

Gold surface bio-engineering: a chemical perspective

S. H. Hussain, T. Géhin, C. Yeromonahos, V. Monnier, M. Phaner Goutorbe, A-L. Deman, E. Laurenceau, J-P. Cloarec and <u>Y. Chevolot</u>

SPEI Europe 2022

http://inl.cnrs.fr

CENTRALELYON

Outline

- Gold pre-conditioning and its impacts,
- Gold-thiol reaction and the stability of Au-S,
- Grafting biomolecules,
- Strategies for reducing non specific interactions,
- Multimaterial substrates.

SPEI Europe 2022

Characterisation tools: XPS

• X-ray Photoelectron Spectroscopy (XPS or ESCA)

XPS: Chemical shift

Characterisation tools: SIMS

Dynamic vs Static Secondary Ion Mass Spectrometry

But quantification difficult => standard

Biosensors

Gold surface chemical functionalisation for biosensing

Surface chemistry :

- Stability
- Reproducible
- To favor signal vs noise

Cruz et al Langmuir 2016, 8660-8667 Ha et al Proteomics 2005, 416-419

Institut des Nanotechnologies de Lyon UMR CNRS 5270

SPEI Europe 2022

Gold surface chemical functionalisation for biosensing

- Electropolymerisation¹
- N-heterocyclic carbenes²
- Reduction of aryl diazonium salts
- Organoselenium: RSeH and RSeSeR³
- Thiols R-SH

N-Heterocyclic carbenes

R 🔪

Aryl diazonium salts

- 1 Morlay *et al*, Measurement, 2017, 305-310
- 2 Engel et al, Chem. Soc. Rev., 2017,2057-2075
- 3 Romashov et al, Chem. Eur. J. 2013, 19, 17640 17660

Institut des Nanotechnologies de Lyon UMR CNRS 5270

SPEI Europe 2022

Gold surface chemical functionalisation for biosensing

Know what you start from: Clean, purity¹

1 Bain, et al, J. Am. Chem. Soc. 1989, 321-33

Limit undesired reactions Reproducibility

Institut des Nanotechnologies de Lyon UMR CNRS 5270

SPEI Europe 2022

Why cleaning gold?

- Most of the contamination is due to adventitious hydrocarbons which is remove thanks to oxidative treatments
 - Electrochemical cleaning.
 - Piranha (H_2SO_4/H_2O_2 , Caro Acid H_2SO_5),
 - UV/ozone,
 - Oxygen plasma,
- However:
 - $-Au_2O_3$
 - Contamination with sulfonate
 - Surface roughening

SPEI Europe 2022

Au₂O₃ and possible impact

F. Palazon PhD thesis Ecole Centrale de Lyon

- Au₂O₃ thickness is treatment dependent=> stability
 - RF O₂ plasma²⁻³ 300 W => 5-7 nm, 600 W => 6-10 nm
 - UV/ozone : 1-2 nm¹
 - Piranha: controversy
- Effect on SAM organisation⁴
- How to get rid of it?
 - Wait, EtOH⁵

 King *et al*, J. Vac. Sci. Technol. Vac. Surf. Films, 1995, 1247-1253
 Stadnichenko *et al*, Surf. Eng., 2018, 1-5
 Stadnichenko *et al*, J. Struc. Chem., 2015, 557-565
 Woodward et al Langmuir 2000, 5347-5353
 Ron *et al*, Langmuir, 1994, 4566-457, Makaraviciute *et al*, ACS Appl. Mater. Interfaces 2017, 26610-26621

Institut des Nanotechnologies de Lyon UMR CNRS 5270

SPEI Europe 2022

Sulfonate contamination

Oxidation of sulphur containing compounds (a) Increases (c) 174 172 170 168 166 164 162 160 158 **Binding Energy (eV)**

Worley et al, J. Vac. Sci. Technol. A, 1995, 2281-2284

Piranha treatment time S-TBA O Au oS o Au (15 nm) Ti (2.5 nm) PT 10 to 30 s (b) (e) սսսղղղ, PT 60 s (f) (c)

Thomas et al, ACS Appl. Mater. Interfaces 2012, 4, 5945-5948

SPEI Europe 2022

Formation of Au-S

Engel et al, Chem. Soc. Rev., 2017, 2057-2075

- Physisorption followed by H-S cleavage => Reaction with adatoms: -161 kJ/mole
- XPS: Free thiol S2p 163 eV, Thiolate S2p at 162 eV
- IR: 2925 cm⁻¹ or above for more disordered monolayers -> 2916-2917 cm⁻¹ for highly crystalline, long-chain alkanethiols.
- 1- 10mM in EtOH 12-18h at RT

Institut des Nanotechnologies de Lyon UMR CNRS 5270

SPEI Europe 2022

Stability of Au-S bond as a function of temperature

Stability of Au-S bond upon storage

- Reduce steric hindrance
- Orientation of immobilized DNA

Why mixed SAMs

• Steric hinderance

- Orientation of the probe
- A > C >G > T

Kimura-Suda *et al*, J. Am. Chem. Soc. 2003, 125, 9014-9015 Also Liu, Phys. Chem. Chem. Phys., 2012, 14, 10485–10496

How to graft biomolecules via chemical functionalisation

NHS ester activation

Protein grafting via site selective modification of antibodies

Protein grafting via site selective modification of antibodies

Anti-fouling strategies

Fouling resistant surfaces

- Chemically repulsive
 - Hydrophilic neutral molecules
 - PEG₃₋₈, Polyglycerol, Dextran, Hyaluronic acid, agarose, Poly(2-hydroxyethyl methacrylate)...
 - Zwitterion: carboxybetaine, sulfobetaine phosphorylcholine (PC), zwitterionic peptides...
- Blocking,
 - **BSA** (1%, rinsing with PBS or PBS-T 0,02)
 - Casein or dry milk (contains biotin),
 - Mucin
 - Salmon Sperm DNA,
 - PolyA....
 - Commercial blocking solution

Review Chen *et al*, Acta Biomaterialia, 2021, 45–62 Lin *et al*, Analyst, 2020,1110-1120 Maan et al, Adv. Funct. Mater. 2020, 2000936

Institut des Nanotechnologies de Lyon UMR CNRS 5270

SPEI Europe 2022

Ruiz *et al*, J Biomater Sci Polym Ed, 1999,931-55
Tan *et al*, Int. J. Electrochem. Sci., 2020, 9446 – 9458
A. Morlay *et al*, Measurement, 2017, 305–310
B. Petrou et al, Biomater. Sci., 2018, 2282–2297

Multimaterial substrate

Orthogonal chemical functionalisation of multimaterial substrate

Orthogonal chemical functionalisation of multimaterial substrate

Conclusions

- Cleaning
 - Oxygen Plasma Cleaning
 - Au₂O₃ => Thickness dependence
 - Time or EtOH
- Au-S is reversible
- Oriented immobilization
 - DNA: A rich sequences, mixed SAMS
 - Protein
- In complex media, blocking remains to be tackle on a case to case => no universal anti-foulant.
 - BSA blocking and PEG a good starting point

SPEI Europe 2022

Acknowledgement

ANR-12-NANO-0016

ANR-21-CE24-0029-01

SPEI Europe 2022

Thank you for your attention

SPEI Europe 2022