T, c) =
〈
α̂th(~x, p, T, c) : B̂(~x, p)

〉
=
〈
α̂th(~x, p, T, c) : σ̂′(~x, p)

〉
:
(
ˆ̄σ
)−1

=
〈
ŵth(~x, p, T, c)

〉
:
(
ˆ̄σ
)−1

(26)

11



In the last step of this equation, we define a local energy density ŵth(~x, p) that is due to

the thermal stresses in the material. ŵth(~x, p) is a line vector, of which the ith component

is obtained from the solution of the ith elastic FE problem, calculating at each integration

point ~x

ŵi(~x, p, T, c) = α̂th(~x, p, T, c) : σ̂′i(~x, p) (27)

where α̂th(~x, p) is the LC-transform of the time-dependent CTE of the material at ~x and

σ̂′i(~x, p) the local stress tensor at ~x obtained with the ith FE analysis. These equations can

be used equivalently to calculate the homogenized CCS and define local energy densities due

to the internal stresses caused by chemical shrinkage.

In a thermo-rheologically simple material, in which the relaxation moduli do not depend

on strain, temperature T , or degree of cure c (see section 2), the stress concentration tensor

B̂(~x, p) is independent of strain, T , and c. Hence, in Eqs. (26) and (27) the same stresses

ˆ̄σ and σ̂′i(~x, p) are used to obtain the LC-transform of the homogenized CTE for any T or

c. The LC-transform of the local CTE α̂th(~x, p, T, c) is obtained from the time-dependent

CTE of the constituents by means of Eq. (20). Eqs. (26) and (27) are therefore calculated

by post-processing operations only, without the need of solving additional FE problems for

the different T and c.

The procedure is repeated for M different values of p as explained in section 3.1 and the

coefficients of the thermo-viscoelastic behavior in time space are obtained from the inverse

LC-transform. Thus, for the whole homogenization procedure, a total of 6M linear elastic

FE problems have to be solved on the RVE.

3.3. Positive definiteness of stiffness tensors

A viscoelastic model of the generalized Maxwell type only respects the fundamental laws

of thermodynamics if the tensors E∞ and E
k

are positive definite. This is not necessarily

the case for the homogenized behavior obtained with the method of Hirsekorn et al. [2018],

because the LC-transform matrix (Eq. 19) is ill-conditioned. As a consequence, the solution

of the equation systems (18) and (20) may lead to oscillations in the solution vectors if
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plotted against the relaxation times [Hirsekorn et al., 2018]. If these oscillations become too

important, they may lead to alternately positive and non-positive definite tensors E
k
.

The problem of non-positive definite relaxation tensors is also encountered in an alterna-

tive viscoelastic homogenization method [Courtois et al., 2019] that avoids the LC-transform

and its inverse. Courtois et al. [2019] determine the average relaxation behavior of an RVE

from FE simulations and fit a 3D generalized Maxwell model to the obtained results to

identify the coefficients of the E
k
. This is done by minimizing a cost function with the

condition that the eigenvalues of the E
k

are positive. The positive definiteness of the ten-

sors is checked at each iteration. However, this procedure requires significant computational

resources, as many iteration steps have to be skipped because not all tensors are positive

definite [Trofimov et al., 2021].

In Hirsekorn et al. [2018] non-positive definite stiffness tensors were avoided by an ap-

propriate choice of the parameters pi, at which the LC-transform is carried out. Compared

to the intuitive choice of setting the pi equal to the inverse of the relaxation times τk, the

condition number could be reduced by a factor of 6. While proper results were obtained

for the case treated in [Hirsekorn et al., 2018], it is not guaranteed that this approach is

sufficient in all cases.

In fact, in order to improve the precision of the homogenization for long relaxation times

(at which the only significant differences between the homogenized behavior and the full-

scale FE simulations were observed in [Hirsekorn et al., 2018]), we added an additional longer

relaxation time (τN = 103 min) compared to [Hirsekorn et al., 2018] to the constituent and

the homogenized behaviors. This relaxation time was omitted in [Hirsekorn et al., 2018],

because the associated relative weight in the viscoelastic spectrum of the matrix was very

small (8.8 · 10−4). Because of this very small contribution to relaxation, adding this element

drastically increases the condition number of the LC-transform matrix, leading to some

slightly negative eigenvalues of the tensor E
N

associated to the new longer relaxation time

τN in the homogenized behavior.

This can be avoided using Tikhonov regularization [Tikhonov and Arsenin, 1977] for the

least-squares problem. Putting the mn-components (m,n ∈ {1, . . . , 6}) of the tensors E
k

in
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Eq. (18) for all k into an N -component vector ~xmn and the mn-components of Ê(pi)−E∞
for all i into an M -component vector ~bmn, Eq. (18) becomes

L · ~xmn = ~bmn (28)

A regularization term is added to the least-squares residual. The solution ~xmn is then

obtained from the equation system

(
LT · PT · P · L+ hST · S

)
· ~xmn = LT · PT · P ·~bmn (29)

where S is a smoothing matrix and P a preconditioning matrix. We take for S the N ×N

identity matrix, which implies a penalization of the residual by the norm of the solution

vector. This has the effect that oscillations in the solution vector are suppressed. For the

preconditioning matrix we choose an M ×M diagonal matrix with a larger element on the

line corresponding to p = ∞, in order to impose a higher precision on the homogenized

instantaneous elastic stiffness tensor.

h is the regularization parameter. For h = 0 we recover the solution of the non-regularized

least-squares problem. The larger h, the more oscillations in the solution vector are penal-

ized, but the more the regularized solution deviates from the optimum least-squares solution.

The best choice is therefore the minimum h for which all tensors E
k

are positive definite.

Since the solution of Eq. (29) is very fast compared to the solution of the FE problems

required for homogenization in the LC-space (section 3.2), we can apply a simple iterative

procedure, without significantly increasing the computational costs of the whole homoge-

nization process (which essentially corresponds to the cost of solving 6M linear elastic FE

problems on the mesh used to represent the RVE and the cost of the post-processings to

calculate the volume average of the stresses, the strains, and the energies ŵi, see Eq. (27)).

We start from a very small value of h = 10−10. If any of the tensors E
k

is not positive

definite, we increase h by 1% and calculate a new solution vector and repeat this step until

each E
k

is positive definite. In the case of the 3D woven composite presented in the fol-

lowing, h = 0.00248 was required for the warp tows, h = 0.218 for the weft tows, and no

regularization was required at the mesoscopic scale.
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4. Application to a 3D woven composite

The proposed homogeniation method is applied to the composite material with a 3D

woven interlock reinforcement treated in Hirsekorn et al. [2018]. Two homogenization steps

are required: one at the microscopic scale to obtain the homogenized behavior of the con-

solidated tows, and one at the mesoscopic scale, from which the homogenized behavior of

the composite is obtained.

The microscopic RVE contains one cylindrical fiber surrounded by matrix and has a

hexagonal cross-section perpendicular to the fiber as shown in [Hirsekorn et al., 2018]. PBC

are applied in fiber direction and on opposite sides of the hexagon. The fiber volume fraction

in the weft tows is slightly higher (79.6%) than in the warp tows (74.6%). Therefore, two

different microscale RVE were generated respecting these two fiber volume fractions, and

the homogenization procedure was applied to both microscale RVE to obtain the behavior

of the warp and weft tows.

The mesoscopic RVE is the voxel mesh shown in [Hirsekorn et al., 2018]. It was built

from µ-CT images of the composite by grayscale segmentation. The fiber volume fractions

in the warp and weft tows are calculated from the volume fractions of the warp and weft

tows in the voxel mesh, such that they match with the fiber volume fraction of the composite

and the weight ratio between the fibers in the warp and weft tows. For each voxel slice of

each tow in the plane perpendicular to the tow direction, the material is oriented along the

tangent to the center line of the tow at the respective voxel slice. 3D PBC are applied to

opposite sides of the mesoscopic RVE as in [Hirsekorn et al., 2018].

At the microscopic scale, the fibers are modeled by a transverse isotropic elastic behavior

with the parameters given in [Hirsekorn et al., 2018]. For the matrix, the viscoelastic behav-

ior proposed by Courtois et al. [2018] was used, with the parameters identified in [Hirsekorn

et al., 2018]. The experimentally determined relaxation master curves are well represented

by a continuous relaxation spectrum [Courtois et al., 2018], sampled by one relaxation time

τk per decade of time, ranging from 10−22 min to 103 min (one longer relaxation time is

added compared to [Hirsekorn et al., 2018]). We therefore expect a continuous spectrum
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also for the relaxation of the tows and the composite, which we sample by the same relax-

ation times. These relaxation times refer to the reduced time of the matrix (Eq. 2). Since

the homogenization procedure is formulated in terms of the reduced time, the relaxation

times of the composite also refer to the reduced time of the matrix.

As explained in section 2, the evolution equations in time of the internal variables can

be obtained from the differential equations in terms of the reduced time (Eqs. 8 and 12)

by multiplying the relaxation times τk with the shift factors aT (which, in the model of

Courtois et al. [2018], depend on temperature and, through Tg, on the degree of cure).

Since the homogenized behaviors refer to the same reduced time, the relaxation times of the

matrix, the tows, and the composite are all multiplied by the same shift factors in order

to obtain the time evolution of the internal variables. Of course, this works only if the

reduced times are the same for all constituents, i.e., if the shift factors are the same for

all constituents. However, since the fibers are elastic, we can choose the same relaxation

times as for the matrix assuming zero relaxation moduli for the fibers. Then, with the

assumptions on the relaxation times of the homogenized behavior specified in section 3.1,

the homogenized behaviors of the tows have the same shift factors as the matrix, and thus

at the mesoscopic scale as well, all constituents have the same shift factors.

The CTE of the fibers and the matrix are assumed to be time-independent, i.e., the

tensors αthk in Eq. (9) are zero. The tensor αth∞ then corresponds to the classical, time-

independent differential CTE. For the fibers, the CTE are assumed to be independent of

temperature between room and cure temperature. However, the CTE in longitudinal and

transverse direction are different (Table 1). The CTE of the fully cured matrix is approxi-

mately constant between room temperature and Tg, and then changes to a higher value that

is again approximately constant between Tg and the curing temperature. For the uncured

resin, an approximately constant CTE was observed, which is close to the CTE in the rub-

bery state. We assume that for intermediate states of cure, the CTE changes linearly with

degree of cure. The CCS of the matrix is approximately constant over the whole range of

cure. The CTE and CCS of the constituent materials used in the following are summarized

in Table 1.
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αthL αthT αth∞,glassy(c = 1)

−0.1 · 10−6 ◦C−1 5.4 · 10−6 ◦C−1 6.73 · 10−5 ◦C−1

αth∞,rubbery(c = 1) αth∞(c = 0) αch∞

1.80 · 10−4 ◦C−1 1.83 · 10−4 ◦C−1 −0.0133

Table 1: CTE of the fiber in longitudinal (L) and transverse (T) direction, CTE of the matrix in glassy,

rubbery, and uncured state, and CCS of the matrix.

The homogenized time-dependent CTE of the tows are thus calculated by post-processing

as described in section 3.2 using the three different values for the CTE of the matrix. In

this way, three different values of the coefficients of αthk and αth∞ are obtained for each tow,

corresponding to the homogenized time-dependent CTE for the tows with uncured matrix,

with fully cured matrix in the rubbery state, and with fully cured matrix in the glassy state.

For the CCS only one post-processing is required, as it is assumed to be independent of

temperature and cure. At the mesoscopic scale, the homogenized viscoelastic behaviors and

the homogenized time-dependent CTE and CCS obtained with the two different microscale

RVEs are used for the warp and the weft tows, respectively. The matrix pockets are modeled

with the same viscoelastic behavior and with the same time-independent CTE and CCS as

at the microscopic scale. The procedure described in section 3 is then applied again to the

mesoscopic RVE to obtain the homogenized behavior of the composite.

5. Results

The homogenized behaviors obtained with the method proposed in section 3 are com-

pared with full-scale FE simulations using Z-set [2021]. In each test case presented in the fol-

lowing, the response of the homogenized behavior is calculated on a single integration point.

In the corresponding full-scale FE simulations, the same meshes as in the thermo-elastic

homogenization steps in the LC-transformed space are used with the thermo-viscoelastic

behaviors of the constituents. The evolution of the average strain or stress of the full-scale

simulations is then compared to the strain or stress evolution of the homogenized behavior

for the same mechanical loading, temperature, or cure conditions. The temperature and cure
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variations are applied homogeneously on the whole RVE without any mechanical loading.

The viscoelastic behavior is simulated applying an average strain in one direction (tension

or shear) on the RVE and leaving the other average strains free.

The homogenization procedure for the viscoelastic behavior is the same as in [Hirsekorn

et al., 2018] with the same material properties and RVEs at the micro- and meso-scale. The

only difference with respect to [Hirsekorn et al., 2018] is the additional longer relaxation

time and the resulting Tikhonov regularization to ensure positive definite relaxation tensors

(section 3.3). The homogenized viscoelastic behavior is thus the same as in [Hirsekorn

et al., 2018], except for an even better agreement with the full-scale FE simulations for long

relaxation times. The results are provided as supplementary material for comparison with

[Hirsekorn et al., 2018].

The time-dependent effects of thermal expansion are first validated without taking into

account the shift factors (i.e., in terms of reduced times). In the full-scale FE simulations,

the temperature at each integration point is increased by 1◦C over a very short reduced

time step of 10−17min and then kept constant for 103min. Of course, such a temperature

evolution is not realistic. The purpose is to illustrate the time-dependent thermal expansion

over the whole spectrum of reduced times. In reality, only part of these mechanisms will be

activated at a time, but every part of the spectrum may potentially become active during a

cure cycle, depending current value of the shift factors.

Due to viscoelastic effects in the matrix, the average strain of the RVE evolves in time

during the constant temperature phase. The evolution is in excellent agreement with the

homogenized behavior obtained with the method described in section 3 if exposed to the

same temperature. Fig. 1 summarizes the results for the thermal expansion obtained at

27◦C (response to a quick temperature increase from 26◦C to 27◦C) and at 227◦C (after a

temperature increase from 226◦C to 227◦C).

The immediate reaction to the temperature change is an expansion in both in-plane

and in the out-of-plane direction. However, this expansion is limited by the longitudinal

contraction of the fibers and thus smaller in direction of the warp tows than in direction

of the weft tows, because there are more fibers in warp than in weft direction. This leads
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to in-plane compressive stresses in the matrix, which gradually relax in time. The more

these stresses relax, the more the matrix deforms and follows the thermal strain of the

fibers. However, this does not affect the volume of the matrix, and therefore the average

out-of-plane strain of the composite increases with time (Fig. 1c). Due to the Poisson

effect, this amplifies the in-plane contraction caused by the negative longitudinal CTE of

the fibers, leading to a sign inversion of the average thermal strains in both warp and weft

direction (Fig. 1a and b). The same effects are observed at both temperatures, but are more

important in the rubbery state, because the CTE of the matrix is larger than in the glassy

state. The time dependence is similar, because the curves are plotted as a function of the

reduced time, i.e., the viscoelastic behavior of the matrix is the same in both cases, due to

thermo-rheological simplicity (section 2).

The temperature change also causes small average shear strains, because the RVE (which

was generated based on tomography images of the real material) is not perfectly orthotropic.

As the homogenization procedure is fully anisotropic, the homogenized behavior also repro-

duces very well the evolution of the shear strains, including the sign changes of the shear

strain rates (Fig. 1d and e). At the resulting strain peaks, the only significant differences

between the homogenized behavior and the full-scale FE simulations are observed.

The time-dependent effects of chemical shrinkage are evaluated in a similar way by

increasing the degree of cure from 0 to 1 at each integration point of the RVE within a

reduced time step of 10−17min and then keeping it constant for 103min. The evolution in

time of the average strain over the RVE during the phase of constant degree of cure (shown

in Fig. 2) is qualitatively similar to the thermal expansion strain, but with opposite sign.

The reason is that like in the case of a temperature change, viscoelastic stress relaxation

takes only place in the matrix, but the CCS of the matrix is negative, while its CTE is

positive. The curve shapes differ slightly, because while the CCS of the fiber is zero, the

CTE of the fiber is much smaller than the CTE of the matrix but not zero. The volume loss

of the matrix leads first to a contraction of the composite in all directions, which is partially

compensated by the fibers. The more the deviatoric stresses in the matrix relax, the more

the volume loss is concentrated to the out-of-plane direction, leading to a flattening of the
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composite and a reduction of the tow waviness. This leads to positive in-plane strains (in

particular in the warp direction, which contains a higher amount of fibers) at the end of

the relaxation phase, even though none of the CCS of the constituents (fiber and matrix) is

positive.

In order to verify that the temperature and cure dependence of the viscoelastic behavior is

correctly transferred to the homogenized behavior by means of the shift factors, we simulate

the strain evolution of a fully cured warp tow when it is heated from room temperature to

200◦C at 3◦C per minute. Again, we compare full-scale FE simulations on the microscale

RVE presented in [Hirsekorn et al., 2018] with the homogenized behavior obtained with the

method described in section 3, but this time, the real time is used instead of the reduced time,

i.e., the relaxation times of the constituent and the homogenized behaviors are multiplied

with the temperature and cure dependent shift factors given in [Hirsekorn et al., 2018]. Fig.

3 shows an excellent agreement between the homogenized behavior and the full-scale FE

simulations.

At the beginning of the heating, the matrix is in the glassy state, which limits its de-

formability. The thermal expansion of the resin in direction of the fibers overcompensates

the longitudinal thermal contraction of the fiber, leading to a positive homogenized CTE

(Fig. 3a). Due to the mechanical interaction, the fibers are under longitudinal tension,

while the matrix is compressed in fiber direction. With increasing temperature, the matrix

softens due to the faster relaxation of the deviatoric part of stress. The thermal strain of

the tow in fiber direction is thus more and more dominated by the fiber, tending towards

the longitudinal CTE of the fiber at high temperatures, where the matrix is in the rub-

bery state with an approximately elastic behavior with a very low modulus [Courtois et al.,

2018; Hirsekorn et al., 2018]. Since the longitudinal thermal strain of the fiber is negative,

the initial expansion of the tow gradually slows down and transforms into contraction from

about 104◦C upwards. This leads to an important negative homogenized differential CTE

of the tow in fiber direction. It is caused by the stress relaxation in the matrix, which lets

the initially positive thermal strain gradually tend to the negative thermal strain of the

fiber between 104◦C and Tg. This stress relaxation is due to the viscoelastic behavior of the

20



matrix and thus not obtained with a thermo-elastic model.

Due to the high stiffness of the fiber and since its CTE is about an order of magnitude

smaller than that of the matrix, the major part of the thermal expansion of the matrix is

directed into the transverse plane already at low temperatures, leading to a significantly

higher transverse CTE of the tow (Fig. 3b). The negative average CTE in fiber direction

between 104◦C and Tg thus only redirects a comparatively small amount of matrix volume

into the transverse plane and the average transverse CTE only slightly increases. A more

significant increase is observed at Tg, because at this temperature the CTE of the matrix

increases (Table 1). The results obtained for the weft tows with a slightly higher fiber volume

fraction are qualitatively similar and not shown here for brevity.

The same simulation is carried out at the mesoscopic scale using the voxelized RVE

presented in [Hirsekorn et al., 2018]. For the warp and weft tows, the respective homogenized

behaviors are used with the time-dependent CTE and CCS. The relaxation times of all

constituent behaviors in the full-scale FE simulations and of the homogenized behavior of

the composite are multiplied with the shift factors given in [Hirsekorn et al., 2018] to take into

account the influence of temperature on the viscoelastic behavior. All material components

are assumed to be fully cured. In Fig. 4 it can be seen that the homogenized behavior of

the composite is in excellent agreement with the mesoscopic FE simulations.

In the reinforcement plane, the thermal expansion is dominated by the tows, and similar

trends are observed as in the fiber direction of the tows (Fig. 3a). However, since the

tows are oriented along two main directions (warp and weft), the thermal expansion of the

matrix is confined in both in-plane directions. This leads to a much higher out-of-plane

thermal expansion of the composite compared to the in-plane expansions. Due to the higher

multiaxiality of the matrix stresses, the relaxation effect becomes dominant at a higher

temperature compared to the tows. Since there are more tows in the warp direction, the

thermal expansion is more important in the weft direction. In this direction, the maximum

thermal strain is reached at a higher temperature (140◦C) than in the warp direction (107◦C).

Due to the biaxial confinement, the stress relaxation leads to an even steeper increase of the

out-of-plane strain close to Tg (Fig. 4c). This large out-of-plane strain of the resin increases
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the waviness of the tows, leading to a higher in-plane contraction of the composite.

Since the mesoscale RVE is not perfectly orthotropic with respect to the axes of the

coordinate system, small shear strains are also generated by the thermal expansion (Fig.

4d). When stress relaxation becomes important, complex evolutions of the average thermal

shear strain are observed with multiple slope and sign changes of the effective CTE. The

homogenized behavior accurately captures all these evolutions. The only significant differ-

ences occur at the sudden sign change of the homogenized in-plane strain rate slightly above

the glass transition temperature. This is in line with the results presented in Fig. 1, where

the largest differences are also observed around sudden sign changes of the strain rate.

Note that above 160◦C, the model predictions become less reliable, because (i) the be-

havior of the resin is not well identified above Tg (the tests carried out by Courtois et al.

[2018] did not provide very reliable results for a soft and unstable resin), (ii) the strains

in the resin can be important if it is very soft and thus the small strain linear viscoelastic

approach may not be accurate any more, and (iii) there may be direct interaction (such as

contact and friction) between the fibers if the resin becomes very soft, which is not taken

into account in the model.

6. Conclusions

The presented FE simulations show that the temperature (and cure) dependent stress

relaxation in the polymer matrix leads to complex evolutions of the average thermal strain

of polymer composites when they are heated with possible sign changes of the apparent

CTE, depending on the architecture of the fiber reinforcement. Another consequence is

a delayed evolution of thermal strain at constant temperature caused by a previous tem-

perature change. Similar effects are expected for chemical shrinkage. These effects can be

modeled by time-dependent CTE and CCS, based on a formulation inspired by the classical

generalized Maxwell model for viscoelastic behaviors. It corresponds to a Prony decomposi-

tion of the time-dependent CTE and CCS. Like in the case of viscoelasticity, for each Prony

element a strain-like internal variable is added to the model, which respectively accounts for

the history of temperature or degree of cure the material has experienced.
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The homogenization procedure for viscoelastic behaviors proposed in [Hirsekorn et al.,

2018] was extended to thermal expansion and chemical shrinkage. The method is compatible

with the proposed formulation of time-dependent expansion coefficients. It was shown that

for constituent materials with time-independent CTE and CCS, the viscoelastic behavior of

at least one of the constituents leads to time-dependent homogenized CTE and CCS.

The resulting homogenized viscoelastic behavior is thermodynamically consistent if the

stiffness tensors associated to the Maxwell elements are all positive definite. In addition to

the choice of the LC-parameters, at which the thermo-elastic homogenization in the LC-space

is carried out [Hirsekorn et al., 2018], Tikhonov regularization can be applied to the inverse

LC-transform, in order to suppress oscillations in the homogenized viscoelastic spectrum,

which may cause non-positive definite stiffness tensors. The homogenized behavior is in

excellent agreement with the average stress and strain evolutions obtained with full-scale

FE simulations covering the whole relaxation time spectrum and the temperature range

of typical cure cycles. This shows that through the internal variables, the homogenized

behavior takes into account all the viscoelastic, thermal expansion, and chemical shrinkage

effects of the whole RVE.

The simulation of the evolution of thermal strain while heating a composite from room

temperature to well above the glass transition temperature of the polymer matrix shows

some interesting effects caused by the stress relaxation in the polymer matrix. These time-

dependent effects can have a significant impact on the residual stress formation in com-

posites and are neglected if time-independent homogenized CTE and CCS are used. In

particular, the sign change of the average differential CTE of the composite caused by the

stress relaxation close to the glass transition temperature of the resin would not be ob-

tained by purely thermo-elastic homogenization with temperature-independent CTEs of the

constituents without taking into account the viscoelastic behavior of the matrix.

Future work will consist of comparing the predicted effects with experimental obser-

vations of the average thermal expansion and chemical shrinkage of textile composites

with complex reinforcement architectures. Particular attention will be given to the time-

dependent effects that cause an evolution of the shape of composites even at constant tem-
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perature or after the polymerization has been stopped. It is also planned to use the proposed

methodology in multi-scale simulations of the formation of residual stresses in textile com-

posites during the curing process and to predict the final shape of composite parts. This

procedure can also give indications on whether the part shape will evolve in time after the

end of the curing process. It may thus help to tackle these important questions of the design

process of composite structures.

Appendix A. Incremental procedure of the thermo-viscoelastic behavior

To calculate the evolution of the internal variables of the thermo-viscoelastic behavior

presented in section 2 over a time step in a FE simulation, first the increment of the thermal

strain is calculated (Appendix A.1). The increment of the chemical strain is obtained using

the same procedure. These strains are subtracted from the increment of the total strain,

yielding the increment of the viscoelastic strain. The viscoelastic strain is then used to

calculate the increments of the internal variables of the viscoelastic behavior and the stress

at the end of the time step (Appendix A.2).

Appendix A.1. Thermal strain

The evolution of the internal variables of thermal strain in time is obtained from Eq.

(12) using the definition of the reduced time given in Eq. (2)

ε̇thk (t) = αthk (T (t), c(t))Ṫ (t)− 1

aT (t)τk
εthk (t) (A.1)

We integrate this equation over a time step from t = tn−1 to t = tn, approximating

the shift factor by its value at 1
2

(aT (tn−1) + aT (tn)), i.e., by the shift factor corresponding

to the average temperature and degree of cure over the time step (simply noted aT in the

following). The evolution of the coefficients αthk is approximated by a linear function with

time over the time step, i.e.,

αthk (t) =
tn − t
∆tn

αthk (tn−1) +
t− tn−1

∆tn
αthk (tn) (A.2)

with ∆tn = tn − tn−1.
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The temperature is given as an external parameter an is known at the different time

steps. Over each time step, we interpolate it linearly, such that

Ṫ =
∆Tn
∆tn

(A.3)

between t = tn−1 and t = tn with ∆T = T (tn)− T (tn−1).

If the value of the internal variable at the beginning of the time step is known (from the

last time increment), we then obtain the following expression for the internal variable at the

end of the time step

εthk (tn) = e
− ∆tn
aT τk εthk (tn−1) + e

− tn
aT τk

∫ tn

tn−1

αthk (t)e
t

aT τk
∆Tn
∆tn

dt (A.4)

The remaining integral can be solved analytically if we use the approximation of Eq. (A.2)

for αthk (t). It is then

εthk (tn)− εthk (tn−1) =
aT τk
∆tn

(
1− e

− ∆tn
aT τk

)(
αthk (tn−1)∆Tn −

∆tn
aT τk

εthk (tn−1)

)
+
aT τk
∆tn

(
1− aT τk

∆tn

(
1− e

− ∆tn
aT τk

))(
αthk (tn)− αthk (tn−1)

)
∆Tn (A.5)

The terms in aT τk
∆tn

are calculated using the power series expansion of the exponential function.

In the first factor in Eq. (A.5), the first term of the power series vanishes, i.e.,

aT τk
∆tn

(
1− e

− ∆tn
aT τk

)
=
∞∑
i=0

(
− ∆tn
aT τk

)i
(i+ 1)!

(A.6)

and in the second factor, the first to terms of the power series vanish, i.e.,

aT τk
∆tn

(
1− aT τk

∆tn

(
1− e

− ∆tn
aT τk

))
=
∞∑
i=0

(
− ∆tn
aT τk

)i
(i+ 2)!

(A.7)

Using these series, the factors in Eq. (A.5) can be accurately calculated even for aT τk
∆tn

close

to zero, which otherwise would lead to significant numerical errors due to subtraction of

almost equal numbers.

We see from Eq. (13) after replacing the deriative in reduced time by the time derivative

that

ε̇th(t) = αth∞(T (t), c(t))Ṫ (t)− ε̇thk (t) (A.8)
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Supposing for αth∞ a linear evolution in time over the time step as in Eq. (A.2) for the αthk ,

we integrate the thermals train over the time step, which yields

εth(tn)− εth(tn−1) =
1

2

(
αth∞(tn)− αth∞(tn−1)

)
∆Tn −

N∑
k=1

(
εthk (tn)− εthk (tn−1)

)
(A.9)

From this increment of the thermal strain over the time step, the thermal strain at the end

of the time step can be calculated. The same procedure is applied to obtain the chemical

strain at the end of the time step. Subtracting both from the total strain, the viscoelastic

strain at the end of the time step εve(tn) is obtained.

Appendix A.2. Viscoelastic behavior

The integration of the internal variables of the viscoelastic behavior over the time step

follows the same principle as for the internal variables of the thermal and the chemical strain.

Setting the shift factor aT equal to its value at the middle of the time step, and assuming a

linear evolution of the viscoelastic strain over the time step, the increment of the viscoelastic

internal variables is obtained by integration of Eq. (8) over the time step

εvek (tn)− εvek (tn−1) =
(

1− e
− ∆tn
aT τk

)
(εve(tn−1)− εvek (tn−1))

+

(
1− aT τk

∆tn

(
1− e

− ∆tn
aT τk

)) εve(tn)− εve(tn−1)

∆tn
(A.10)

Here again, we calculate the terms in aT τk
∆tn

using Eqs. (A.6) and (A.7). From these incre-

ments, we can calculate the values of the internal variables εvek at the end of the time step.

Eq. (7) with the viscoelastic strain at the end of the time step obtained in Appendix A.1

gives then the stress at the end of the time step.

This incremental procedure only gives accurate results if the shift factor and the coef-

ficients αth∞ and αthk and their chemical counterparts do not vary much over the time step.

Since all these coefficients depend on temperature and degree of cure, the time steps in the

FE simulations have to be adjusted such that these parameters do not change much over a

time step.
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Figure 1: Comparison between the strain evolution of the homogenized time-dependent CTE and the full-

scale FE simulation after rapid temperature increases by 1◦C around 27◦C and 227◦C. Index 1 refers to the

warp, index 2 to the weft, and index 3 to the out-of-plane direction.
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Figure 2: Comparison between the strain evolution of the homogenized time-dependent CCS and the full-

scale FE simulation after a rapid change of cure from 0 to 1: strain in (a) warp (1), (b) weft (2), and (c)

out-of-plane (3) direction, (d) shear strains.
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(a) (b)

Figure 3: Comparison between the strain evolution of a fully cured warp tow during a temperature increase

of 3◦C per minute obtained with full-scale FE simulations and with the homogenized thermo-viscoelastic

behavior: (a) strain in direction of the fiber, (b) strain transverse to the fibers.
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Figure 4: Comparison between ratio of the average strain components of the fully cured composite and the

final out-of-plane strain at 200◦C during a temperature increase of 3◦C per minute obtained with full-scale

FE simulations and with the homogenized thermo-viscoelastic behavior: (a) warp, (b) weft, (c) out-of-plane

and, (d) shear components (warp=1, weft=2, out-of-plane=3).
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Figure S1: Comparison between the stress response of the homogenized viscoelastic model of the composite

and the full-scale FE simulation: stress in loading direction under constant tensile strain in (a) warp, (b)

weft, and (c) out-of-plane direction, (d) shear stress evolution under constant shear strain, and (e) and (f)

evolution of the Poisson ratios under constant tensile strain.


