
HAL Id: hal-03634977
https://hal.science/hal-03634977v1

Submitted on 8 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Welcome to Zombieland: Practical and Energy-efficient
Memory Disaggregation in a Datacenter

Vlad-Tiberiu Nitu, Boris Teabe, Alain Tchana, Canturk Isci, Daniel Hagimont

To cite this version:
Vlad-Tiberiu Nitu, Boris Teabe, Alain Tchana, Canturk Isci, Daniel Hagimont. Welcome to
Zombieland: Practical and Energy-efficient Memory Disaggregation in a Datacenter. 13th Eu-
ropean Conference on Computer Systems (EuroSys 2018), Apr 2018, Porto, Portugal. pp.1-12,
�10.1145/3190508.3190537�. �hal-03634977�

https://hal.science/hal-03634977v1
https://hal.archives-ouvertes.fr

Official URL
DOI : https://doi.org/10.1145/3190508.3190537

Any correspondence concerning this service should be sent

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/24818

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Nitu, Vlad and Teabe, Boris and Tchana,

Alain and Isci, Canturk and Hagimont, Daniel Welcome to

Zombieland: Practical and Energy-efficient Memory

Disaggregation in a Datacenter. (2018) In: 13th European

Conference on Computer Systems (EuroSys 2018), 23 April 2018 -

26 April 2018 (Porto, Portugal).

Welcome to zombieland: Practical and Energy-efficient
memory disaggregation in a datacenter

Vlad Nitu
IRIT, Toulouse University, CNRS,

INP, Toulouse, France
vlad.nitu@enseeiht.fr

Boris Teabe
IRIT, Toulouse University, CNRS,

INP, Toulouse, France
boris.teabedjomgwe@enseeiht.fr

Alain Tchana
IRIT, Toulouse University, CNRS,

INP, Toulouse, France
alain.tchana@enseeiht.fr

Canturk Isci
IBM Research

canturk@us.ibm.com

Daniel Hagimont
IRIT, Toulouse University, CNRS,

INP, Toulouse, France
daniel.hagimont@enseeiht.fr

ABSTRACT
In this paper, we propose an effortless way for disaggregating the
CPU-memory couple, two of the most important resources in cloud
computing. Instead of redesigning each resource board, the disag-
gregation is done at the power supply domain level. In other words,
CPU and memory still share the same board, but their power supply
domains are separated. Besides this disaggregation, we make the two
following contributions: (1) the prototyping of a new ACPI sleep
state (called zombie and noted Sz) which allows to suspend a server
(thus save energy) while making its memory remotely accessible;
and (2) the prototyping of a rack-level system software which al-
lows the transparent utilization of the entire rack resources (avoiding
resource waste). We experimentally evaluate the effectiveness of
our solution and show that it can improve the energy efficiency of
state-of-the-art consolidation techniques by up to 86%, with minimal
additional complexity.

KEYWORDS
memory disaggregation, energy efficiency, virtualization

1 INTRODUCTION
In recent years, we have witnessed some tectonic shifts in the com-
puting landscape. First, with virtualization and containerization tech-
nologies becoming mainstream, we were finally able to decouple
applications and their operation environments from the underlying

https://doi.org/10.1145/3190508.3190537

hardware. Then, with cloud computing democratizing access to com-
pute infrastructures and platforms, we have transformed these into
services that can be provisioned and consumed on demand. These ad-
vances not only changed how we design software and build systems
today, but also opened up many new opportunities for improving
computing efficiency and cost.

With virtualization came the simplified multitenancy of operating
systems, consolidation, virtual machine (VM) migration, distributed,
dynamic resource and power management [3]. These were aimed at
improving the notoriously-low data center (DC) server utilization [4],
reducing cost, and dramatically improving power efficiency. With
the cloud, we were able to push the boundaries further. Economies
of scale, advents of software-based availability enables us to keep
compute devices simple, cheap and designed for perfect efficiency
meeting observed demands. By continuously placing thousands, if
not millions, of requests on these nodes we can keep them busy,
highly-utilized, and working at their optimal point of energy effi-
ciency. Essentially, with cloud and virtualization, we could consider
the compute infrastructure as one giant computer that practically has
infinite resources, yet operates nimbly, with almost perfect efficiency
based on demand.

Unfortunately the reality has been far from this. After myriad
projects, papers, products and services, we now have giant comput-
ers at our fingertips on demand that are fast, easy to use, yet still
highly inefficient in their resource utilization and energy efficiency.
The average compute node utilization in most cloud offerings is well
below 50% [4–6]. So where has this gone wrong? One main reason
behind the mismatch between our expectation and the reality is our
inability to efficiently pack multidimensional application needs to
the underlying bundled compute resources such as CPU, memory
and network. And this is because what the infrastructure offered in
its evolution did not meet what software demanded in its evolution.
Over the last several years we have seen new applications emerge
with vastly growing memory demands, while platform evolution con-
tinued to offer more CPU capacity growth than memory, referred to
as memory capacity wall [12]. Therefore, we are unable to leverage
consolidation, efficient packing and balanced utilization of resources
in the cloud as memory demand direction saturates before the other
dimensions.

This observation is actually one of the underpinnings of another
significant shift that has been gaining momentum, namely disag-
gregated computing [12], which aims to change the server-centric

https://doi.org/10.1145/3190508.3190537

0 20 40 60 80 100
0

50

100

%U til isation

%E
n
e r
дy

Actual Ideal

S5
S4

S3

S0idle

Figure 1: Energy consumption vs. server utilization. Solid line
shows the common server power, while the dashed line plots
energy-proportional behavior.

view of the infrastructure to a resource-centric view. In this model,
each resource dimension can evolve and expand independently, and
thus respond to evolving application demands. Disaggregated com-
puting has the potential to lead us to our desired computing model
that is nimble, boundless and highly resource and energy efficient.
However, it is a solution for the long term that requires fundamental
changes to compute hierarchy and operations.

In our work we explore a short-term solution that can have the
benefits of disaggregation, yet that can be applied by introducing
small changes to general-purpose computing hardware and virtual-
ization/cloud software. Our solution targets the immediate problem
at hand, disaggregating memory resources and unbundling them
from other compute resources (e.g. CPU). We propose a new Zom-
bie (Sz) ACPI state that is similar to suspend-to-RAM (S3) state in
latency and power efficiency, but keeps the memory resources of
a server active and usable by other nodes. In other words, a server
in Sz state is a Zombie as it is brain-dead (CPU-dead), limps along
consuming minimal resources (low-energy), but still has basic motor
functions such as serving memory (memory-alive). We design a re-
mote memory management protocol at the virtualization layer based
on RDMA network interconnect that provides efficient access to the
memory from a Zombie server, without requiring CPU intervention.
Thus, all the servers that are in zombie state still contribute to the
memory pool of the cloud, and yet have minimal additional energy
footprint. As a result, we can pack VMs more densely in the cloud,
achieving higher resource utilization and energy efficiency1 with
traditional hardware and virtualization software.

Even if the mainstream hardware does not currently support the
Sz ACPI state, its implementation is fairly simple. Sz only requires
completely independent power domains for CPU and memory. In
order to evaluate the benefits of the Zombie technology, we devel-
oped ZombieStack, the software stack needed to leverage the Sz state.
Even if we do not own an Sz compatible hardware, we estimated the
energy consumption of a server in Sz state based on a model. The
timing overheads related to remote memory are evaluated on Zombi-
eStack by replacing the Sz servers with S0 servers. Our experimental
evaluations demonstrate that the Zombie technology improves en-
ergy efficiency on datacenter workloads by up to 67%, which is 86%
better than state-of-the-art consolidation techniques.

1The low energy consumption of a Zombie server translates into less dissipated heat.
Thereby, the Zombie technology also decreases the energy consumed by the datacenter
cooling system.

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

0

2

4

Time

M
em

or
y:

C
PU

R
at

io

Figure 2: The memory (GiB) : cpu (GHz) ratio for all introduced
m<n>.<size> instances in AWS over the last ten years.

In the rest of the paper, we first present some related background
and motivation for our work. We introduce the zombie (Sz) state and
its design in Section 3. We describe our RDMA-based remote mem-
ory management technique, and virtualization layer implementation
in Section 4. We present ZombieStack, our OpenStack-based cloud
implementation in Section 5. Then, we present our experimental
evaluation in Section 6, highlighting the significant improvements
with our approach. Last, we offer our conclusions.

2 MOTIVATION AND RELATED WORK
As we have discussed in the introduction, we have seen substan-
tial opportunity and effort in improving resource utilization and
energy efficiency with virtualization and cloud. There have been
myriad efforts at the hardware, virtualization and the ensemble to
attack this problem on multiple fronts, improving energy efficiency
and overheads of low-power states and driving up server utiliza-
tion and consolidation [3, 8–11, 58]. The motivation behind driving
server utilization has been to improve consolidation ratios to reduce
cost, while also benefiting from the widely-known observation that
servers are more energy efficient (or energy proportional) at higher
utilizations as depicted in Fig. 1.

While these prior techniques have improved utilization numbers
significantly and improved energy-efficiency of systems, it is still
difficult to actually reach server loads near 50% in even the most
advanced implementations [4–6]. Lim et al. demonstrated that one
main reason for this is a growing mismatch between platform re-
sources and growing application demands [7, 12]. This is due to the
combination of two opposite trends. First, we observe that emerging
applications such as search, in-memory data stores, and analytics
have developed a fast-growing appetite for memory resources to min-
imize request latencies, in response to real-time needs. This results
in a growing gap between memory and CPU demand as memory
demand has been growing much more rapidly than CPU demand.
To validate this, we looked back at the historical instance sizes in
AWS, and the observations were quite telling. As expected, AWS
has gradually introduced newer-generation and bigger-size instances
over time, as compute demands grew. However, when we look at
the growth trend among different resources, we see that the memory
configuration growth substantially outpaced that of compute. Figure
2 shows the ratio of memory size to CPU size for all AWS instances
of family m<n>.<size>, where n is the generation and size the
size attribute. The figure shows the general trend that while demand

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

0

0.2

0.4

0.6

0.8

1

Time

M
em

or
y:

C
PU

R
at

io

Figure 3: Normalized memory : cpu capacity ratio for multiple
server generations.

on both resources has grown substantially, the rate of growth for
memory demand has been approximately 2X of CPU demand.

The second trend we observe is that there is a growing gap be-
tween Memory and CPU supply in the reverse direction. On the
one hand, the International Technology Roadmap for Semiconduc-
tors (ITRS) estimates that the pin count at a socket level is likely to
remain constant [15]. As a result, the number of channels per socket
is expected to be near-constant. In addition, the rate of growth in
DIMM density is starting to wane (2X every three years versus 2X
every two years), and the DIMM count per channel is declining (e.g.
two DIMMs per channel on DDR3 versus eight for DDR) [17]. On
the other hand, another trend points the increased number of cores
per socket, with some studies predicting a two-fold increase every
two years [19]. If the trends continue, the memory capacity per core
will drop by 30% every two years, as depicted in Fig. 3 [7].

These two opposing trends show that applications have been
evolving in the direction where they require more memory than
CPU, while servers are evolving to provide more CPU than memory.
This situation leads to poor VM consolidation ratio [12, 23], thus
energy waste as illustrated in Fig. 4(a). Several studies have investi-
gated solutions to mitigate this issue. These can be grouped in three
categories.

1. Reducing memory footprint at the server level: Several studies
have tried to minimize VM memory footprint, thus increasing the
consolidation ratio. These studies include page sharing [25, 26, 50],
page compression [27–29], and ballooning [50–52]. There are three
limitations of these solutions. They require non negligible compu-
tation (e.g., page sharing and page compression), they are intrusive
(e.g., the balloon driver inside VMs), and they have limited returns
with diverse workloads [51].

2. Resource sharing at the ensemble level: Leveraging the democrati-
sation of high bandwidth low latency network adapters like Infini-
band, some studies [18, 20–22, 24, 30, 31] tried to increase the
memory utilisation by allowing servers to remotely use the residual
memory of other servers. Although these solutions improve energy
proportionality in comparison with the solutions presented above,
the overall gain is too far from the optimal situation. The main prob-
lem is that one machine can remotely access the memory of another
machine only through a remote active CPU even if that is not locally
used. In addition, these solutions require substantial system modi-
fications such as application-specific programming interfaces [32]

and protocols [33], changes to the host operating system and de-
vice drivers [34, 35], and reduced reliability in the face of remote
server crashes. Further, V. Anagnostopoulou et al. [65] define five
different server power states along with a use case. However, the
paper does not illustrate the system-level impact of a different power
management on a virtualized cloud.

3. Resource disaggregation: Recent studies [12–14] claim that an
emerging area for building energy-proportional data centers is to put
an end to the server-centric (Fig. 4(a)) architecture, and move to a
resource-centric architecture (Fig. 4(b)). This approach consists of
decoupling all resources; each resource is assigned a dedicated moth-
erboard and the ensemble is linked altogether to form a big computer.
In this architecture, unused boards are powered-off. This is not pos-
sible in a server-centric architecture where a server’s motherboard
hosts all resources, thus powering it off will make all resources not
accessible. Therefore, the resource-centric architecture leads to an
optimal energy proportionality in comparison to the server-centric
architecture (Fig. 4(a) vs. Fig. 4(b)). HPE [16] is one of the compa-
nies that massively invests in such a project. Nevertheless, it requires
a total redesign of both hardware and software stack and thereby, it
will take time until this solution becomes mainstream.

Micro-servers: An intermediate step proposed by manufacturers
(e.g. HP Moonshot [36], Intel Rack-scale [38], AMD SeaMicro [39])
consists of: (1) first disaggregating network and storage devices from
the {CPU ,memory} tuple, and (2) building micro-servers which
include a limited number of {CPU ,Memory}. Micro-servers are
connected all together, sharing both the network and hard disk pools.
The advantage of the micro-server solution comes from the fact
that residual/unused resources are small since servers are small too
(in comparison with commodity servers). However, this solution
does not address the main issue, which is the disaggregation of the
{CPU ,memory} tuple (recall that memory is the limited resource).
The consequence is that a server’s resource (e.g. memory) can be
remotely used only if the server is powered-on. For instance, this is
the case in AMD SeaMicro in which even the turn-it-off [43] feature
cannot allow the remote utilization of a suspended micro-server’s
resource. This situation leads to a poor energy proportionality, as
illustrated in Fig. 4(c).

Our solution: Memory disaggregation with zombie servers: In
this paper we propose a new and less expensive way for disaggregat-
ing the {CPU ,memory} tuple. Our solution requires less hardware
modifications than a full-fledged board level disaggregation. We rely
on a simple approach to disaggregation at the power supply domain
level. By this way, we allow a memory bank to be functional and re-
motely accessible via RDMA functions while a server is suspended.
Such a server is called zombie and its corresponding ACPI state is
noted as Sz. This disaggregation solution leads to much improved
energy proportionality, which is not far from the ideal solution.

We present all the architectural trade-offs and energy efficiency
characteristics of the discussed approaches in Fig. 4. Below we sum-
marize the energy consumption characteristics of each approach2 in
units of Emax , the maximum energy consumed by a server at full
utilization:

2The figures are rough approximations presented only for guidance.

Figure 4: Resource disaggregation: summary of existing solutions. We illustrate each solution at the rack-level, considering a rack
composed of three serves. We estimate the energy consumed by the rack in each solution. We can see that our proposition (d) results
in the optimal energy proportionality while requiring less hardware and software modification.

• Server-centric architecture (Fig. 4(a)):
Total Enerдy Consumed = 2.1 × Emax .
• Resource disaggregation, ideal case (Fig. 4(b)):
Total Enerдy Consumed = 1.15 × Emax .
• Micro-servers (Fig. 4(c)):
Total Enerдy Consumed = 1.8 × Emax .
• Our solution with zombie servers Fig. 4(d):
Total Enerдy Consumed = 1.2 × Emax .

In summary, this paper makes four main contributions: (1) We
introduce a new ACPI sleep state called the zombie (Sz) state (Sec-
tion 3), (2) we describe and prototype a new practical rack-level
memory disaggregation technique based on zombie servers (Sec-
tion 4), (3) we present ZombieStack an OpenStack based cloud
operating system that leverages our memory disaggregation solution
(Section 5), and (4) we evaluate the timing overheads of ZombieS-
tack, and we model and estimate the energy efficiency of the Sz state
(Section 6).

3 ZOMBIE (SZ): A SLEEP STATE FOR
SERVERS

The Advanced Configuration and Power Interface (ACPI) is a stan-
dard that allows an OS to perform power management on individual
components (e.g. CPU cores, network adapters, storage devices, etc.)
or the system as a whole. The global (system level) power states
are named from S0 to S5. S0 represents the most active state (i.e.
the CPU is running and executes instructions) while S5 is the most
inactive one (i.e. the machine is turned off without saving any system
state). S3 is an intermediate state also called Suspend-to-RAM. It
cuts power to most of the components except the RAM memory,
which stores the system state, the network adapter which is used to
wake-on-LAN the machine and a part of the PCI/PCIe bus.

In this section we describe our new ACPI sleep state (S-state)
called zombie or Sz state. The Sz state is similar to S3 state, with one
key difference. It keeps its memory banks of the platform active and
remotely accessible even when the server is suspended. Our main
motivation in introducing this new Sz state is to address the growing
gap between the memory demand vs. supply and the CPU demand
vs. supply discussed earlier. With Sz state, an application running

M
E

M
 D

e
m

a
n

d

C
P

U
 D

e
m

a
n

d

M
E

M
 D

e
m

a
n

d

C
P

U
 D

e
m

a
n

d

M
E

M
 D

e
m

a
n

d

C
P

U
 D

e
m

a
n

d

S0 S3-5 Sz

S
0

S
0

S
0

S
0

S
0

S
0

S
3

S
3

S
0

S
0

S
z

S
z

Figure 5: Sz state operation compared to S3 and S0.

on one platform can “borrow” memory from another, otherwise
suspended, platform. This feature is provided neither by the ACPI
specification nor by existing hardware or OS distributions.

The Sz state operates similarly to the S3 state for the most part.
All components are turned off except the main memory and part of
the network is kept active to serve remote memory requests. The
memory behavior of Sz mimics that of Si0x state specifications,
where the memory is kept in active idle, unlike the low-power self
refresh mode of S3. The Sz State enables a nice compromise for
a practical step towards disaggregated computing for memory. A
general-purpose compute node can be used as a full-fledged platform
when demand on resources is high, can be suspended to S3, S4 or
S5 when demand is low, and can be kept in Sz state when compute
demand is low, but the aggregate memory demand still requires the
node to serve memory. Figure 5 shows the operation mode of Sz in
comparison to the traditional S-states.

3.1 Sz State Design
The implementation of the new Sz state needs support from the
manufacturer since it requires modifications across the stack from
hardware and firmware to the OS, as well as to the ACPI specifi-
cations. At the hardware level, when a server enters ACPI S states,
it follows a sequence to shutdown several power rails to the board
components. As the memory and the networking logic for remote
memory access need to remain active, power lines for these com-
ponents require additional switches and control signaling for Sz
enter/exit. State management hardware needs modifications to in-
clude the new S state and additional signals for triggering the right
power state change actions for Sz. System management hardware
needs additional signals from the participating chips for reporting
and idempotence of actions. These signals are used to determine
the state of the devices, when a state transition is active and to re-
port the power state of the server. Firmware is involved in S-state
transitions during boot up and during each Sz enter and exit. During
boot up the firmware initialises Sz chipset configurations. During
Sz enter and exit the firmware transitions individual devices to their
corresponding S-states. The additional work required for the actual
steps is minimal for Sz as most of the board is still transitioned
to S3. Additional logic is required to transition memory and net-
work to their active-idle states to enable their operation while the
system is in Sz state. During Sz exit, once the chipset state is reini-
tialised, the firmware passes the control back to the OS to transition
to general-purpose computation in S0 state.

1 +echo zom > / s y s / power / s t a t e
2 +pm_suspend
3 enter_state

4 suspend_prepare

5 suspend_devices_and_enter

6 suspend_enter

7 acpi_suspend_enter

8 x86_ acpi_suspend_lowlevel

9 do_suspend_lowlevel

10 x86_acpi_enter_sleep_state

11 + a c p i _ h w _ l e g a c y _ s l e e p
12 acpi_os_prepare_sleep

13 + t b o o t _ s l e e p

Figure 6: The execution path to transition to the zombie state.
It is similar to the S3 execution path, except the modifications
on red functions (lines 1, 10 and 12).

We prototype the OS components of Sz state with the Linux Oper-
ating System Power Management (OSPM) framework. OSPM is the
kernel component in charge of power management and shares this
responsibility with the device-drivers. Sz state implementation in the
kernel requires the modification of both the OSPM and the Infiniband
device driver (MLNX_OFED in the prototype). This implementation
starts from the S3/S4 execution path, to which we applied slight
modifications as presented in Fig. 6. We introduce a new keyword
(zom) for triggering the transition to Sz when setting /sys/power/s-
tate. We identify the set of devices which should be kept up during
the Sz state (e.g., Infiniband card and its associated PCIe devices).
The pm_suspend() call for these devices has been modified in
order to prevent them from transitioning to the sleep state. The real
activation of the transition is done by setting PM1A and PM1B ACPI
registers. In the case of S3, SLP_TYP and SLP_EN are respectively
set into these registers. Once set, PM1A and PM1B are read by the
platform in order to know which state to transition to. Since this
registers have unused values, we consider new ones for triggering to
zombie.

4 MEMORY DISAGGREGATION USING SZ
STATE

While the previous section focuses on the low-level ACPI adjust-
ments which enable the Sz state, this section presents a practical
approach to rack-level memory disaggregation which relies on the
Sz state. Our technique leads to both high and balanced resource
utilization and high energy efficiency.

In our rack-level management implementation servers are either
active in S0 state or zombie in Sz state. An active server can use
its own memory or memory from other zombie servers. While our
main contribution is on utilizing Sz state for energy-efficient memory
disaggregation, our implementation also allows for serving and using
remote memory from other active servers. If an active server requires
more memory it can become a user of available remote memory.
If there is capacity slack, workload is consolidated to fewer hosts
to save energy, which then become zombies pushed into Sz. We
implement two remote memory functions as (i) RAM extension
(RAM Ext for short), and (ii) Explicit swap device (Explicit SD for
short).

RAM Ext: An ideal implementation of disaggregated memory as
RAM extension would require special hardware interconnect for
remote memory access, similar to NUMA [64]. Instead, we design a
practical, simple solution based on commodity server and network
architecture, and addressing the complexity in software. We imple-
ment a hypervisor-level swap mechanism, where the remote memory
is presented as swap to the hypervisor. It keeps the frequently ac-
cessed pages in local memory and excess pages are simply swapped
to the remote memory. One key advantage of our approach is that
we simply build upon all the existing page promotion, relegation,
hot page determination policies which are already built into the hy-
pervisor. As a result, with a small set of tweaks and by leveraging
hypervisor paging, we can transparently present remote memory
to VMs running on the host. As demand decreases, pages are natu-
rally swapped in, requiring no custom implementation for releasing
remote memory.

Explicit SD: As a natural extension of our remote memory design, a
server may also use remote memory to implement swap devices to
be provided to VMs. These memory-backed swap devices perform
substantially faster than disk-based swap. Our implementation is
similar to Infiniswap [62].

An interesting difference between these two remote memory func-
tions is that, the VMs and applications are completely oblivious to
the former function, which is hypervisor-managed, while the latter
is fully-visible to those. Application behavior can be significantly
different (particularly more aggressive regarding memory manage-
ment) as it knows that fewer local pages are allocated to the VM
(see the evaluation section).

4.1 Implementation
Fig. 7 presents our implementation architecture of a virtualized rack
with the zombie technology. A general-purpose server in the rack
plays one of the following five roles:

(1) Global Memory Controller (global-mem-ctr) manages the
memory for the whole zombie pool. It is responsible for
allocating/deallocating remote memory to servers.

(2) Secondary Memory Controller (secondary-ctr) enforces
transparent high availability of the global controller. It moni-
tors the main controller’s state (periodic heart beat) and syn-
chronously mirrors all operations.

(3) User Server (server-A) uses remote memory from other
servers.

(4) Zombie Server (server-C) serves remote memory to other
servers, while suspended in Sz state.

(5) Active Server (server-B) serves remote memory to other
servers, while in active state.

All servers execute a Remote Memory Manager (remote-mem-
mgr) agent, which interacts with the global-mem-ctr to request and
release remote memory. The communication framework implements
RPC over RDMA [24, 48]. In our implementation, the clients poll
for the RPC results as RDMA inbound operations are cheaper than
outbound operations. Remote-mem-mgr relies on low-level RDMA
primitives instead of RPC calls to directly access remote memory
and to implement RAM Ext and Explicit SD functions.

4.2 Initialisation
At startup, global-mem-ctr initialises various data structures for
state keeping such as the list of zombie nodes. Initially all servers
are designated active, and state is updated as they are pushed to
Sz. Next global-mem-ctr starts a daemon serving the requests from
remote-mem-mgr agents. Finally, it starts the mirroring and heartbeat
processes for mirroring and high availability. Secondary-ctr spawns
two processes to periodically monitor global-mem-ctr heartbeats
and to establish the RPC over RDMA communication with the
global-mem-ctr in order to receive the mirrored operations. Each
remote-mem-mgr establishes an RPC over RDMA communication
channel with the global-mem-ctr and initialises state to request and
use remote memory.

4.3 Delegating and Reclaiming Server Memory
Here we first describe how servers can delegate, i.e., lend, their
memory to global-mem-ctr via remote-mem-mgr. Then we explain
how they can reclaim their memory when it is needed locally. As
discussed previously, we have patched the OS of each server to imple-
ment the Sz state transition. When a server’s OS receives the suspend
to Sz signal, it signals its remote-mem-mgr to trigger memory del-
egation. Remote-mem-mgr computes free memory and organizes
it in buffers. Their size (noted BU FF_SIZE) is uniform across the
entire rack. It then notifies global-mem-ctr of its intention to go
to Sz state via the GS_goto_zombie(buffers) function and
communicates the list of zombie memory buffers it is lending via
buffers. Global-mem-ctr uses an in-memory database to manage the
allocation state of these buffers. Each remote buffer is characterized
by an identifier, offset, size, its type (active/zombie), the host serving
the buffer, and the server currently using this buffer (nil if it is not
yet allocated to a server).

A zombie server can reclaim its memory once it becomes active
again. Its remote-mem-mgr determines the amount of memory it
wishes to reclaim (at buffer granularity) and informs the global-
mem-ctr via GS_reclaim(nbBuffers). Global-mem-ctr has
to choose from its database which of the buffers belonging to this
server will be returned. It first uses unallocated buffers and then
chooses buffers allocated to other servers and reclaims them using
the US_reclaim(buff_IDs) function. This function only in-
forms the corresponding remote-mem-mgrs that buff_IDs are no
longer available. As a result, the remote-mem-mgrs start transfer-
ring the backup copy of the data3 to other remote locations. Last,
global-mem-ctr returns the buffer identifiers to the reclaiming server.
Once in possession of these buffers, the remote-mem-mgr of the
server destroys the communication channels to these buffers and
frees them.

4.4 Requesting and Allocating Remote Memory
Here we describe how a user server can request and allocate available
remote memory from global-mem-ctr using the following functions:

GS_alloc_ext(memSize) requests a RAM Extension memory
allocation of memSize that the global-mem-ctr must fulfill. This allo-
cation is guaranteed by the cloud provider via admission control to

3Each write to a remote buffer (backing either a RAM Extension or an Explicit SD) is
asynchronously mirrored to the local storage.

Figure 7: The architecture of a disaggregated rack provided by the zombie technology.

avoid rack-level memory overcommitment. Thereby, GS_alloc-
_ext(memSize) is called once at the VM creation time and re-
turns a list of nb buffers such that nb × BU FF_SIZE ==memSize

GS_alloc_swap(memSize) requests a VM Swap memory allo-
cation of memSize. The full allocation is not guaranteed as it depends
on the available memory in the rack. This allocation is best-effort
because using a fast swap device is not included in the VM’s SLA,
contrary to RAM Extension. Therefore, this allocation is such that
nb × BU FF_SIZE ≤ memSize. This function is periodically called
(i.e. every 1 hour) in order to take advantage of unused remote
buffers.

Memory from zombie servers have always higher priority than
memory from active servers. Thereby, global-mem-ctr first attempts
to allocate the requested memory from available free buffers. Next,
it tries to get more remote memory from active and user servers with
the AS_get_free_mem() and US_reclaim(buff_IDs) calls.
For both, GS_alloc_ext() and GS_alloc_swap(), the mem-
Size allocation is backed by memory from multiple remote servers.
This approach minimizes the performance impact caused by a re-
mote server failure. By default, all inactive servers are pushed into
Sz. If the global-mem-ctr holds huge amounts of free memory (e.g.
more than the total memory of a rack server), the cloud manager
may decide to transition zombie servers to S3 for further reducing
the energy consumption.

4.5 Using Remote Memory
Here we describe how user servers use remote memory and our ac-
tual implementation for the KVM hypervisor [46]. As we previously
discussed, user servers can utilize remote memory via two functions:
(i) RAM Ext, and (ii) Explicit SD. Our RAM Ext implementation is a
practical approximation to disaggregated memory, which operates

transparently to VMs via our modified hypervisor-level swapping
mechanism.

The ideal case of memory disaggregation requires fundamen-
tal changes to hypervisor memory virtualization implementation,
where remote endpoints and page addresses need to be in shadow
or extended page tables, and enabling direct access to these remote
addresses. Such an implementation requires an important hardware
evolution (TLB, MMU, DMA, cache coherency protocol, PCIe,
etc.) [12]. In contrast, our solution relies on commodity, general-
purpose servers4, standard RDMA networking and a software-based
solution with our modified KVM hypervisor, and unmodified VMs
and applications.

Our modified virtualized memory management system within
the hypervisor works as follows. Let VMMemSize be the amount
of memory reserved by a VM. At VM startup, the hypervisor al-
locates a part of the server’s local RAM (noted LocalMemSize) to
the VM. If LocalMemSize is less than VMMemSize, the rest of the
memory is provided by other remote servers as Extension memory.
From VM perspective, all the memory is local and allocated in its
pseudo-physical memory. From hypervisor perspective, the actual
machine memory can be distributed between local physical and
remote physical RAM.

We implement our solution in KVM’s page fault handler, ex-
tending hypervisor paging to use remote physical memory buffers
similar to swap devices. VMs are given pseudo-physical frames and
the hypervisor manages their association with host-physical (ma-
chine) frames. KVM allocates physical frames on demand, which
means when a VM modifies its guest page table and traps to the
hypervisor, a physical frame is allocated and associated with the
pseudo-physical page. In our solution, we provision both local and

4This servers are not yet for sale since they should implement our new Sz state as
described in Section 3.1.

remote page frames to a VM. When a page fault is caused by a VM
attempt to modify a guest page table, if a physical frame is avail-
able (free), the handler follows the traditional code execution path.
Otherwise, it frees a physical frame to satisfy the page fault, using
a page replacement policy.5 Indeed, it asks the remote-mem-mgr
for a remote page frame, transfers the content of the local frame
to the remote frame, registers the information allowing its eventual
reclaim and clears the present bit in the corresponding page table
entry. When the page fault is caused by the non-presence of a page,
we first check whether it is a page sent to a remote memory. If this
is the case, a local page is allocated as above and the remote page is
reloaded in the local page. Our paging policy keeps hot pages closer
in local memory, and as local memory becomes scarce, demotes cold
pages to remote buffers.

Our implementation of the second function, Explicit SD, is rela-
tively simpler as no guarantee is offered to the VMs. Swap remote
memory is obtained with the dedicated GS_alloc_swap() func-
tion. This function has the same prototype as GS_alloc_ext(),
but the amount of returned memory may be less than requested as
it depends on remote memory availability. Our Explicit SD imple-
mentation is based on the split-driver model [47]. When a VM is
swapping-out a page to remote memory, the backend driver first con-
tacts the remote-mem-mgr for allocating remote memory if available.
It also asynchronously swaps to local storage for fault tolerance.
When the global-mem-ctr reclaims this memory, the pages are still
available on local storage and remote-mem-mgr uses this slower path
to serve page requests.

5 CLOUD MANAGEMENT WITH
ZOMBIESTACK

In the previous sections we presented the hardware implementation
of Sz state (Section 3), and how we leverage Sz state for energy-
efficient, practical memory disaggregation at the hypervisor level
(Section 4). Here, we discuss the final layer of the compute stack,
the cloud operating system. We describe how we leverage memory
disaggregation with zombie servers for energy-efficient and practical
cloud computing. We build a prototype cloud management platform,
ZombieStack, based on OpenStack and our modified KVM hypervi-
sor. We explain below the key cloud capabilities we introduce and
the changes we did to the OpenStack components in our prototype.

5.1 Remote Memory Aware VM Placement
Nova is the OpenStack component responsible of VM placement
on physical nodes. It operates in two phases. First, it filters the
servers which are able to host the VM(s) and returns a list of suitable
hosts. Second, it sorts these hosts based on certain placement criteria
such as available resources and placement strategy (VM stacking or
spreading). In our ZombieStack implementation we modify Nova to
allow more relaxed filtering to account for remote memory availabil-
ity. One trade off we explore in our implementation is the minimal
amount of local memory needed for a host to be included in the list
of suitable hosts. We answer this question with empirical evaluation.
We perform several experiments using benchmarks with worst-case
memory access patterns (see the evaluation section). Our results

5We evaluated three policies (see Section 6.2)

show that 50% local memory availability is a good, conservative
compromise.

5.2 VM Consolidation with Zombie Servers
Our VM consolidation implementation is based on OpenStack Neat.
The consolidation algorithm employed by Neat can be outlined in
four main steps [57]: Determine the underloaded hosts (all their VMs
should be migrated and the hosts should be suspended); Determine
the overloaded hosts (some of their VMs should be migrated in order
to meet QoS requirements); Select VMs to migrate from overloaded
hosts; Place the selected VMs to other hosts (wake up suspended
hosts if necessary).

Vanilla Neat places a VM on a server only if the latter holds all
the resources booked by the VM. In the same vein as VM placement,
we modify this constraint to only check if 30% of the VM’s working
set size is available on the target server. If there is no host that
satisfies this requirement, we choose and wake up a zombie host.
We modified Neat so that it prefers zombie servers with the least
amount of shared buffers. Neat calls GS_get_lru_zombie()
which returns the hostID corresponding to the Zombie server having
the minimum number of allocated zombie buffers. By this way, we
minimize the amount of zombie memory which has to be reclaimed.

5.3 VM Migration Protocol
The vanilla pre-copy VM migration consists of only source and
destination hosts that hold the VM’s current and future memory
state. As part of a VM’s memory may be located remotely in our
zombie implementation, the migration protocol of ZombieStack is
more complex than traditional migration. In our implementation, the
active part of VM memory is mostly local to the source server due
to the replacement policy behavior. Any remote memory used for
the VM consists of cold pages.

Our migration protocol implementation first creates a listening
VM on the target host, similar to traditional migration. However,
instead of iteratively pre-copying dirty VM memory pages, we fol-
low an approach similar to post-copy migration [45]. We stop the
VM and we copy its local active memory part (hot pages) to the
destination host. The newly created VM can be resumed as soon
as its active part is copied on the target host. An interesting side
benefit of zombie servers is that the VM’s remote memory needs no
migration. Once started on the destination host, the active part can
address its remote part in the same way as before. We just need to
update the ownership pointers for the remote memory components.
Overall, our disaggregated memory implementation with zombie
servers somewhat complicates the orchestration of live migration.
However, in addition to the energy savings benefits, disaggregation
also improves migration performance by both reducing the migration
overhead and by providing a natural decoupling of hot vs. cold VM
pages.

6 EVALUATIONS
Our paper makes two main contributions which are: a new ACPI
state (i.e. Sz) and a framework (i.e. ZombieStack) to exploit this
board at the rack level. ZombieStack includes two utilisation modes
namely RAM Ext and Explicit SD. Since the latter has been widely
investigated in previous work [59–63], our evaluations focus on

RAM Ext while comparing it with Explicit SD. The second evaluation
aspect we investigated is the energy gain that our solution can bring.
Notice that each result presented in this paper is an average of ten
executions. We do not present the standard deviation results because
we observed stable results.

6.1 Experimental environment
Hardware. We used two environment types. First, we evaluated the
effectiveness of ZombieStack using a real rack in our lab. This rack
is composed of four HP compaq Elite 8300 machines (Intel Xeon
Intel(R) Xeon (R) CPU i7, 16GB RAM, running Linux kernel 4.4)
organized as follows: two machines for hosting the global-mem-ctr
and the secondary-ctr, one machine services as a user server while
the last machine plays the role of a zombie server. Having not yet Sz
enabled boards, the zombie server is provided by an idle server in
S0. The four servers are linked altogether with Mellanox Infiniband
SB7800 switch. Each machine uses a Mellanox ConnectX-3 as the
network card.
The second environment type is a simulator, used for the evaluation
of ZombieStack in a large scale environment.
Software. We evaluated ZombieStack with both micro and macro
benchmarks. The former is an application which iterates and per-
forms read/write operations on the entries of an array whose size is
configured at start time. Each entry represents a 4KB memory page.
The performance metric of this benchmark is the execution time.
Regarding the macro-benchmarks, we chose the following applica-
tions: Data Caching6 from CloudSuite [40]; Elasticsearch nightly
benchmarks [42]7; and Spark SQL [37] with BigBench [44] (we
used a 100GB data set and focused on query 238). The performance
metric of these benchmarks is the number of operations performed
per second. Otherwise specified, every VM uses 8 processors.

6.2 RAM Ext’s page replacement policy
The efficiency of RAM Ext depends on the replacement policy which
selects the page that should be transferred to a remote memory when
the local memory becomes scarce. We compared three common
replacement policies:

• FIFO. The hypervisor records to a list (called FIFO list) the
pages which generate page faults. The page to transfer is the
one which has generated the oldest page fault.
• Clock. The hypervisor iterates through the FIFO list and

chooses the first page whose “accessed” bit is zero. The “ac-
cessed” bit of all pages is periodically cleared.
• Mixed. The Clock policy is applied to the first x elements of

the FIFO list (e.g. x=5). If no page is obtained, the FIFO pol-
icy is applied to the rest of the list. This policy is designed to
reduce the costs associated with “accessed” bits’ management
and list iterations.

6Data Caching uses the Memcached data caching server, simulating the behavior of a
Twitter caching server using a Twitter dataset.
7In respect to the page length, we only present the results for the NYC taxi benchmark.
The NYC taxi data set contains the rides that have been performed in yellow taxis in
New York in 2015. This benchmark evaluates the performance of Elasticsearch for
structured data.
8BigBench includes more than 30 queries. We chose query 23 because it takes a lot of
time to perform.

20 40 60 80 100
0

50

100

E
xe

c.
tim

e
(s

)

FIFO
Clock
Mixed

20 40 60 80 100
0

5,000

10,000

15,000

#
pa

ge
fa

ul
ts

20 40 60 80 1000

500

1,000

1,500

2,000

% in the local memory

du
ra

tio
n

(C
PU

cy
cl

es
)

Figure 8: Comparison of three replacement policies (FIFO,
Clock, and Mixed) for RAM Ext. (top) The micro-benchmark
execution time, (middle) # page faults and (bottom) time taken
by the policy to perform a page fault. Mixed is the best policy.

We relied on the micro-benchmark to evaluate the above policies.
The benchmark runs inside a VM having 7GB reserved memory
while its working set size (WSS) is configured to 6GB. The VM
is launched on the user server. We performed several experiments
while varying the proportion of its memory in that server. Its re-
maining memory is provided by the zombie server using RAM Ext.
Fig. 8 presents the evaluation results. The collected data are: the
execution time (top curve), the number of page faults caused by
the replacement policy (middle curve), and the time taken by the
replacement policy in the page fault handler (bottom curve). We can
see that Mixed is the best replacement policy. This is explained by
the fact that it minimizes the page list iteration time (which is fairly
important, see the gaps in Fig. 8 bottom) while avoiding the replace-
ment of a page which may be used in a near future (by checking
the “accessed” bit, see the gaps in Fig. 8 middle). As a result, Mixed
outperforms both FIFO (by up to 30%) and Clock (by up to 36%),
see Fig. 8 top. Thereby, the remaining experiments rely on Mixed.

6.3 RAM Ext limitations
We investigated to what extent a portion of a VM’s RAM can be
provided by a remote server. To this end, we relied on both micro
and macro-benchmarks. Recall that our micro-benchmark repre-
sents the worst-case application. The evaluation procedure for the
macro-benchmarks is as follows. Given a benchmark, we first ran
it with vanilla KVM in order to determine its maximum WSS that
does not generate swap activities. This size will serve as the VM’s
reserved memory in RAM Ext. Afterwards, we ran the benchmark
with ZombieStack-RAM Ext while varying the proportion of the
VM’s reserved memory in the local RAM. Table 1 presents the
evaluation results in terms of performance penalty. We can see that

% in local mem micro-bench. Elastic search Data caching Spark SQL
20% 9k% 15.6% 9.6% 27%
40% 4k% 6% 3.16% 6.5%

50% 8% 4.2% 1.35% 5.34%
60% 2.1% 3.01% 0.35% 2.04%
80% 0.04% 0.01% 0.32% 0.2%

Table 1: Performance penalty evaluation when a proportion of
the VM’s reserved memory is provided by a remote server. 50%
is a good compromise.

providing up to 50% of the VM’s reserved memory with a remote
RAM is a good compromise. It leads to an acceptable penalty, less
than 8%. We can observe that this proportion is also appropriate for
macro-benchmarks. Our results are consistent with the ones in [24].
ZombieStack is configured with 50% in order to take into account
worse case applications like our micro-benchmark, even if such
applications are rare.

6.4 RAM Ext compared with Explicit SD
Let us consider two VMs (noted v1 and v2) configured as follows.
v1’s reserved memory ism andv2’s reserved memory ism−x , x ≤ m.
v1 runs in ZombieStack-RAM Ext with m − x memory provided
by the local server. v2 runs in ZombieStack-Explicit SD with a
mounted swap device provided by the RAM of the zombie server.
The size of this swap device is x . Let us consider that v1 and v2 run
the same application. One may think that the performance of that
application will be the same in the two VMs. To clarify the situation,
we compared the two utilisation modes while extending the analysis
to other swap device technologies including: a local fast swap device
(provided by an SSD, Samsung MZ-7PD256), and a local slow swap
device (provided by a HDD, Seagate ST12000NM0007). Table 2
presents the evaluation results in terms of performance penalty. The
following observations can be made. (1) v1 outperforms v2, see
Table 2 column 2-3. In fact, v2 generates much more swap activities
on the remote server than v1. For instance, v2 generates more than
122% traffic than v1 in the case of Elastic search. This comes from
the fact that most applications and operating systems are configured
according to the RAM size they see at start time [51]. (2) Using a
remote RAM as the swap space through Infiniband is better than
using a local storage, even if the latter is fast (see Table 2 column
3-5). In addition, fast storages require additional costs, leading to an
unacceptable performance per dollar for data center operators [53].

6.5 VM Migration
We compared our VM migration implementation with the vanilla
live VM migration. To this end, we ran the micro-benchmark inside
a VM with different WSS. We are interested in the time taken by the
migration process. Fig. 9 presents the evaluation results. We can see
that in the vanilla implementation, the migration time is almost not
affected by the WSS. This is explained by the fact that the number
of iteration performed by the hypervisor for transferring dirty pages
is fixed; it does not depend on the memory activity. In ZombieStack,
only the memory pages within the local memory (about 50% of
the WSS - see Section 5) are transferred. Thus, our implementation
outperforms the native one, especially when the WSS is low.

Micro benchmark
% in local mem v1-RE v2-ESD v2-LFSD v2-LSSD
20% 9000% 49500% ∞ ∞

40% 4000% 14500% ∞ ∞

50% 8% 2300% 302000% ∞

60% 2.1% 3.02% 3400% 429000%
80% 0.04% 0.7% 2.01% 5%

Elastic Search
% in local mem v1-RE v2-ESD v2-LFSD v2-LSSD
20% 15.6% 43.2% 85.12% ∞

40% 6% 38.6% 68% 307%
50% 3.4% 17.1% 45.04% 105.8%
60% 0.2% 12.3% 17.4% 55.3%
80% 0.01% 0.8% 1.6% 3%

Data caching
% in local mem v1-RE v2-ESD v2-LFSD v2-LSSD
20% 9.6% 15.7% 140.8% ∞

40% 3.16% 6.4% 41.7% ∞

50% 1.35% 3.1% 18.2% ∞

60% 0.35% 1.1% 3.04% ∞

80% 0.32% 0.35% 0.68% 13.2%
Spark SQL

% in local mem v1-RE v2-ESD v2-LFSD v2-LSSD
20% 27% 31.64% 122% ∞

40% 6.5% 18.39% 63.23% ∞

50% 5.34% 13% 35% ∞

60% 2.04% 2.9% 11.45% 185.36%
80% 0.2% 0.3% 3.2% 4.78%

Table 2: The performance penalty (i.e. how much longer the
execution takes?) depending on the local/remote memory ratio.
RAM Ext (RE) vs Explicit SD (ESD) and other swap technolo-
gies (LFSD=Local fast swap device; LSSD=Local slow swap de-
vice).

20 40 60 800

10

20

30

WSS ratio (a % of the VM’s memory capacity)

m
ig

ra
tio

n
tim

e
(s

)

Native
ZombieStack

Figure 9: Comparison of the vanilla live VM migration solution
with ZombieStack.

6.6 Energy consumption
6.6.1 Sz energy consumption.

Given that we don’t have a HW prototype, we estimated the amount
of energy that a machine would likely consume in the Sz state. To
this end, we consider two machine types available in our lab: the one
presented above (noted HP) and a Dell precision Tower 5810 (noted
Dell). Using PowerSpy2, a power analyzer device, we measured
the energy consumed by each machine in several configurations: S0
without the Infiniband card (noted S0WOIB), S0 with the Infiniband
card not in use (noted S0WIBO f f), S0 with the Infiniband card
in use (noted S0WIBOn), S3 without the Infiniband card (noted
S3WOIB), S3 with the Infiniband card (noted S3WIB), S4 without
the Infiniband card (noted S4WOIB), and S4 with the Infiniband card
(noted S4WIB). Notice that a server in a sleep state usually keeps at
least one of its network card (the Infiniband card here) in a power
state which allows the Wake-on-LAN (WoL). This corresponds to
S3WIB or S4WIB. Table 3 presents the results. Knowing that Sz is a

S0WOIB S0WIBOff S0WIBOn S3WOIB S3WIB S4WOIB S4WIB Sz
HP 46.16% 52.20% 53.84% 4.23% 11.03% 0.19% 6.81% 12.67%
Dell 35.35% 42.33% 44.77% 1.97% 8.71% 1.12% 8.31% 11.15%

Table 3: Energy consumption of our two experimental machines in different configurations. Each value is the percentage of the
machine’s maximum energy.

kind of S3 in which the RAM and the circuitry from the Infiniband
card to the RAM are kept functioning, the energy consumed in Sz
can be estimated as follows:

E (Sz) = (E (S0WIBOn) − E (S0WIBO f f))+

(E (S3WIB) − E (S3WOIB)) + E (S3WOIB) (1)

(E (S0WIBOn) − E (S0WIBO f f)) is the energy induced by the In-
finiband card activity; (E (S3WIB) − E (S3WOIB)) is the energy con-
sumption which allows the WoL (i.e. the low-powered Infiniband
card, PCIe, root complex, etc.). Using equation 1, we estimated the
energy consumed by our testbed machines in Sz (see the last column
of Table 3).

6.6.2 Energy gain in a large scale DC.
We evaluated the energy gain that can be achieved using ZombieS-
tack in a DC. To this end, we relied on Google datacenter traces [56]
which record the execution of thousands of jobs monitored during
29 days. Each job is composed of several tasks and every task runs
within a container (seen as a VM is this paper). The total number of
servers involved in these traces is 12583. The traces contain, among
other information, for each task: its start time and termination time,
its booked resource capacity (CPU and memory), its actual resource
utilization level (gathered periodically). From these traces, we built
a second set in which the memory demand is twice the CPU demand
as the actual trends reveal (see the motivation section). Relying on
these two set of traces, we simulated a DC which is equipped with
the OpenStack consolidation system (i.e. Neat [57]).

We compared ZombieStack with Oasis [55], a consolidation ap-
proach oriented to energy-efficient cluster management. Oasis works
as follows. After the execution of the consolidation plan, Oasis se-
lects all underused servers (i.e. CPU utilization level lower than a
threshold - 20% in this paper). Let us note S this set of underloaded
servers. All S’s VMs which are idle (e.g. CPU utilization level lower
than 1%) are partially migrated [58] to other servers. A partial VM
migration consists in transferring only the working set of the VM.
The remaining memory pages are relocated to a low power memory
server so that the initial server can be suspended for energy saving.
We assume that an Oasis memory server consumes about 40% of
a regular server’s total energy consumption, as stated in the origi-
nal paper [55]. We performed experiments while considering that
servers are either HP or Dell (see above). Fig. 10 presents the evalu-
ation results. We can observe that ZombieStack outperforms Neat
and Oasis. The best results are obtained with the modified traces
(Fig. 10 bottom), where ZombieStack outperforms Neat and Oasis
respectively by about 86% and 59% with Dell servers.

7 CONCLUSION
This paper presented a way requiring relatively little effort for dis-
aggregating the {CPU ,memory} tuple based on the simple premise
of making the power domains of CPU and memory independent.
Assuming this change, we make the following contributions: (1) We

HP Dell

0

50

100

36 3640 4054 56

%
en

er
gy

sa
vi

ng

Neat Oasis ZombieStack

HP Dell

0

50

100

36 3642 42
65 67

%
en

er
gy

sa
vi

ng

Figure 10: Energy saving: comparison with other resource man-
agement systems using both original (top) and modified (bot-
tom) Google DC traces.

described a new ACPI sleep state called zombie or Sz state. (2) We de-
scribed a practical approach to rack-level memory disaggregation by
leveraging Sz state. (3) We prototyped a cloud management platform,
ZombieStack, based on OpenStack and a modified KVM hypervi-
sor. We performed intensive experiments using macro-benchmarks
and real DC traces (from Google clusters). We also compared our
solution with existing ones (Neat and Oasis). The evaluation results
showed that our solution is viable (acceptable performance degrada-
tion), leads to both high and balanced resource utilization and high
energy efficiency.

8 ACKNOWLEDGEMENTS
We would like to thank Rodrigo Fonseca (our shepherd) and the
anonymous reviewers for their helpful feedback. This work benefited
from the support of Région Occitanie under the Prématuration-2017
program.

REFERENCES
[1] D. PATEL AND AMIP J. SHAH Cost Model for Planning, Development and

Operation of a Data Center. HP technical report 2005, http://www.hpl.hp.com/
techreports/2005/HPL-2005-107R1.pdf, accessed 2017-04/20.

[2] URS HOLZLE AND LUIZ ANDRE BARROSO The Datacenter as a Computer: An
Introduction to the Design of Warehouse-Scale Machines. In Morgan and Claypool
Publishers, 2009.

[3] VMWARE INC. Resource Management with VMware DRS. Whitepaper 2006.
[4] LUIZ ANDRE BARROSO AND URS HOLZLE The Case for Energy-Proportional

Computing. In IEEE Computer 2007.
[5] C. DELIMITROU AND C. KOZYRAKIS Quasar: resource-efficient and QoS-aware

cluster management. In ASPLOS 2014.
[6] DAVID MEISNER, BRIAN T GOLD, AND THOMAS F WENISCH The PowerNap

Server Architecture. In ACM Transaction on Computer Systems 2011.
[7] WM. A. WULF AND SALLY A. MCKEE Hitting the Memory Wall: Implications

of the Obvious. In SIGARCH Comput. Archit. News 1995.
[8] CANTURK ISCI, SUZANNE MCINTOSH, JEFFREY KEPHART, RAJARSHI DAS,

JAMES HANSON, SCOTT PIPER, ROBERT WOLFORD, THOMAS BREY, ROBERT
KANTNER, ALLEN NG, JAMES NORRIS, ABDOULAYE TRAORE, MICHAEL FRIS-
SORA Agile, Efficient Virtualization Power Management with Low-latency Server
Power States. In ISCA 2013.

http://www.hpl.hp.com/techreports/2005/HPL-2005-107R1.pdf
http://www.hpl.hp.com/techreports/2005/HPL-2005-107R1.pdf

[9] JEFFREY S. CHASE, DARRELL C. ANDERSON, PRACHI N. THAKAR, AMIN N.
VAHDAT, AND RONALD P. DOYLE Managing Energy and Server Resources in
Hosting Centers. In SOSP 2001.

[10] XIAOQIAO MENG, CANTURK ISCI, JEFF KEPHART, LI ZHANG, ERIC BOUIL-
LET, AND DIMITRIOS PENDARAKIS Efficient Resource Provisioning in Compute
Clouds via VM Multiplexing. In ICAC 2010.

[11] NIRAJ TOLIA, ZHIKUI WANG, MANISH MARWAH, CULLEN BASH,
PARTHASARATHY RANGANATHAN, AND XIAOYUN ZHU Delivering Energy
Proportionality with Non Energy-proportional Systems–Optimizing the Ensemble.
In HotPower 2008.

[12] KEVIN T. LIM, JICHUAN CHANG, TREVOR N. MUDGE, PARTHASARATHY
RANGANATHAN, STEVEN K. REINHARDT, THOMAS F. WENISCH Disaggregated
memory for expansion and sharing in blade servers. In ISCA 2009.

[13] KRSTE ASANOVIC. Keynote. In FAST 2014, https://www.usenix.org/conference/
fast14/technical-sessions/presentation/keynote.

[14] HUAWEI. High throughput computing data center architecture (HTC-DC) In
http://www.huawei.com/ilink/en/download/HW_349607.

[15] ITRS REPORTS International Technology Roadmap for Semiconductors (SIA)
2007 Edition.

[16] HPE The Machine project. https://www.labs.hpe.com/the-machine.
[17] HPE Memory technology evolution: an overview of system memory technolo-

gies. In http://h20565.www2.hpe.com/hpsc/doc/public/display?sp4ts.oid=78193&
docId=emr_na-c01552458&docLocale=en_US, accessed 2017-04/20.

[18] FENG LI, SUDIPTO DAS, MANOJ SYAMALA, AND VIVEK R. NARASAYYA
Accelerating Relational Databases by Leveraging Remote Memory and RDMA. In
SIGMOD 2016.

[19] KRSTE ASANOVIC, RASTISLAV BODIK, JAMES DEMMEL, TONY KEAVENY,
KURT KEUTZER, JOHN KUBIATOWICZ, NELSON MORGAN, DAVID PATTERSON,
KOUSHIK SEN, JOHN WAWRZYNEK, DAVID WESSEL, AND KATHERINE YELICK
A view of the parallel computing landscape. In Commun. ACM 2009.

[20] YANDONG WANG, LI ZHANG, JIAN TAN, MIN LI, YUQING GAO, XAVIER
GUERIN, XIAOQIAO MENG, AND SHICONG MENG HydraDB: a resilient RDMA-
driven key-value middleware for in-memory cluster computing. In SC 2015.

[21] THE CASE FOR RACKOUT: SCALABLE DATA SERVING USING RACK-SCALE
SYSTEMS Stanko Novakovic, Alexandros Daglis, Edouard Bugnion, Babak Falsafi,
and Boris Grot. In SoCC 2016.

[22] RACK-SCALE IN-MEMORY JOIN PROCESSING USING RDMA Claude Barthels,
Simon Loesing, Gustavo Alonso, and Donald Kossmann. In SIGMOD 2015.

[23] SANGJIN HAN, NORBERT EGI, AUROJIT PANDA, SYLVIA RATNASAMY,
GUANGYU SHI, AND SCOTT SHENKER Network support for Resource Dis-
aggregation. In HotNets 2013.

[24] PETER X. GAO, AKSHAY NARAYAN, SAGAR KARANDIKAR, JOAO CAR-
REIRA, SANGJIN HAN, RACHIT AGARWAL, SYLVIA RATNASAMY, AND SCOTT
SHENKER Network requirements for resource disaggregation. In OSDI 2016.

[25] SEAN BARKER, TIMOTHY WOOD, PRASHANT SHENOY, AND RAMESH SITARA-
MAN An Empirical Study of Memory Sharing in Virtual Machines. In USENIX
ATC 2012.

[26] GRZEGORZ MIÅĆÃŞS, DEREK G. MURRAY, STEVEN HAND, AND MICHAEL
A. FETTERMAN Satori: enlightened page sharing. In USENIX 2009.

[27] . FRED DOUGLIS The compression cache: using online compression to extend
physical memory. In Winter USENIX Conference 1993.

[28] MAGNUS EKMAN AND PER STENSTROM A Robust Main Memory Compression
Scheme. In ISCA 2005.

[29] JISHEN ZHAO, SHENG LI, JICHUAN CHANG, JOHN L. BYRNE, LAURA L.
RAMIREZ, KEVIN LIM, YUAN XIE, AND PAOLO FARABOSCHI Buri: Scaling
Big-memory Computing with Hardware-based Memory Expansion. In ACM Trans.
Archit. Code Optim 2015.

[30] STEPHEN M. RUMBLE, DIEGO ONGARO, RYAN STUTSMAN, MENDEL ROSEN-
BLUM, AND JOHN K. OUSTERHOUT It’s Time for Low Latency. In HotOS
2013.

[31] JINHO HWANG, AHSEN J. UPPAL, TIMOTHY WOOD, H. HOWIE HUANG Mortar:
filling the gaps in data center memory. In VEE 2014.

[32] SAMIR KOUSSIH, ANURAG ACHARYA, AND SANJEEV SETIA Dodo: A user-
level system for exploiting idle memory in workstation clusters. In HPDC 1999.

[33] MICHAIL D. FLOURIS AND EVANGELOS P. MARKATOS The network RamDisk:
Using remote memory on heterogeneous NOWs. In Cluster Computing 1999.

[34] M. J. FEELEY, W. E. MORGAN, E. P. PIGHIN, A. R. KARLIN, H. M. LEVY,
AND C. A. THEKKATH Implementing global memory management in a workstation
cluster. In SOSP 1995.

[35] MICHAEL R. HINES Anemone: Adaptive Network Memory Engine. Thesis: A
Florida State University Libraries, 2005.

[36] HPE Serveur Moonshot. https://www.hpe.com/fr/fr/servers/moonshot.html, ac-
cessed 2017-07/20.

[37] Apache Spark SQL. https://spark.apache.org/sql/, accessed 2017-07/20.
[38] SCOTT’S WEBLOG Thinking About Intel Rack-Scale Architecture. http://blog.

scottlowe.org/2014/09/22/thinking-about-intel-rack-scale-architecture/, accessed
2017-07/20.

[39] AMD AMD SeaMicro. http://www.seamicro.com/, accessed 2017-07/20.

[40] CloudSuite: A benchmark suite for cloud services. http://cloudsuite.ch/, accessed
2017-07/20.

[41] Yahoo! Cloud Serving Benchmark (YCSB). https://github.com/brianfrankcooper/
YCSB/wiki, accessed 2017-07/20.

[42] Elasticsearch nightly benchmarks. https://elasticsearch-benchmarks.elastic.co,
accessed 2017-07/20.

[43] AMD Data Sheet - SM15000. http://www.seamicro.com/node/254, accessed
2017-07/20.

[44] AHMAD GHAZAL, TILMANN RABL, MINQING HU, FRANCOIS RAAB, MEIKEL
POESS, ALAIN CROLOTTE, AND HANS-ARNO JACOBSEN BigBench: towards an
industry standard benchmark for big data analytics. In SIGMOD 2013.

[45] MICHAEL R. HINES, UMESH DESHPANDE, AND KARTIK GOPALAN Post-Copy
Live Migration of Virtual Machines. In VEE 2009.

[46] Kernel Virtual Machine. https://www.linux-kvm.org/page/Main_Page, accessed
2017-07/20.

[47] DAN WILLIAMS, HANI JAMJOOM, AND HAKIM WEATHERSPOON Software
defining system devices with the ’Banana’ double-split driver model. HotCloud
2014.

[48] MAOMENG SU, MINGXING ZHANG, AND KANG CHEN, ZHENYU GUO, AND
YONGWEI W RFP: When RPC is Faster than Server-Bypass with RDMA. EuroSys
2017.

[49] STEPHEN M. BLACKBURN, ROBIN GARNER, CHRIS HOFFMANN, ASJAD
M. KHANG, KATHRYN S. MCKINLEY, ROTEM BENTZUR, AMER DIWAN,
DANIEL FEINBERG, DANIEL FRAMPTON, SAMUEL Z. GUYER, MARTIN HIRZEL,
ANTONY HOSKING, MARIA JUMP, HAN LEE, J. ELIOT B. MOSS, AASHISH
PHANSALKAR, DARKO STEFANOVIÄĞ, THOMAS VANDRUNEN, DANIEL VON
DINCKLAGE, AND BEN WIEDERMANN The DaCapo Benchmarks: Java Bench-
marking Development and Analysis. In OOPSLA 2006.

[50] WALDSPURGER C A Memory resource management in vmware esx server. In
OSDI 2002.

[51] TUDOR-IOAN SALOMIE, GUSTAVO ALONSO, TIMOTHY ROSCOE, AND KEVIN
ELPHINSTONE Memory Application level ballooning for efficient server consolida-
tion. In EuroSys 2013.

[52] CHIANG J, HAN-LIN LI, TZI-CKER CHIUEH Memory Working Set-based
Physical Memory Ballooning. In ICAC 2013.

[53] DUSHYANTH NARAYANAN, ENO THERESKA, AUSTIN DONNELLY, SAMEH
ELNIKETY, AND ANTONY ROWSTRON Migrating server storage to SSDs: analysis
of tradeoffs. In EuroSys 2009.

[54] VLAD NITU, BORIS TEABE, LEON FOPA, ALAIN TCHANA, AND DANIEL
HAGIMONT StopGap: Elastic VMs to enhance server consolidation. In SPE 2017,
DOI 10.1002/spe.2482.

[55] JUNJI ZHI, NILTON BILA, AND EYAL DE LARA Oasis: energy proportionality
with hybrid server consolidation. In EuroSys 2016.

[56] CHARLES REISS, JOHN WILKES, AND JOSEPH L. HELLERSTEIN Google cluster-
usage traces: format + schema. Technical report, Google Inc., Mountain View,
CA, USA, Nov. 2011. Revised 2012.03.20. Posted at https://github.com/google/
cluster-data, accessed 2017-04/20.

[57] ANTON BELOGLAZOV AND RAJKUMAR BUYYA OpenStack Neat: A Framework
for Dynamic and Energy-Efficient Consolidation of Virtual Machines in OpenStack
Clouds. In CCPE 2014.

[58] NILTON BILA, EYAL DE LARA, KAUSTUBH JOSHI, H. ANDRÃL’S LAGAR-
CAVILLA, MATTI HILTUNEN, AND MAHADEV SATYANARAYANAN Jettison:
Efficient Idle Desktop Consolidation with Partial VM Migration. In EuroSys 2012.

[59] MAXIME LORRILLERE, JULIEN SOPENA, SÃL’BASTIEN MONNET, PIERRE
SENS Puma: pooling unused memory in virtual machines for I/O intensive applica-
tions. In SYSTOR 2015.

[60] NADAV AMIT, DAN TSAFRIR, ASSAF SCHUSTER VSwapper: A Memory Swap-
per for Virtualized Environments. In ASPLOS 2014.

[61] XI LI, PENGFEI ZHANG, RUI CHU, AND HUAIMIN WANG Optimizing guest
swapping using elastic and transparent memory provisioning on virtualization
platform. In Frontiers of Computer Science: Selected Publications from Chinese
Universities 2016.

[62] JUNCHENG GU, YOUNGMOON LEE, YIWEN ZHANG, MOSHARAF CHOWD-
HURY, AND KANG SHIN Efficient Memory Disaggregation with Infiniswap. In
NSDI 2017.

[63] CARSTEN BINNIG, ANDREW CROTTY, ALEX GALAKATOS, TIM KRASKA, AND
ERFAN ZAMANIAN. The end of slow networks: it’s time for a redesign. In Proc.
VLDB Endow. 9, 7 (March 2016).

[64] MARCOS K. AGUILERA, NADAV AMIT, IRINA CALCIU, XAVIER DEGUILLARD,
JAYNEEL GANDHI, PRATAP SUBRAHMANYAM, LALITH SURESH, KIRAN TATI,
RAJESH VENKATASUBRAMANIAN, AND MICHAEL WEI. Remote memory in the
age of fast networks. In Proceedings of the 2017 Symposium on Cloud Computing
(SoCC ’17). ACM, New York, NY, USA.

[65] VLASIA ANAGNOSTOPOULOU, SUSMIT BISWAS, HEBA SAADELDEEN, ALAN
SAVAGE, RICARDO BIANCHINI, TAO YANG, DIANA FRANKLIN, AND FREDERIC
T. CHONG Barely alive memory servers: Keeping data active in a low-power state.
JETC 2012.

https://www.usenix.org/conference/fast14/technical-sessions/presentation/keynote
https://www.usenix.org/conference/fast14/technical-sessions/presentation/keynote
http://www.huawei.com/ilink/en/download/HW_349607
https://www.labs.hpe.com/the-machine
http://h20565.www2.hpe.com/hpsc/doc/public/display?sp4ts.oid=78193&docId=emr_na-c01552458&docLocale=en_US
http://h20565.www2.hpe.com/hpsc/doc/public/display?sp4ts.oid=78193&docId=emr_na-c01552458&docLocale=en_US
https://www.hpe.com/fr/fr/servers/moonshot.html
https://spark.apache.org/sql/
http://blog.scottlowe.org/2014/09/22/thinking-about-intel-rack-scale-architecture/
http://blog.scottlowe.org/2014/09/22/thinking-about-intel-rack-scale-architecture/
http://www.seamicro.com/
http://cloudsuite.ch/
https://github.com/brianfrankcooper/YCSB/wiki
https://github.com/brianfrankcooper/YCSB/wiki
https://elasticsearch-benchmarks.elastic.co
http://www.seamicro.com/node/254
https://www.linux-kvm.org/page/Main_Page
https://github.com/google/cluster-data
https://github.com/google/cluster-data

	Abstract
	1 Introduction
	2 Motivation and Related Work
	3 Zombie (Sz): A Sleep State for Servers
	3.1 Sz State Design

	4 Memory Disaggregation Using Sz State
	4.1 Implementation
	4.2 Initialisation
	4.3 Delegating and Reclaiming Server Memory
	4.4 Requesting and Allocating Remote Memory
	4.5 Using Remote Memory

	5 Cloud Management with ZombieStack
	5.1 Remote Memory Aware VM Placement
	5.2 VM Consolidation with Zombie Servers
	5.3 VM Migration Protocol

	6 Evaluations
	6.1 Experimental environment
	6.2 RAM Ext's page replacement policy
	6.3 RAM Ext limitations
	6.4 RAM Ext compared with Explicit SD
	6.5 VM Migration
	6.6 Energy consumption

	7 Conclusion
	8 Acknowledgements
	References

