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Abstract

A new mathematical model for time-dependent electroencephalography (EEG) is
developed and analysed. Evolution with time is introduced into the standard EEG
model by considering dipolar sources with time-dependent moments and source posi-
tions. Dimensional analysis shows the validity of the quasi-stationary approximation
for all tissues of the humain head. Non-linear systems of differential equations based on
gating particles are used to model the postsynaptic current at the neuron level which,
in turn, yields the dipolar source term of the boundary value problem. The well-
posedness of the forward time-dependent EEG problem is proved by the subtraction
approach for moments with L2-regularity in time and continuous source trajectories.
Numerical results explain the pipeline from the simulation of the postsynaptic current
up to the potential recorded at the electrodes in a 2D circular configuration and on
the three-dimensional realistic head model of a neonate. The inverse source problem
is formulated with the help of a time-dependent non-linear measurement operator
and identifiability and stability results are proven. It is numerically solved by the
Minimum Norm Estimate and the computation of the involved Lead Field Matrix is
explained for the particular case of the subtraction approach. The reconstruction of
the trajectory of a moving source point with time-dependent moment illustrates the
approach for the inverse problem in the 2D configuration.

Keywords: time-dependent electroencephalography, dipolar sources, neuronal model,
inverse source problem, moving source points.
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1 Introduction

Electroencephalography (EEG) is one of the most widespread functional brain imaging
techniques. Measurements of the electric potential generated by normal or pathological
brain activity are taken at electrodes placed at the surface of the scalp. They record in a
passive and non-invasive way the voltage potential fluctuations between different cortical
regions. EEG-monitoring can be done at the bedside of the patient which makes the
technique particularly appropriate for neonates and premature babies. The important
goal of brain imaging using EEG is to localize cerebral sources generating measured EEG
signals. EEG is known to have an excellent resolution in time and is able to record neural
events in order of one millisecond. It is one of the main tools in presurgical evaluation
for refractive epilepsy since the measurements contain valuable information about the
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localization of active brain areas. Neonatal EEG is used to assess seizure recognition
and classification and to make epilepsy syndrome diagnoses. It provides also prognostic
information for other brain dysfunctions (e.g [24]).

The development of multimodal analysis, coupling EEG with other imaging modalities,
is likely to improve electrical source analysis since it gives additional information and could
allow to detect activity which is less visible in EEG. An example is the study of [36] where
hemodynamic changes among 10s before an epileptic seizure have been observed. Different
strategies can be considered, from coupling at the image level allowing to constrain further
the solution of the EEG inverse problem, up to the physiological level where the evolution
in time of the significative variables as cerebral blood volume, for instance, are described
by differential equations. We are particularly interested in the coupling of EEG with
optical imaging, taking advantage of the possible coregistration of EEG and NIRS (Near
InfraRed Spectroscopy) which has already been operated by collaborators from GRAMFC
INSERM UMR-S 1105 (Amiens’ hospital) [40] for neonates and premature babies. The
present work is a first step in the mathematical modeling of such a coupling. Indeed, a
time-dependent model for EEG is required in order to take into account different time
scales and gaps between signals related to the same event. The time-dependent EEG
model and its mathematical analysis is an essential brick towards a complete model for
neurovascular coupling which describes the relationship between electrical brain activity
and the hemodynamic response. To this end, we propose to get deeper insight in the link
between sources of (normal or pathological) electrical brain activity and the resulting EEG
pattern over a given time interval.

From a mathematical point of view, source localization is an inverse problem that
relies heavily on the chosen forward model for the electromagnetic field [1]. Commonly,
the following elliptic equation is considered for the forward problem{

−∇ · (σ∇u) = ∇ · jp in Ω,
σ∂nu = 0 on ∂Ω. (1.1)

Here, the unknown u represents the electric potential in the head occupying the region
Ω, σ is the electrical conductivity of the head tissues and jp denotes the primary current
produced at the neural synapses.

As mentioned above, EEG measures phenomena that are time-dependent by nature
[33, 27]. This is true at the source level as well as for the electric potential: as an example,
we cite the recent study of [35] where somatosensory evoked potentials have been analyzed
in a time window between 14 and 30 ms after stimulation. Whereas the earlier components
of the signal correspond to deeper activity in the brainstem, later peaks reveal both cortical
and subcortical activity.

But the forward model (1.1) is static. In this paper, we thus aim to answer the
question: which is the right mathematical model for time-dependent EEG? Usually, (1.1)
is derived from the full Maxwell equations by neglecting the time-derivative of the electric
and magnetic field. Here, we conduct a dimensional analysis in the spirit of [34] in order
to justify the absence of time-derivatives in an EEG model with time-dependent source
terms. We then propose a modeling for the dynamics of the primary current jp at the
neuron level. We have in mind certain situations (e.g. epileptic seizure or obstructive
sleep apnea) happening during a short period of time. At these moments, the current jp
can be net and strong. Furthermore, these episodes are generated and concentrated in a
relatively small area of the brain.

We provide a rigorous mathematical formulation of the forward problem in the presence
of dipolar sources with moving source points and dipolar moments with low regularity in
time. To this end, we generalize the subtraction approach which is a well-known technique
for the static problem (1.1) [10, 42, 5].

With regard to inverse source analysis, biomedical software generally brings already the
possibility of solving the inverse problem step by step in time when the forward problem
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is formulated with the help of a lead-field matrix [15]. Spatio-temporal source analysis
considers fixed source positions but time-varying amplitude of the moments. [37, 33], for
example, use time-dependent scalp wave forms at the electrodes which are fitted to the
recorded data . We can also cite probabilistic spatio-temporal models which embodies
temporal and spatial priors in the source localization [39, 19]. In these approaches, the
lead-field matrix is computed using the numerical resolution of the static forward problem
(1.1). Here, we adopt the PDE’s point of view based on a time-dependent forward problem
to address the question of uniqueness for the inverse problem in the case of moving dipolar
sources with moments of low regularity in time.

The paper is organized as follows. In Section 2, we derive a time-dependent EEG
model. In Section 3, we study the forward problem. We address an existence and unique-
ness result as well as numerical simulations of EEG measurements. Section 4 is devoted
to the mathematical analysis of the time-dependent inverse source problem. We prove
identifiability and stability results. Finally, numerical reconstruction of moving sources
with time-dependent moments is performed in Section 5.

2 Modeling time-dependent EEG

2.1 Dimensional analysis of Maxwell’s equations

We study an electromagnetic phenomenon in a space-time domain with characteristic
length ℓ and time scale τ . The continuous medium is characterized by its electric permit-
tivity ε, magnetic permeability µ and conductivity σ. Maxwell’s equations describe the
propagation of an electromagnetic field in this medium. Under the assumption that the
constitution laws of the medium are linear, they are given by

∇ · B = 0, ∇ × B = µ(ε∂tE + J),

∇ × E = −∂tB, ∇ · E = ρ

ε
,

(2.1)

and model the interaction between the electric field E, the magnetic induction B, the
charge density ρ and the current density J. In a conducting medium with conductivity
σ, Ohm’s law states that the free current density is given by J = σE. In the presence of
impressed current sources, a source term jp should be added to J.

The static limit of Maxwell’s equations is well understood in the case where all fields
and sources are time-independent. As soon as there is some time-dependence, however,
the full Maxwell system should apply unless mathematical analysis shows that some terms
can be neglected. Electroencephalography measures the cerebral activity during the ob-
servation. This activity is clearly variable in time, meaning that time-dependent source
terms should be considered. In this context, dimensional analysis is an interesting tool
to reduce the set of Maxwell’s equations and get simplified models under particular hy-
potheses. The idea is to observe the different physical quantities in terms of their units or
dimensions. Smallness of some of them allows to neglect certain coupling between electric
and magnetic fields [34]. To this end, we introduce the velocity of the system with mod-
ulus v = ℓ/τ . The light celerity in the medium with electromagnetic parameters ε and µ
is given by c = 1/√εµ. Here, we are interested in limit configurations where v ≪ c.

For going further into details in the analysis, a first step is to express the quantities ℓ
and c in terms of the electromagnetic parameters ε, µ and σ. Following [34], we introduce
the quantity τe = ε/σ which has dimension of time and can be interpreted as the electric
charge diffusion time. Similarly, the quantity ℓcµσ can be shown to be dimensionless and
can be written as the quotient of τm = µσℓ2 and τem = ℓ/c which both have dimension of
time. Whereas τm can be associated with the time during which the electic field penetrates
into the conducting medium, the quantity τem corresponds to the time required for fields
to propagate as an electromagnetic wave over a distance ℓ at the speed c. Comparing
the order of magnitude of these characteristic times for the electromagnetic parameters



2 MODELING TIME-DEPENDENT EEG 4

of the different head tissues gives the range of validity of simplified models for Maxwell’s
equations in EEG.

We next proceed to the scaling of Maxwell’s equations. To this end, set E(t,x) =
eE′(t′,x′) and B(t,x) = bB′(t′,x′) where e, b are reference quantities and E′, B′ are
dimensionless quantities of order O(1) depending on t′ = t/τ and x′ = x/ℓ. In the sequel,
prime notation corresponds to dimensionless operators or variables. Thus, Faraday’s and
Ampère’s laws become respectively

∇ × E = −∂tB ⇔ e

ℓ
∇′ × E′ = − b

τ
∂t′B′ ⇔ ∇′ × E′ = − ℓ

τ

b

e
∂t′B′, (2.2)

and
∇ × B = µ(ε∂tE + σE) ⇔ b

ℓ
∇′ × B′ = µ(ε e

τ
∂t′E′ + σeE′)

⇔ ∇′ × B′ = ℓ

τ

εµe

b
∂t′E′ + µσℓe

b
E′.

(2.3)

Using the definition of the characteristic times in (2.2) and (2.3), we get

∇′ × E′ = −τem
τ

cb

e
∂t′B′, (2.4)

and
∇′ × B′ = τem

τ

e

cb
∂t′E′ + τem

τe

e

cb
E′. (2.5)

We are interested in the low frequency range where the characteristic dimensions of
the system are such that

τem ≪ τ, τe ≪ τ, and τm ≪ τ. (2.6)

Then, we cannot have simultaneously

τem
τ

cb

e
= O(1) and τem

τ

e

cb
= O(1)

and at least one of the time derivatives in (2.4) or (2.5) has to be neglected. We aim to
determine the limit model from the only order between the characteristic time scales since
these are available in a medium with given parameters ε, µ and σ for a configuration with
known length ℓ and duration τ .

One may notice that τ2
em = τeτm which amounts to saying that any order between τem

and τe induces an order of τm with respect to τem.
We distinguish the following three cases:

1. τem ≪ τe: According to assumption (2.6) on τe and the relation between τm, τe and
τem, this implies the order

τm ≪ τem ≪ τe ≪ τ.

From τe ≪ τ , we deduce that τem
τ

≪ τem
τe

and the first term in the right hand side
of (2.5) is small compared to the second one. The displacement current can thus be
neglected and we get Ampere’s law

∇ × B = µσE. (2.7)

Since the left hand side of (2.5) is of order 1, we further have

cb

e
∼ τem

τe
≪ 1.

Hence, the right hand side in (2.4) can be neglected, too, which yields

∇ × E = 0. (2.8)
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2. τe ≪ τem: We get the order

τe ≪ τem ≪ τm ≪ τ.

As before, Ampere’s law (2.7) follows from τe ≪ τ and τem
τe

e

cb
∼ 1 implies

τem
τ

cb

e
∼ τem

τ

τem
τe

= τm
τ

≪ 1.

This yields again (2.8).

3. τe ∼ τem: In this case, the three characteristic times are of the same order and we
have

τm ∼ τem ∼ τe ≪ τ.

Ampere’s law (2.7) follows as above from τe ≪ τ where the quantities e and cb are
now of comparable order: e ∼ cb. Consequently,

τem
τ

cb

e
∼ τem

τ
≪ 1

and (2.8) follows.

Summing up, in a frequency range satisfying (2.6), we get the following approximation
of Maxwell’s equations

∇ · B = 0, ∇ × B = µJ,

∇ × E = 0, ∇ · E = ρ

ε
,

(2.9)

called the quasi-stationary model.

2.2 Quasi-stationary approximation for EEG

The region of interest in EEG is the human head and the different tissues within it. In
mathematical modeling of brain activity, one assumes that the permeability of head tissues
is close to the one of free space. The parameters of the medium are given by ε = εrε0
and µ = µ0 where ε0 = 8.85 × 10−12F.m−1 and µ0 = 4π × 10−7H.m−1 are respective
vacuum permittivity and permeability. The relative permittivity εr and the conductivity
σ depend on the tissue, but also on the frequency range. The typical frequency range of
the electromagnetic fields in the head is inferior to 100 Hz [16, 11, 14] and we thus take
τ ≈ 0.01s as the characteristic time scale. We consider a multilayer head model which
distinguishes between white and grey matter and takes into account the cerebrospinal
fluid (CSF) as well as skull and scalp. Uncertainty about the electric parameters should
be taken into account since in vivo measurements in the human body are in general not
available, especially for neonates and premature babies. In Table 1, we take the values
for the electric permittivity from the IT’IS data base [23] which are given for a specific
frequency from a parametrization fit based on the dispersion relation owing to [13]. The
conductivity values are taken from [25, 4] for neonates. We recall the formulæ for the
three characteristic times

τe = ε/σ, τm = µσℓ2, τem =
√
τeτm.

The characteristic length scale ℓ should be given by the thickness of the tissue in consid-
eration. Notice, however, that τe is independent from the characteristic length ℓ whereas
τm ∼ ℓ2 and τem ∼ ℓ. Hence, if the quasi-static approximation is valid for a given ℓ, it is
also valid for any smaller length scale. We thus take for ℓ the dimensions of the neonatal
head, i.e. ℓ ≈ 0.12 m. We then deduce the values of the three characteristic times.



2 MODELING TIME-DEPENDENT EEG 6

White matter Grey matter CSF Skull Scalp
εr 1.67 × 106 3.91 × 106 1.1 × 102 5.85 × 103 1.14 × 103

σ [S/m] 0.14 0.33 1.8 0.04 0.33
τm [s] 2.53 × 10−9 5.97 × 10−9 3.25 × 10−8 7.2 × 10−10 6.0 × 10−9

τem [s] 5 × 10−7 8 × 10−7 4.19 × 10−9 3.1 × 10−8 1.35 × 10−8

τe [s] 1.05 × 10−5 1.05 × 10−4 5.4 × 10−10 1.3 × 10−6 3.1 × 10−8

Table 1: Electric parameter set at 100 Hz [23, 25] and characteristic times.

We have τm ≪ τem ≪ τe ≪ τ for white matter, grey matter and skull. In CSF,
the order is reversed and in the scalp, the three characteristic times are approximately of
the same order with τm ∼ τem ∼ τe ≪ τ . These situations correspond to the different
cases studied in the previous dimensional analysis. Thus, for modeling EEG, the quasi-
stationary approximation (2.9) of the full Maxwell’s equations can be considered as a valid
model. We focus on values for neonates and premature babies, but the conclusions of the
dimensional analysis hold true for adults as well. In that case, the dimension of the head
and the skull conductivity are replaced with ℓ ≈ 0.25 m and σ = 0.0043 S/m respectively.
This yields an electric charge diffusion time τe ≈ 1.3 × 10−5s which is still small compared
to τ = 0.01s.

Equation ∇ × E = 0 shows that the electric field E derives from a scalar electric
potential, denoted by u, and is written as

E(t,x) = −∇u(t,x), (t,x) ∈ (0, T ) × Ω, (2.10)

with T > 0 an observation time and Ω ⊂ Rd (d = 2, 3) a head model. The currents in the
extracellular region of the brain can be described as a homogeneous conductor, namely
J = σE. In the brain and in particular in the cortex, the synchronized effect among a
multitude of neurons creates an intracellular current denoted by jp. The current density
J produced by cerebral activity thus splits into two terms

J = σE + jp. (2.11)

By replacing (2.10) and (2.11) in the equation ∇×B = µJ, and by applying the divergence
operator, we obtain

0 = ∇ · (∇ × B) = µ∇ · (jp − σ∇u), (2.12)

which gives the following elliptic equation

∇ · (σ∇u) = ∇ · jp. (2.13)

In order to numerically reproduce spatially localized phenomena which are variable in
time, we propose a time-dependent model for the source term jp in the form of a set of M
electric dipoles located in the brain

jp(t, ·) =
M∑
m=1

qm(t)δ(· − Sm(t)). (2.14)

Here, Sm(t) ∈ Ω and qm(t) ∈ Rd are, respectively, the position and the moment of the
m-th source at time t which is situated in the subdomain of Ω that models the brain or,
more precisely, the grey matter. The right hand side of (2.13) then reads

F (t, ·) := ∇ · jp(t, ·) =
M∑
m=1

qm(t) · ∇δ(· − Sm(t)). (2.15)
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Assuming that the conductivity of air is zero and that no electric current can flow out of
the scalp, the electric potential u is then solution of the following boundary problem with
homogeneous Neumann condition{

∇ · (σ∇u) = F in (0, T ) × Ω,
σ∂nu = 0 on (0, T ) × ∂Ω.

(2.16)

Notice that (2.16) includes the following transmission conditions at any interface Γp be-
tween two subdomains Ωp and Ωq

[u]|Γp
= [σ∂nu]|Γp

= 0 on (0, T ) × Γp. (2.17)

Here, [f ]|Γp
= f|Ωq

−f|Ωp
denotes the jump across the interface Γp of the function f defined

on Ω.

2.3 The synaptic current

In this section, we propose an approach for modeling the behavior of the time-dependent
moments qm that define the source term F at the neuron level. To this end, we fo-
cus on the main steps of the brain’s electrical activity (see Figure 1, source: https:
//commons.wikimedia.org/wiki/File:SynapseSchematic_en.svg) and their respective
mathematical modeling. We refer to [38] for a very complete review of computational mod-
els in neurosciences.

Figure 1: Schematic of a synapse

Neurons are responsible for transmitting information between brain cells, through elec-
trical impulses and chemical signals. The neuron is composed by three parts, the soma
or cell body, the dendrites and the axon. When a stimulus occurs, the dendrites transmit
the message to the soma which generates an action potential. The action potential is in
turn sent through the axon and arrives at the presynaptic neuronal membrane which is
separated from the postsynaptic neuron by the synaptic cleft. The action potential in-
duces the release of neurotransmitters into the synaptic cleft which pass the information
to the postsynaptic neuron and create the postsynaptic potential. The action potential
can be described for example by the Hodgkin-Huxley model [22] which represents the ner-
vous system as an electrical circuit. It was the first quantitative model that described the
activation of membrane channels and was originally used to calculate action potentials in
the squid giant axon. Since then, different models have been developed [12, 21], but the
Hodgkin-Huxley formalism remains the basic reference for mathematical modeling of the
interdependence between the membrane potential and the different ionic currents. Ba-
sically, the neurons are traversed by sodium (Na+) and potassium (K+) currents which
travel across voltage gated ionic channels. Each channel has a conductance that can be
expressed as a maximum conductance, respectively ḡNa and ḡK , multiplied by a factor
between 0 and 1. The Hodgkin-Huxley model considers that the potassium channel is
composed by four independent components, closed or open. Thus, if n represents the pro-
portion of open potassium channels, the probability to have these four components open

https://commons.wikimedia.org/wiki/File:SynapseSchematic_en.svg
https://commons.wikimedia.org/wiki/File:SynapseSchematic_en.svg
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is n4. This leads to a differential equation

dn
dt = αn(V )(1 − n) − βn(V )n,

where the opening and closing rates αn and βn depend on the membrane potential V.
Then, the amount of ions that cross the membrane is given by

IK(t) = n4ḡK(V (t) − EK(t)),

with EK the resting potential of the potassium ion. The case of the sodium ion current is
a little different. In fact, the channels can be active and open, inactive and open, or closed,
and two gating particles, m and h, are needed, representing respectively the fraction of
active open and inactive open channels. The three possible states lead to a couple of
differential equations

dm
dt = αm(V )(1 −m) − βm(V )m,
dh
dt = αh(V )(1 − h) − βh(V )h,

(2.18)

with opening and closing rates αm (resp. αh) and βm (resp. βh) depending again on the
membrane potential V . The sodium current is then given by

INa(t) = m3hḡNa(t)(V (t) − ENa(t)).

Kirchhoff’s current law stipulates that the sum of the different ionic currents and the
capacitive current C dV

dt equals the applied exterior current (or stimulus) Iapp,

Iapp(t) = C
dV

dt
(t) + INa(t) + IK(t) + IL(t),

where C is the specific membrane capacitance and IL denotes the leak current which
depends linearly on the membrane potential V . The Hodgkin-Huxley model is the resulting
set of non-linear differential equations

−C dV
dt = m3hḡNa(V − ENa) + n4ḡK(V − EK) + ḡL(V − EL) − Iapp

dn
dt = αn(V )(1 − n) − βn(V )n

dm
dt = αm(V )(1 −m) − βm(V )m

dh
dt = αh(V )(1 − h) − βh(V )h

(2.19)

where the expressions for the rates α(V ) and β(V ) of the different gating particles are
obtained by experimental fitting and can be found in literature [22]. The resolution of
problem (2.19) gives the dynamics of the membrane potential V and allows the numerical
simulation of action potentials (see Section 3.2).

In response to an action potential (i.e. a presynaptic spike), neurotransmitters are
released at the presynaptic terminal. These neurotransmitters then move into the synaptic
cleft and bind with receptors in the postsynaptic neuron, opening ion channels. This
movement of ions across the neuronal membrane generates a postsynaptic current Isyn
which is given by

Isyn(t) = g(t)(Vpost(t) − Vrev). (2.20)

Here, the conductance g(t) depends on the presynaptic neuron, Vpost is the potential
accross the postsynaptic membrane, and Vrev is a (constant) reversal potential the value
of which depends on the neurotransmitter.
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There are different types of neurotransmitters and the model will depend on which
neurotransmitter we consider. Here, we focus on a single channel model which is valid e.g.
for AMPA or GABAA neurotransmitters which are, respectively, excitatory or inhibitory
neurotransmitters. As before, we express the conductance as a maximum conductance ḡ
and a factor between 0 and 1 modeling the proportion of open channels. Thus, we have
g(t) = ḡs(t) in (2.20) where s is obtained by solving the differential equation [8]

ds
dt = K1[T ](1 − s) −K2s, (2.21)

with K1, K2 two constants that depend on the neurotransmitter and [T ] the concentration
of neurotransmitters in the synaptic cleft. Here, we use a stationary relationship between
[T ] and Vpre from [8] according to which [T ] is given by

[T ](Vpre) = Tmax
1 + exp(−(Vpre − VT )/Kp)

, (2.22)

where Tmax is the maximum concentration of transmitters in the synaptic cleft, VT the
value at which the concentration is halfed, Kp models the steepness and Vpre = V is the
presynaptic action potential, solution to (2.19). Finally, we solve the differential equation

−C dVpost
dt = ḡs(t)(Vpost − Vrev) (2.23)

to get the postsynaptic potential Vpost. The corresponding postsynaptic current is then
given by the right hand side of (2.23). Whereas action potentials only occur during a few
milliseconds (1-2ms), postsynaptic potentials persist for a much longer period (20-40ms)
and are dominating. It is commonly admitted that EEG signals result from the sum of
postsynaptic currents generated by a large amount (≈ 106) of synchronized pyramidal
neurons with similar orientiations. The above analysis describes potentials and currents
at the neuron level.

If the active area of the brain at time t is localized at a position Sm(t), the dipolar
current source in the time-dependent forward EEG problem (2.16) can thus be defined
with help of the postsynaptic current Isyn by

qm(t) · δSm(t) = 106Isyn(t)um(t) · δSm(t) (2.24)

where um(t) ∈ R3 is a unit vector describing the orientation along the dendrites of the
synchronized neurons at time t. The solution u of (2.16) then models the spatial distri-
bution in the head of the postsynaptic potential generated by the neuronal current Isyn at
Sm over the time interval (0, T ).

3 The forward problem in time-dependent EEG

3.1 Existence and uniqueness result

In this section, we address the resolution of the forward problem (2.16). Let us give first
some notations and hypotheses. Mathematically, a head model can be described as follows.
Let Ω ⊂ Rd be a bounded simply connected domain with regular boundary Γ := ∂Ω and
consider a partition of Ω into P open subdomains (Ωp)p=1,...,P , such that

Ω̄ =
P⋃
p=1

Ω̄p and Ωp ∩ Ωq = ∅ ∀p ̸= q.

Subdomains Ωp describe the different tissues of the head. In the case of concentric subdo-
mains as in Figure 2, we denote by Γp the interface between the subdomains Ωp and Ωp+1
and assume that (Γp)p are closed regular surfaces. Let np be the unit normal vector to Γp
from Ωp to Ωp+1.

We make the following assumptions on the moments, sources, and the conductivity:
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Figure 2: Three-layer head model

(H1) qm ∈ L2(0, T )d and Sm ∈ C0([0, T ])d, ∀m ∈ {1, . . . ,M}.

(H2) At time t, the points (Sm(t))m are mutually distinct, i.e.

Sm(t) ̸= Sk(t),∀m ̸= k.

(H3) All sources are located in the same subdomain Ωp0 , p0 ∈ {1, . . . , P}, and there is a
convex domain D ⊂⊂ Ωp0 , such that

M⋃
m=1

{Sm(t), t ∈ [0, T ]} ⊂ D, (3.1)

and the conductivity is constant on D: σ|D = σD for a constant σD > 0.

Due to the lack of regularity of the source term F , a direct variational formulation
of (2.16) in H1(Ω) is not possible. A possibility is to apply the subtraction approach
[10, 5, 42]. It consists of decomposing the potential u into a potential ũ which contains
the singularity and a regular lifting w:

u = ũ+ w on (0, T ) × Ω.

But in the time-dependent setting with moments qm belonging to L2(0, T )d, the bound-
ary value problem (2.16) with source term (2.15) can not be understood at fixed time t.
The definition of the singular portential ũ thus needs to be done with caution. To this
end, we introduce for m ∈ {1, . . . ,M} and i ∈ {1, . . . , d}, the canonical source term F

(i)
m :

∀t ∈ [0, T ], F (i)
m (t, ·) = e(i) · ∇δ(· − Sm(t)) (3.2)

where e(i) denotes the i-th canonical basis vector of Rd. Notice that F (i)
m is well defined at

any time step t since Sm is continuous on [0, T ]. The associated singular potential ũ(i)
m (t, ·),

i = 1, . . . , d, is solution of the following Poisson equation

∀t ∈ [0, T ], σD∆ũ(i)
m (t, ·) = F (i)

m (t, ·) in Rd.

Thus, ũ(i)
m (t, ·) is obtained by convolution in the space variable x of the fundamental

solution of the Laplace equation with the right hand side 1
σD

e(i) · ∇δ(· − Sm(t)) which
leads to

ũ(i)
m (t,x) = 1

2d−1πσD
e(i) · x − Sm(t)

|x − Sm(t)|d , ∀t ∈ [0, T ], ∀x ∈ Rd \ {Sm(t)}. (3.3)
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At fixed time t ∈ [0, T ], consider the following boundary value problem with regular
right hand side−∇ · (σ∇w(i)

m (t, ·)) = ∇ · ((σ − σD)∇ũ(i)
m (t, ·)) in Ω,

σ∂nw
(i)
m (t, ·) = −σ∂nũ

(i)
m (t, ·) on Γ.

(3.4)

We prove here below that (3.4) admits a variational solution in an appropriated vector
space. To this end, define the bilinear form a(·, ·) on H1(Ω) ×H1(Ω) by

a(w, v) =
∫

Ω
σ∇w · ∇v dx.

For fixed t ∈ [0, T ], denote by l(i)m (t; ·) the following linear form defined for v ∈ H1(Ω),

l(i)m (t; v) =
∫

Ω\D̄
(σD − σ)∇ũ(i)

m (t, ·) · ∇v dx −
∫

Γ
σD∂nũ

(i)
m (t, ·)v ds.

Since problem (3.4) involves a Neumann boundary condition, its solution is determined up
to an additive constant only. We therefore introduce the subspace of H1(Ω) of functions
with vanishing mean value,

V = H1(Ω) ∩ L2
0(Ω), (3.5)

where
L2

0(Ω) =
{
v ∈ L2(Ω)

∣∣∣∣ ∫
Ω
v dx = 0

}
.

Then, the following proposition holds true:

Proposition 3.1. Let σ ∈ L∞(Ω) be such that 0 < σmin ≤ σ ≤ σmax a.e. on Ω with
constants σmin and σmax. Let Sm ∈ C0(0, T )d for any m ∈ {1, . . . ,M} and assume that
(H2) and (H3) are satisfied. Then, for m ∈ {1, . . . ,M} and i ∈ {1, . . . , d}, the following
problem admits a unique solution:Find w(i)

m ∈ C0([0, T ];V ) such that
a(w(i)

m (t, ·), v) = l
(i)
m (t; v) ∀v ∈ H1(Ω), ∀t ∈ [0, T ].

(3.6)

The solution of (3.6) satisfies (3.4) in a weak sense.

Proof. According to the assumptions on σ, the bilinear form a(·, ·) is continuous and
coercive on V × V . For the linear form, consider v ∈ H1(Ω) and t ∈ [0, T ]. We have

|l(i)m (t; v)| ≤ 2∥σ∥L∞(Ω)∥∇ũ(i)
m (t, ·)∥L2(Ω\D̄)∥v∥H1(Ω) + CΓσD∥∂nũ

(i)
m (t, ·)∥L2(Γ)∥v∥H1(Ω)

where CΓ > 0 is the constant of the trace operator on H1(Ω).
The potential ũ(i)

m (t, ·) is regular outside the domain D which allows to conclude that
l
(i)
m (t; ·) is continuous on H1(Ω) and satisfies

|l(i)m (t; v)| ≤ C∥v∥H1(Ω)

with a constant

C = 2∥σ∥L∞(Ω) max
t∈[0,T ]

∥∇ũ(i)
m (t, ·)∥L2(Ω\D̄) + CΓσD max

t∈[0,T ]
∥∂nũ

(i)
m (t, ·)∥L2(Γ)

which is independent from t. The compatibility condition l
(i)
m (t; 1) = 0 can be proved as

in [5] with the help of the solid angle formula. Then, Lax-Milgram’s theorem guarantees
the uniqueness of the solution at fixed time t. We further get

∥w(i)
m (t, ·)∥V ≤ C

α
∀t ∈ [0, T ]

where α > 0 is the coercivity constant of a(·, ·). This proves that w(i)
m ∈ C0([0, T ];V ). ■
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Now, the time-dependent EEG problem (2.16) with source term (2.15) admits a solu-
tion in the following sense:

Theorem 3.2. Let σ ∈ L∞(Ω) be such that 0 < σmin ≤ σ ≤ σmax a.e. on Ω with constants
σmin and σmax. Assume (H1) – (H3) to be true. For i ∈ {1, . . . , d} and m ∈ {1, . . . ,M},
let w(i)

m be the solution of (3.6) where ũ(i)
m is defined by (3.3). Finally, denote by q(i)

m the
i-th component of the moment qm ∈ L2(0, T )d. Then,

u =
M∑
m=1

d∑
i=1

q(i)
m (ũ(i)

m + w(i)
m ) (3.7)

is solution of the time-dependent EEG problem{
∇ · (σ∇u) = F in (0, T ) × Ω,
σ∂nu = 0 on (0, T ) × Γ,

with source term

F (t, ·) =
M∑
m=1

qm(t) · ∇δ(· − Sm(t)).

Proof. First notice that ∇ · (σ∇(ũ(i)
m + w

(i)
m )) is well defined at any time t since

∇ · (σ∇(ũ(i)
m + w(i)

m )) = ∇ · ((σ − σD)∇ũ(i)
m ) + σD∆ũ(i)

m + ∇ · (σ∇w(i)
m ) = F (i)

m .

We further have σ∂n(ũ(i)
m +w

(i)
m ) = 0 on [0, T ] × Γ by construction. Now, let u be defined

by (3.7). Then,

∇ · (σ∇u) =
M∑
m=1

d∑
i=1

q(i)
m ∇ · (σ∇(ũ(i)

m + w(i)
m )) =

M∑
m=1

d∑
i=1

q(i)
m F (i)

m = F in (0, T ) × Ω

and

σ∂nu =
M∑
m=1

d∑
i=1

q(i)
m ∂n(ũ(i)

m + w(i)
m ) = 0 on (0, T ) × Γ.

■

3.2 Numerical simulation of the potential at the electrodes

In experiments, a finite number of surface electrodes are attached to the boundary Γ.
Consider L well-separated pointwise electrodes {eℓ}Lℓ=1 on Γ. Measurements are given by

u(eℓ) = Uℓ, ℓ = 1, . . . , L, (3.8)

with U = (Uℓ)Lℓ=1 ∈ RL. As we have seen in the study of the forward problem, due to
the Neumann boundary condition, the solution is determined up to an additive constant
only. In theory, we can consider solutions in the subspace of H1(Ω) with vanishing mean
value to have the uniqueness of the solution. In practice, the absolute potential cannot
be measured by EEG and the measured voltage is the difference between the potential at
electrode eℓ and a reference potential set to zero at a reference electrode e0. Numerically,
this is an alternative to fix the constant of the Neumann problem which guarantees the
uniqueness of the solution. We present numerical simulations of the postsynaptic potential
U recorded at the electrodes by solving the forward problem (2.16) with source term F
using the subtraction approach. According to the previous section, we propose the compu-
tation of the source term F through the following steps: firstly, solve the Hodgkin-Huxley
equations numerically to obtain the dynamics of the membrane potential V and simulate
action potentials (spikes), then use the potential V to calculate the concentration of neu-
rotransmitters according to (2.22) (GABA_A in the examples hereafter with constants
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taken from [8]) and finally deduce the postsynaptic current Isyn from (2.20). Then, F
is given by (2.24) for chosen orientation and position. In the simulations hereafter, we
choose as stimulus a constant applied current equal to 9mA over a time domain of 100 ms.
The Hodgkin-Huxley equations are solved by a variable-time-step, variable-order solver
based on backward differentiation formulas of orders 1 to 5 and yield the time-course of
the membrane potential shown on Figure 3. This choice produces regular spiking. Each
spike has a characteristic time of about 1-2 ms. With this presynaptic potential, we solve
differential equations (2.21) and (2.23) to get the postsynaptic current shown on Figure
4. According to values in literature [38], the maximal conductance ḡ in (2.20) is at most
1 nS, voltage is expressed in mV, such that the postsynaptic current Isyn is of the order of
10−12 A. Now, if we consider that about a million neurons are simultaneously active and
oriented in the same direction, the resulting current is of order 10−6 A which is compatible
with the values taken in [5]. Depending on the distance between the source point and the
surface of the scalp, the recorded potential has a magnitude of several mV as observed in
experimental EEG patterns.

Figure 3: Dynamics of the membrane po-
tential V and simulation of action potentials
(spikes).

Figure 4: Postsynaptic current Isyn.

At any discrete time step tk, we solve problem (2.16) by the subtraction approach and
use the finite element method with Lagrange-P1 elements implemented in FreeFem++
[20] to compute the regular potentials w(i)

m (tk, ·), i ∈ {1, . . . , d}, solution to the variational
formulation (3.6). Then, the potential is computed using (3.7). Since the singularity of
the potential u is taken account exactly in the subtraction approach, the discretization
error is given by the error on the regular potential. We refer to [5] for a detailed error
analysis. One may notice that the integrals of the linear forms l(i)m are well defined since
the integration domain does not contain the singular point Sm(t). However, it has been
mentioned in [42] that the discretization error at a fixed mesh size is of order O(1/δ) where
δ represents the distance of Sm(tk) to the nearest interface Γp. Numerical verification of
the code showed convergence rates with respect to the mesh size of 1.2 and 1.98 in the
H1- and L2-norm, respectively. Visualization confirmed that the discretization error is
maximal near the projection of the source position Sm onto the nearest interface.

Hereafter, we provide numerical simulations of the postsynaptic potential in a circular
multi-layer configuration in 2D and on a realistic head model of a healthy fullterm newborn
obtained from coregistration of MR and CT images of the Amiens’ hospital database
(courtesy GRAMFC, INSERM U1105, Amiens, France (H. Azizollahi [4])). The models
distinguish between five tissues: white (WM) and grey matter (GM), CSF, skull and scalp
for the circular 2D model and brain, CSF, skull, fontanels and scalp for the realistic head
model. Table 2 summarizes the mesh parameters. The conductivity values of the different
tissues are taken from Table 1. For the realistic head model, brain conductivity is set to
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0.33 [S/m] and fontanels are considered with σ = 0.3 [S/m].

Model Nodes Tetrahedra hmin [m] hmax [m] diameter [m]

M2D 8232 16184 8.9 10−4 2.2 10−3 0.12

Mreal 108 669 590 878 3.4 10−4 14 10−3 0.12

Table 2: Characteristics of the 2D circular and the realistic head model.

Results for the 2D circular configuration.

Figure 6 represents the voltage measured at eight electrodes in the 2D circular configu-
ration. One clearly distinguishes the three peaks which arise in the postsynaptic current
(see Figure 4). The position of the electrodes and the source point as well as the width of
the different layers of the model are given in Figure 5 and Table 3. In the present setting,
the dipole is directed towards electrode e5, and e1 is the reference electrode where the
potential u is set to zero. Then, the amplitude of the measured voltage is maximal at e5
and negative since the vectors q and (e5 − S) are in opposite directions.

Figure 5: Electrode positions and source
point.

M2D GM CSF skull scalp

width [mm] 6 4 4 6

Table 3: Width of the different tissues from
interior to exterior layers. 2D circular config-
uration.

Figure 6: Postsynaptic potential at 8 electrodes between 0 and 100 ms. Circular 2D
configuration.
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Results for the realistic head model.

In this paragraph, we show numerical simulations of the postsynaptic potential for the
realistic head model. Figure 7 (left) visualizes the distribution of four of eight electrodes
where we record the brain activity. The source is located in the grey matter, close to
the interface with the CSF and directed towards the surface (Figure 7, middle). Figure 7
(right) gives a snapshot of the simulated potential on the scalp at t = 10ms. In Figure 8, we
represent the voltage at eight electrodes on the surface of the realistic head model over the
time interval (0, T ). The reference electrode is situated outside the set of the represented
electrodes. One clearly sees that electrodes localized in the scalp area towards which the
source is oriented, record the most significant information (red line corresponding to e2 in
Figure 8).

Figure 7: Electrode positions (left). Frontal cut and characteristics of the source (middle).
Potential at the scalp at time t = 10ms (right). Realistic head model.

Figure 8: Postsynaptic potential at 8 electrodes between 0 and 100 ms. Realistic head
model.

4 Mathematical analysis of the inverse source problem
The inverse source problem we are interested in, consists in reconstructing the time-
dependent source term F of the form (2.15) from a measurement g := u|(0,T )×Γ∗ where Γ∗ ⊂
Γ with meas(Γ∗) ̸= 0. More precisely, assuming the number M of sources to be known,
the aim is to determine the locations (Sm(t))m=1,...,M and the moments (qm(t))m=1,...,M
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of the source F as functions of time. Notice that numerical methods exist that are able to
retrieve the number of sources independently from the source locations and its moments
[10, 29]. These methods apply at fixed time steps t ∈ [0, T ].

We define the following non-linear mapping Λ, called measurement operator,

Λ :
(
L2(0, T )d × C0(0, T )d

)M
−→ L2(0, T ;H

1
2 (Γ∗))

φ = (qm, Sm)m=1,..,M 7−→ u|(0,T )×Γ∗ ,
(4.1)

where u is the solution of the direct problem{
∇ · (σ∇u) = F in (0, T ) × Ω,
σ∂nu = 0 on (0, T ) × Γ,

(4.2)

with time-dependent source term

F (t, ·) =
M∑
m=1

qm(t) · ∇δ(· − Sm(t)). (4.3)

The inverse problem then reads as follows:
Given a measurement g ∈ L2(0, T ;H

1
2 (Γ∗)), retrieve a source configuration φ ∈(

L2(0, T )d × C0(0, T )d
)M

such that

Λ(φ) = g. (4.4)

In this section, we prove two essential properties for this inverse source problem: stability
and identifiability. Notice that we do not address in this study the question of existence
of a solution since it practically never arises when the inverse problem corresponds to a
realistic situation as it is the case in EEG source reconstruction. Indeed, lack of existence
indicates rather a wrong formulation of the inverse problem.

In §4.2, we give an identifiability result if both the moments and the source points
in configuration φ are continuous in time. In this particular case, identifiability follows
directly from the corresponding result for static source terms [6]. Stability is proven in
§4.3, again for source configurations that are continuous in time. The essential point is here
to prove that the stability constant is time-independent. The main result of this section
is given in §4.4 where identifiability is proven for moments that have only L2-regularity.

4.1 Differentiability of the measurement operator

The aim of this section is to prove regularity results for the measurement operator Λ
defined in (4.1). To this end, let φ = (qm, Sm)1≤m≤M ∈ (L2(0, T )d × C0(0, T )d)M be a
time-dependent source configuration, and consider ψ = (pm, Tm)1≤m≤M ∈ (L2(0, T )d ×
C0(0, T )d)M such that

Sm(t) + Tm(t) ⊂⊂ D ∀t ∈ [0, T ],m ∈ {1, . . . ,M}. (4.5)

Let us define by u1
ψ the solution of the following boundary value problem{

∇ · (σ∇u1
ψ) = F 1

ψ in (0, T ) × Ω,
σ∂nu

1
ψ = 0 on (0, T ) × Γ,

(4.6)

with the source term

F 1
ψ(t, ·) =

M∑
m=1

pm(t) · ∇δ(· − Sm(t)) − qm(t) ·H(δ(· − Sm(t))Tm(t) (4.7)

where H(·) denotes the Hessian matrix with respect to the space variable.
The following proposition holds.
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Proposition 4.1. The mapping Λ (4.1) is Fréchet differentiable and its derivative at φ,
denoted by Λ′(φ), is given by

Λ′(φ) :
(
L2(0, T )d × C0(0, T )d

)M
−→ L2(0, T ;H

1
2 (Γ∗))

ψ 7−→ (u1
ψ)|(0,T )×Γ∗ ,

(4.8)

where u1
ψ is the solution of (4.6).

The proof of Proposition 4.1 is an adaptation of Proposition 4.1 in [6] to a time-
dependent setting. It relies essentially on the subtraction approach for instationnary
source terms developped in §3.1. We sketch the main steps of the proof and refer to [6]
for any details.

Proof. Let φ ∈ (L2(0, T )d × C0(0, T )d)M be a time-dependent source configuration and
denote by ψ = (pm, Tm)1≤m≤M any increment in (L2(0, T )d×C0(0, T )d)M such that (4.5)
holds true. Let ∥·∥L2×C0 denote the canonical norm of (L2(0, T )d × C0(0, T )d)M .

In order to prove that

lim
∥ψ∥L2×C0 →0

∥Λ(φ+ ψ) − Λ(φ) − Λ′(φ)ψ∥
L2(0,T ;H

1
2 (Γ∗))

∥ψ∥L2×C0
= 0, (4.9)

denote by Fψ and F the source terms of type (4.3) corresponding, respectively, to source
configurations φ + ψ and φ. Let uψ and u be the associated solutions. Source term F 1

ψ

and solution u1
ψ corresponding to the term Λ′(φ)ψ have been defined in (4.7) and (4.6),

respectively. Both uψ and u can be rigorously defined by the subtraction approach in §3.1.
The subtraction approach also applies to problem (4.6). Indeed, this has been proven in
[6] for a static configuration and can be generalized as in §3.1 to the time-dependent case
by decomposition of the moments pm(·) and qm(·) on the canonical basis of Rd. Hence,
(4.9) reads

lim
∥ψ∥L2×C0 →0

∥uψ − u− u1
ψ∥

L2(0,T ;H
1
2 (Γ∗))

∥ψ∥L2×C0
= 0. (4.10)

Now, the function eψ := uψ − u − u1
ψ can be split into a singular part ẽψ and a varia-

tionnal correction term belonging to H1(Ω). The singular part is obtained as before by
convolution of Fψ − F − F 1

ψ with the fundamental solution G of the Laplacian operator.
Taylor expansion of the first order derivatives of G(· − Sm − Tm) allows to show that
∥ẽψ∥

L2(0,T ;H
1
2 (Γ∗))

is of order O(∥ψ∥2
L2×C0). The regular part of eψ is solution to a varia-

tional problem which involves ẽψ in a linear way and is thus also of order O(∥ψ∥2
L2×C0).

This completes the proof. ■

4.2 Identifiability result in C0

For source configurations φ that are continuous in time, i.e. qm ∈ C0(0, T )d and Sm ∈
C0(0, T )d (m = 1, . . . ,M), we can generalize several results that have been obtained in
[6] in the static configuration. To this end, consider the following (static) measurement
operator Λs

Λs :
(
Rd ×D

)M
−→ H

1
2 (Γ∗)

(qm, Sm)1≤m≤M 7−→ us|Γ∗

(4.11)

where (qm, Sm)1≤m≤M is a static source configuration, i.e. qm ∈ Rd and Sm ∈ D ⊂ Rd,
and the measurement us|Γ∗ is obtained by solving the following forward problem

−∇ · (σ∇us) =
M∑
m=1

qm · ∇δSm in Ω,

σ∂nus = 0 on Γ.
(4.12)
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Notice that the classical subtraction approach for the stationary EEG problem applies
to (4.12). The link with the time-dependent measurement operator Λ is the following:
Assume that φ = (qm, Sm)1≤m≤M with qm ∈ C0(0, T )d and Sm ∈ C0(0, T )d is a regular
time-dependent source configuration. Then,

Λs(φ(t)) = Λ(φ)(t, ·) in H1/2(Γ∗) ∀t ∈ [0, T ]. (4.13)

The identifiability result for source configurations with regular moments and source points
now reads as follows

Theorem 4.2. Assume that the boundary Γ and the interfaces (Γp)p are of class C2. Let
σ ∈ L∞(Ω) be such that 0 < σmin ≤ σ ≤ σmax a.e. on Ω with constants σmin and σmax.
In addition, assume that σ|Ωp

∈ W 1,∞(Ωp) for any p = 1, . . . , P .
Let gℓ, ℓ = 1, 2 be two measurements in L2(0, T ;H

1
2 (Γ∗)) originating respectively from

source configurations φℓ = (qℓm, Sℓm)1≤m≤M . Assume that qℓm, Sℓm belong to C0(0, T )d for
any m = 1, . . . ,M and ℓ = 1, 2, and let (H2) and (H3) hold true for φℓ, ℓ = 1, 2.

Then, if g1 = g2 on [0, T ] × Γ∗, φ1(t) ≡ φ2(t) up to a permutation πt of the integers
(1, . . . ,M) for all t ∈ [0, T ].

Theorem 4.2 generalizes the static identifiability result of [6] to time-dependent source
terms with regular moments and source points. The proof relies on the unique contin-
uation principle for elliptic equations. Its application requires that the regular part w
of the solution of the direct problem (4.2) belongs to H2 on each subdomain Ωp which
is true under the regularity assumptions on the conductivity σ and the boundary (resp.
interfaces) of Ω. Notice that the C0-regularity assumption on the moments and source
points guarantees that the arguments of the proof in [6] can be applied at any fixed time
t ∈ [0, T ].

4.3 Stability result in C0

In order to formulate a stability result, we need to fix a distance between two source
configurations φℓ = (qℓm, Sℓm)1≤m≤M , ℓ = 1, 2. Assume that φ1 and φ2 have the same
number of sources M and belong to

(
C0(0, T )d × C0(0, T )d

)M
. Let t ∈ [0, T ] be fixed.

Setting Sℓ(t) = (Sℓm(t))1≤m≤M , ℓ = 1, 2, the Hausdorff distance between S1(t) and S2(t)
is defined by

dH(S1(t),S2(t)) = max
(

max
1≤i≤M

min
1≤j≤M

∥S1
i (t) − S2

j (t)∥, max
1≤i≤M

min
1≤j≤M

∥S1
j (t) − S2

i (t)∥
)

where ∥ · ∥ designates the Euclidean norm in Rd. It has been shown in [9] that there exists
a permutation πt of the integers {1, . . . ,M} such that

dH(S1(t),S2(t)) = max
1≤m≤M

∥S1
m(t) − S2

πt(m)(t)∥. (4.14)

Notice that in the time-dependent setting, the permutation πt may depend on t. We then
define the distance between φ1(t) and φ2(t) by

dπ(φ1(t), φ2(t)) = max
1≤m≤M

∥q1
m(t) − q2

πt(m)(t)∥ + max
1≤m≤M

∥S1
m(t) − S2

πt(m)(t)∥ (4.15)

where πt is the permutation such that (4.14) holds true. Finally, we introduce the following
notation for the distance between configurations φ1 and φ2.

∥φ1 − φ2∥π :=
(∫ T

0
|dπ(φ1(t), φ2(t))|2dt

) 1
2

. (4.16)

Next, fix two positive constants 0 < a1 < a2 and denote by Q the set of all vectors
q ∈ Rd such that a1 ≤ ∥q∥ ≤ a2. The following stability result holds true.
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Theorem 4.3. Let φℓ (ℓ = 1, 2) be two configurations belonging to
(
C0(0, T )d × C0(0, T )d

)M
.

Assume that (H2) and (H3) are satisfied and that

a1 ≤ ∥qℓm(t)∥ ≤ a2, (ℓ = 1, 2), ∀t ∈ [0, T ], ∀m = 1, . . . ,M. (4.17)

Then, there exists a constant C > 0, independent from t and φℓ, such that

∥φ1 − φ2∥π ≤ C

∫ T

0
∥Λ(φ1)(t, ·) − Λ(φ2)(t, ·)∥2

H1/2(Γ∗) dt. (4.18)

Proof. We first notice that according to assumption (H3), the trajectories of source points
{Sℓ(t), t ∈ [0, T ]} belong to the convex and compact set D ⊂⊂ Ωℓ0 which is at a distance
α > 0 from ∂Ωℓ0 . At a fixed time step t ∈ [0, T ], we thus can apply the stability result for
the operator Λs from [6] which reads in the present context

dπ(φ1(t), φ2(t)) ≤ c∥Λs(φ1(t)) − Λs(φ2(t))∥H1/2(Γ∗), ∀φ
1(t), φ2(t) ∈ QM ×DM .

In the above estimate, the constant c > 0 is independent from t since the estimate holds
true uniformly for all source configurations which belong to the domain QM ×DM . There-
fore, c only depends on Q and D, which are independent from t, as well as on the static
operator Λs.

The stability estimate (4.18) then follows from integration over t and taking into ac-
count identity (4.13).

■

4.4 Identifiability result in L2

We prove now a uniqueness theorem for source configurations with moments in L2(0, T )d
which ensures that the inverse source problem is well posed in the following sense: if two
measured potentials coincide on a non empty set Γ∗ during a time period (0,T), they
originate from the same source.

Theorem 4.4. Assume that (Γp)p and Γ are of class C2 for any p ∈ {1, . . . , P − 1}. Let
σ ∈ L∞(Ω) be such that 0 < σmin ≤ σ(x) ≤ σmax for almost any x ∈ Ω, where σmin and
σmax are two given positive constants. In addition, assume σp ∈ W 1,∞(Ωp), p = 1, . . . , P .
Let F be a time-dependent source of the form (2.15) whose moments and locations satisfy
hypotheses (H1), (H2) and (H3). Let Γ∗ be a subset of Γ such that meas(Γ∗) ̸= 0, and
let u be the solution of problem (2.16). Then the locations (Sm)1≤m≤M and the moments
(qm)1≤m≤M are uniquely determined up to a permutation of the integers {1, . . . ,M} from
a single measurement g =: u|(0,T )×Γ∗ .

Proof. Let

φℓ = (qℓm, Sℓm)1≤m≤M ∈ (L2(0, T ;Rd) × C0(0, T ;Rd))M , ℓ = 1, 2,

be two source configurations corresponding to respective sources F ℓ, ℓ = 1, 2, of the form
(2.15) such that

Λ(φ1) = Λ(φ2) in L2(0, T ;H
1
2 (Γ∗)). (4.19)

We shall prove that
∥φ1 − φ2∥π = 0, (4.20)

with ∥ · ∥π defined by (4.16). The density of C0(0, T ) in L2(0, T ) implies the existence of
sequences φℓn := (qℓm,n, Sℓm,n) ∈ (C0(0, T ) × C0(0, T ))M , ℓ = 1, 2, satisfying

lim
n→∞

∥φℓn − φℓ∥π = 0, ℓ = 1, 2. (4.21)
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We have
∥φ1 − φ2∥π ≤ ∥φ1 − φ1

n∥π + ∥φ1
n − φ2

n∥π + ∥φ2
n − φ2∥π. (4.22)

Since the first and the third term tend to zero according to (4.21), it is sufficient to prove

lim
n→∞

∥φ1
n − φ2

n∥π = 0 (4.23)

for obtaining (4.20). The stability result for source configurations with regular moments
(see Theorem 4.3) gives

∥φ1
n − φ2

n∥2
π ≤ C

∫ T

0
∥Λ(φ1

n)(t, ·) − Λ(φ2
n)(t, ·)∥2

H
1
2 (Γ∗)

dt

≤ 2C
∫ T

0
∥Λ(φ1

n)(t, ·) − Λ(φ1)(t, ·)∥2
H

1
2 (Γ∗)

dt

+2C
∫ T

0
∥Λ(φ1)(t, ·) − Λ(φ2(t))∥2

H
1
2 (Γ∗)

dt

+2C
∫ T

0
∥Λ(φ2)(t, ·) − Λ(φ2

n)(t, ·)∥2
H

1
2 (Γ∗)

dt.

(4.24)

From (4.19) we get ∫ T

0
∥Λ(φ1)(t, ·) − Λ(φ2)(t, ·)∥2

H
1
2 (Γ∗)

dt = 0.

According to Proposition 4.1, the operator Λ is Fréchet differentiable and thus continuous.
Together with the continuity of the norm, we obtain

lim
n→∞

∥Λ(φℓn) − Λ(φℓ)∥2
H

1
2 (Γ∗)

= 0, in L2(0, T ), ℓ = 1, 2, (4.25)

which implies lim
n→∞

∥φ1
n − φ2

n∥π = 0 by (4.24). From (4.22), we then deduce

∥φ1 − φ2∥π = 0. (4.26)

■

5 Numerical reconstruction
In this section, we illustrate source reconstruction for moving source points and time-
dependent moments. A broad number of performing inversion methods have been de-
veloped in electric source imaging at fixed time steps: among others, we cite LORETA,
sLORETA [32], MUSIC [28], RAMUS [35] as well as [30] for a comparative study. Here,
we use MNE at given time steps in order to illustrate the concept of reconstructing time-
dependent moments and moving source points in the 2D circular configuration, since it is
one of the most simplest methods which yields satisfying results when minimal a priori
information about the sources is available [17].

5.1 Lead Field Matrix and Minimum Norm Estimate

We now make precise the numerical method that will be used to solve the time-dependent
inverse source problem 4.4. Let (tk)1≤k≤K be a sequence of K time steps belonging to
the interval [0, T ]. Let φ = (qm, Sm)1≤m≤M be a time-dependent source configuration
defined on [0, T ] such that (qm(tk), Sm(tk)) is well defined for any m, 1 ≤ m ≤ M and
any k, 1 ≤ k ≤ K. Let e1, . . . , eL ∈ Γ denote the positions of L electrodes situated
at the surface of the scalp. For the potential u, solution to the forward EEG problem
(2.16) with source configuration φ, UkEEG = ( u(tk, e1) . . . u(tk, eL) )t ∈ RL denotes
the measurement vector at time step tk. Notice that we have L+ 1 electrodes, taking into
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account the reference electrode situated at e0, but only L measurements at a fixed time
step.

The resolution of the inverse problem is based on a Lead Field Matrix approach [17, 31]
which we will briefly explain now. Consider a source space S = {S1, . . . , SR} ⊂ D where
D is the domain of hypothesis (H3) in §3. In the present study, we will take for S the
interior nodes of Ωp0 . For any source point Sm ∈ S and any coordinate 1 ≤ i ≤ d, we
recall that the canonical source term F

(i)
m is defined by

F (i)
m = e(i) · ∇δ(· − Sm)

where e(i) denotes the i-th vector of the canonical basis of Rd. Notice that in this approach,
the source points Sm do not depend on t. Let u(i)

m be the associated potential, solution
of the static EEG problem (4.12) with source term F

(i)
m . Then, the measurement vector

UkEEG is given as the following matrix-vector product

UkEEG =



u1(e1) u2(e1) · · · uR(e1)

u1(e2) u2(e2) · · · uR(e2)
...

... . . . ...

u1(eL) u2(eL) · · · uR(eL)





q1(tk)

q2(tk)
...

qR(tk)


, (5.1)

where um(es) =
(
u

(i)
m (es)

)
1≤i≤d

and qm(tk) =
(
q

(i)
m (tk)

)
1≤i≤d

are vectors in Rd. In this
approach, a given source configuration is represented by the amplitudes and directions
of the moments (qm)1≤m≤R at all source points of the source space. For example, a
single source localized at a point S at time tk corresponds to a vector qk with non-zero
entries only for nodes in S which are located near to S, the amplitudes of the source being
distributed over all nodes in S. The matrix in (5.1) is called Lead Field Matrix and denoted
by L. One may notice that L is of size L × (dR) where d = 2 or d = 3 is the dimension
of the computational domain and requires the resolution of dR forward problems. Since
the source space S contains in general a huge number of sources, the computational cost
of the Lead Field Matrix can be prohibitive unless its implementation is optimized.

We perform optimization by adapting the principle from [41] to the subtraction ap-
proach. Recall that the subtraction method is based on the splitting of the discrete
potential uh into a singular potential ũ which is known explictly and a regular (discrete)
potential wh which is discretized by finite elements. Let N be the number of nodes of
the whole finite element mesh and denote by W k ∈ RN the nodal vector associated with
wh(tk, ·). W k is the solution of a linear system of the form

KW k = Jk,

where the right hand side Jk depends on the singular potential ũ. Since we only need the
values of wh at the electrodes, we apply a restriction matrix R ∈ ML,N and define

W k
EEG = RW k = RK−1Jk.

Here, Rℓj = 1 if and only if the j-th node of the mesh coincides with the ℓ-th electrode.
Then, in order to compute the matrix B = RK−1 ∈ ML,N advantageously, notice that

B = RK−1 ⇔ Bt = K−tRt ⇔ KtBt = Rt ⇔ KBt = Rt

owing to the symmetry of the matrix K. Consequently, the ℓ-th column of Bt is the
solution of a linear system with matrix K and right hand side Rt•,ℓ where Rt•,ℓ denotes
the ℓ-th column of Rt. This algorithm only needs the resolution of L linear systems K,
L ≪ (dR). Moreover, all systems have the same matrix K.
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In order to retrieve the lead field matrix from matrix B, it remains to take into account

the linear dependence of ũ and wh on the moment vector qk =
(

q1(tk) · · · qR(tk)
)t

∈

R(dR). Indeed, according to (3.7) we have

ũ(tk, ·) =
M∑
m=1

d∑
i=1

q(i)
m (tk)ũ(i)

m outside S and w(tk, ·) =
M∑
m=1

d∑
i=1

q(i)
m (tk)w(i)

m ,

where ũ(i)
m and w(i)

m are independent from the moments qm. At the finite element level, we
thus have

Uk = R(Ũk +W k) = B(KŨk + KW k) = B(KŨk + Jk).

In order to be well defined, the coefficients of Ũk ∈ RN satisfy Ũkj = 0 if Cj is a node
belonging to the source space S. Notice that Jk = KW k depends linearly on Ũk since the
right hand side of the variational formulation (3.6) involves integrals of ũ(i)

m only on Ω \D
and on Γ. This yields the factorization of the lead field matrix into

L = B(K + K̃)A (5.2)

where K̃ ∈ MN (R) is a matrix such that Jk = K̃Ũk and A ∈ MN,(dR) satisfies Ũk = Aqk.
The computational cost of the Lead Field Matrix from relation (5.2) is higher than for the
source models presented in [41]. It can however be optimized by taking into account the
sparse structure of the matrices K and K̃ and the explicit knowledge of the coefficients
of A in terms of the mesh nodes. Notice also that the Lead Field Matrix will only be
computed once for a given head model and source space.

Now, for 1 ≤ k ≤ K, the measurement vector UkEEG is related to the moment vector
qk by

UkEEG = Lqk + ηk, (5.3)

where ηk ∈ R(dR) represents additive white noise.
The Minimum Norm Estimate then corresponds to the minimizer of the following least

square problem, 
For 1 ≤ k ≤ K,

find qk,∗ ∈ R(dR) such that

qk,∗ = arg min
q∈R(dR)

∥Lq − UkEEG∥2 + α∥q∥2.

(5.4)

Here, α > 0 is the regularization parameter of classical Tikhonov regularization.

5.2 Moving source points

In this section, we present the numerical reconstruction of the trajectory and amplitude
of a moving point source in the 2D circular configuration. The synthetic measurements at
the electrodes are generated by solving the forward problem for a given time-depending
source configuration by the subtraction approach as explained in §3. We perturb these
measurements by a Gaussian noise. When we solve the inverse problem with the MNE,
we obtain an estimation of the moment qm at every node in the source space. In order to
determine the position of the estimated source, we decide to consider the source with the
highest amplitude. Thus, the position of a source at a time tk is given by

Sk,∗ = arg max
m=1,...,R

|qk,∗m |, (5.5)

where qk,∗ denotes the solution of (5.4). We then compute the error on [0, T ] in the
discrete ℓ2-norm by

ES = 1
K

K∑
k=1

∥Sk,∗ − Sk∥2. (5.6)
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Figure 9: Distribution of the 32 electrodes (left), Estimated (blue line) vs. exact trajectory
(red line) (right).

We consider a single source which moves on a trajectory of the form S(t) = (r cos(t−
t0), r sin(t−t0)) in the grey matter layer, with a moment normal to the interface. Moreover,
we fix 32 electrodes to reconstruct the moving source (see Figure 9) and we perturb these
measures with 5% noise. The dimension of the source space S is R = 1028. It is important
to note that the exact source trajectory is parametrized in the subdomain Ωp0 , but the
reconstruction method just allows to find sources in the source space, i.e. on a node.
We thus cannot expect to find the exact position. As we can see on the Figure 9, the
estimation of the position is close to the real trajectory of the moving source. In fact, the
mean error between both lines is 0.24 cm, which is in agreement with the spatial resolution
of the order of 1 cm of general distributed methods.

Figure 10: Exact moment: x component (top left), y component (top right). Estimated
moment: x component (bottom left), y component (bottom right). Ordinate’s unit is [A].

An important point which is crucial in the resolution of inverse problems, is the choice
of an adequate regularization parameter. There are various ways to find a suitable pa-
rameter. Here, the L-curve method (see e.g. [18]) yields α ≈ 105. This value is in good
agreement with the optimal regularization value which minimizes the error to the exact
source position.

As we can see on Figure 10, the estimated moment has the same shape as the exact
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moment but there is a factor 100 between the amplitudes. The magnitude of the mo-
ments indeed depends on the regularization parameter α. Varying α allows to improve
the approximation of the moments’ magnitude at the price of increasing the error in posi-
tion. Further study of parameter selection methods, based e.g. on Bayesian Hierarchical
Modeling as in [35], should be able to improve the reconstruction.

6 Conclusion
In this paper, we formulate the EEG problem regarding evolution in time and give a rig-
orous mathematical setting for both the direct and the inverse source problem. Sources
of electrical brain activity are modeled by time-dependent moments and source positions.
The subtraction approach which has been studied in detail for the static case in [5], is
generalized to moments with low (L2) regularity in time and moving source points, and
allows discretization in space by Lagrange Finite Elements with optimal convergence or-
der. The validity of the quasi-stationary approximation of Maxwell’s equations which is
obtained by neglecting all time-derivatives despite a time-dependent source term, is ver-
ified for all tissues of the brain with the help of dimensional analysis. A full numerical
pipeline is presented that simulates the electric potential at the electrodes over a given
time interval. The electric potential is generated by a time-dependent postsynaptic cur-
rent at the neuron level which, in turn, results from the resolution of a non-linear system
of differential equations. The latter models the electrical and chemical processes at the
synapses. Numerical results in a circular 2D configuration as well as on the realistic head
model of a full-term neonate illustrate the method for the direct problem. For a fixed and
time-independent number of sources, the inverse problem is analyzed mathematically by
studying the properties of a non-linear measurement operator. We prove identifiability
for moments with L2-regularity and continuous moving sources. Numerically, the inverse
problem is formulated as a linear least square problem that involves a Lead Field Matrix.
The optimized computation of the latter matrix is explained in the case where the sub-
traction approach is used to solve the forward problem. As a proof of concept, we end with
the numerical reconstruction of a moving source point with time-dependent moment in a
2D academic configuration. Extensions to three dimensional cases are currently underway.

In clinical examination, EEG monitoring is by nature time-dependent. Numerical
source reconstruction is in general done with data extracted from the EEG pattern at a
specific time that has been considered as significative with regard to the brain activity
under study. Spatial-temporal source analysis takes advantage of EEG measurements over
a given time interval, assuming the source point stationary. To the best of the authors’
knowledge, no time-dependent mathematical model for EEG has been written or analyzed
up to now. Another contribution of the present paper is to generate time-dependent
dipolar source terms by solving classical neuronal models. Concerning the mathematical
study of the forward EEG problem, we choose to adapt the subtraction approach since
it yields a rigorous way to define its solution. It further allows to analyze precisely the
discretization error in terms of the mesh size when Lagrange Finite Elements are used.
For both the forward and the inverse problem, we pay special attention to the case of
moments with L2-regularity in time which do not allow to write the problem at a fixed
time step.

Our time-dependent EEG model is the first step towards a mathematical description
of neurovascular coupling for neonates and premature babies. Such models based on a
large set of ordinary differential equations exist at the cellular level [3]. We actually
work on linking the time-dependent models of the two involved imaging modalities, EEG
and optical imaging [2, 26]. This requires a mathematical description of the relationship
between neuronal activities and the corresponding hemodynamic responses, which are
localized in space and time. The modeling of temporal and spatial correlations is a very
challenging task. The resulting complete model will be useful for the numerical resolution
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of the inverse problem for coregistered EEG-NIRS, namely the reconstruction of both
brain electrical sources and optical parameters.
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