
HAL Id: hal-03634937
https://hal.science/hal-03634937

Submitted on 8 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Classifying Deformable and Non-deformable Video
Objects

Wael F. Youssef, Siba Haidar, Philippe Joly

To cite this version:
Wael F. Youssef, Siba Haidar, Philippe Joly. Classifying Deformable and Non-deformable Video
Objects. 7th International Conference on Imaging for Crime Detection and Prevention (ICDP 2016),
Nov 2016, Madrid, Spain. pp.1-6. �hal-03634937�

https://hal.science/hal-03634937
https://hal.archives-ouvertes.fr


Official URL 
https://doi.org/10.1049/ic.2016.0077 

Any correspondence concerning this service should be sent 

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr 

This is an author’s version published in: 
http://oatao.univ-toulouse.fr/24146 

Open  Archive  Toulouse  Archive  Ouverte 

OATAO is an open access repository that collects the work of Toulouse 
researchers and makes it freely available over the web where possible 

To cite this version: Youssef, Wael F. and Haidar, Siba and 

Joly, Philippe Classifying Deformable and Non-deformable Video 

Objects. (2018) In: 7th International Conference on Imaging for 

Crime Detection and Prevention (ICDP 2016), 23 November 2016 

- 25 November 2016 (Madrid, Spain).



Classifying Deformable and Non-deformable Video Objects 

W.F. Youssef*, S. Haidar , P. Joly 
#

* SAMOVA Team, IRIT, Paul Sabatier University, Toulouse, France, waelfyoussef@gmail.com
† Faculty of Sciences, Lebanese University, Beirut, Lebanon, siba.haidar@ul.edu.lb 

#
 SAMOVA Team, IRIT, Paul Sabatier University, Toulouse, France, joly@irit.fr 

Keywords: video analysis; video database indexing; object 

classification; fundamental matrix; motion classification. 

Abstract 

This paper presents a fully automated approach to classifying 

deformable and non-deformable moving objects in a video 

surveillance scene. We estim

Marzat optical-flow algorithm. We filter the motion vectors 

and attempt to find the transformation that represents the 

correct mapping between the two positions. The Fundamental 

transformation is estimated using the Normalized Eight-Point 

Algorithm. We introduce a new type of graph to set the 

thresholds between deformable and non-deformable motion. 

Furthermore, we use temporal consistency to classify 

deformable and non-deformable objects. For experiments, we 

used a varied corpus of real surveillance videos. Our proposed 

approach for motion classification achieved a precision rate of 

92 percent. 

1 Introduction 

In the recent years, the concerns about security in public 

forever advancing surveillance camera technology can be a 

valuable tool in the management of public safety and security, 

in the protection of people and property, in the prevention and 

investigation 
1
. But

this valuable tool has two main limitations: 1- The all-time 

shortage of human operators compared to the needed number 

of actively monitored cameras; 2- The extreme difficulty 

faced when forensically investigating the enormous recorded 

video database. Therefore, the recent need identified for video 

surveillance systems and research is the semantic video 

understanding and indexing by automatic video analysis. For 

that purpose, it is especially important to recognize and study 

the video content i.e., the background, actions, objects, and

their movements to better understand their meaning.

Accordingly, object properties are of considerable 

importance. One property that significantly facilitates the 

understanding of object movement is object deformability. In 

many research works, object deformability is a mandatory 

prior piece of information which is not actually automatically 

extracted. The existing Intelligent Video Analytic Softwares 

(IVAS) are hardly dealing with all kinds of video surveilled 

1
Surveillance Camera Code of Practice. This code is issued in England and Wales by 

the Secretary of State under Section 30 of the 2012 Act.

detecting whether an object is deformable or non-deformable 

would allow a tracking system and an IVAS to rely on more 

appropriate measurements. There are few related works that 

deal with this problem [1, 2]. 

This study presents a new fully automated method for 

classifying deformable and non-deformable objects. It aims 

mainly to deal with video-surveillance content specifically

in scenes recorded with a static grayscale or colored camera 

and where there is only one moving object in the scene.  

A deformable object is an object that, when in motion, can 

undergo shape deformations, for example, a walking man, or 

a running animal. A non-deformable object, by contrast, has a 

rigid shape, for example, a passing car, an opening door. We 

define temporal motion as a fragment of an object motion for 

a small number of successive frames. "Non-rigid motion" is 

standardly used to refer to all articulated, elastic, and fluid 

motion, denoted here "deformable motion". Likewise, rigid 

motion is denoted as "non-deformable motion". Importantly, 

deformable objects can have both deformable and non-

deformable motion, whereas non-deformable objects are 

restricted to non-deformable motion. 

In Section 2, we explain our approach. We then present, in 

Section 3, the experiments we have done in order to validate 

and evaluate our method. 

2 PROPOSED APPROACH 

In the real world, a general moving object has 

displacement, for example, from position A3D to position B3D. 

Its features correspond at both positions, as do the points 

along its surface. This displacement can be represented by 3D 

motion vectors . In a video, using a general

projective camera, this object is projected on image planes (of 

different positions A2D, B2D, C2D 

motion vectors  are projected to 2D motion vectors  from

frame position A2D to frame position B2D, where each vector 

represents the displacement of a pixel from one image to 

another. This gives the corresponding points , where  

and  are the two extremities of the vector . 

When a static camera is used, the background estimated 

motion in the frames will be a null vector. Moreover, because 

there is only one moving object in the scene, the motion-

estimation will point out the object movement represented by 

motion vectors. 

This process begins by deciding, for each temporal motion, 

whether the displacement between time t1 and t2 is deformable 

or not. In the case of non-deformable object motion, there will 

be a particular transformation to map  to its corresponding 



. Later, we will attempt to calculate this transformation, 

which is the Fundamental matrix. The temporal displacement 

may be deformable or non-deformable. However, in each of 

the above cases, the object can be either. Thus, we studied the 

temporal consistency of the displacements to determine 

whether the object is deformable or non-deformable. 

To summarize, first, we detect object movements and 

estimate the motions vectors in the scene. Then, we filter the 

motions vectors. Next, we search for the Fundamental 

transformation matrix, if there is one, which satisfies these 

movements. Subsequently, we determine whether the 

transformation correctly maps the two sets of corresponding 

points. By reference to this, the decision is made about the 

detected temporal motion as to whether it is deformable. 

Finally, from the sequence of the temporal deformability of 

movements, we can infer the deformability of the moving 

object. This step will ultimately classify the object moving 

through the scene, as deformable or non-deformable. 

2.1  Motion estimation 

For our study, a reliable method is needed one that can

produce a very dense, accurate (to the extent of using sub-

pixels), and regular field of vectors representing the pixel 

displacements of a moving object. Moreover, the capability to 

track each moving object pixel through frames is required. 

This must be combined with the ability to estimate any kind of 

movement, even slow movement or object rotation. In 

addition, for further application and interpretation of an 

action, it is not possible to sacrifice the availability of dense 

and regular information in order to avoid missing any part of 

Many approaches for motion estimation (Optical flow 

approaches, feature-

well examined and tested. To achieve our main goals with 

best results, when no prior information about the content of 

the scene is available and with a minimum number of

hypotheses, assumptions, and constraints an optical-flow

algorithm

[3] algorithm

presents a pyramidal implementation of the Lucas-Kanade 

method [4] with regularized least squares (i.e., a multi-

resolution approach) and in plus an iterative and temporal 

requires filtering to ameliorate its results and to remove 

unreliable motion vectors. 

2.2  Motion filtering 

-

-

1) Small-vectors Filter: All insignificant vectors with a

very small abscissa and ordinate (<0.5) are eliminated (e.g., 

the motion of tree leaves), noise, or poor detections. 

2) Uniformity Filter: Where there are uniform areas in the

-motion vectors. Thus,

if a vector exists in a uniform area, it will be eliminated. 

3) Texture Filter: -Kanade

approach, which is based on motion-vector estimation 

according to a gradient calculation that can result in false 

estimations for vectors, especially along edges where vectors 

appear to be parallel with the local texture. Thus, we find 

intensity variations in the vector surrounding block, in the 

the same direction and orientation as the local texture. These 

vectors must be eliminated. 

2.3  Transformation 

We consider a kinematics theory of non-deformable 

bodies. For general 3D non-deformable static bodies, a well-

known transformation exists between two corresponding 

points (Xi Xi') taken from two different camera positions

at two different times. This case is equivalent to the case of 

one static camera taking two images of a 3D non-deformable 

moving body at two different times. Thus, when a non-

deformable object is observed in two perspective-camera 

views, its feature correspondences satisfy an epipolar 

constraint for a general non-deformable body. The 

transformation is called the Fundamental matrix. Where :  

 
-

xi xi'

F

:  where and

 e did use the Symmetric Epipolar Distance [6]

to calculate this error: 

 (2) 

2.4  Deformable and Non-deformable Motion 

F

F N

F

 The error margin when mapping the corresponding

points 

if  (respectively ) then F correctly maps

the couple ;  mapping error

thresholds 

 The error margin in the percentage of correctly mapped

points:



(deformable,

non-deformable, small, medium, and large, with texture, 

smooth, etc.) and movements (slow, medium, fast, small, 

large, in all directions, etc).

imn-1 imn

F

pF ,

-

For that, F should

be investigated as to whether they can be affected by the 

following two parameters: 

 Number of motion vectors.

 Average Length of the Motion Field ( ).

Based on tests, it was clear that the number of motions 

vectors does not seriously affect the motion non-

def F. Only a few vectors (8 vectors) are

needed to define and represent the true temporal displacement 

of the object. Thus, the density of the motion field can be 

reduced in order to diminish the time required for filtering. 

Concerning the length of the motion, initially in the 

experiments, the mapping error threshold for F is fixed 

regardless of the motion length, and different lengths of 

F in such a way that the

smallest average length of the motion field will have the 

highest motion non-deformability threshold for F to minimize 

the errors in discriminating between non-deformable and 

deformable. Therefore, seeking the generality, a 

normalization step is added to normalize the length of the 

motion field after motion filtering and before calculating the 

transformation F. For that, all motion vectors are normalized 

to an average motion-

round (original average length)).The Fundamental matrix 

was calculated for each of the normalization level n. 

Therefore, for each normalization level n, the mapping error 

threshold ( , ) must be found in a way to lead to the

ultimate motion non-deformability threshold ( , ).

In paragraph 3 the method of searching for thresholds is 

explained and the ultimate couple mapping error threshold 

( , ) and the motion non-deformability threshold ( ,

) are found in a way that maximizes the success (the

percentage of success) of the algorithm. The ultimate 

thresholds are shown the Table 1. It should be noted here that, 

for small object movement, deformable motion can be 

confused with non-deformable motion in the real world. 

Furthermore, the length of the motion vectors and the 

difference in length among motion vectors are very small. 

Thus, the Fundamental matrix F and the motion non-

deformability thresholds are unreliable. Moreover, by having 

especially long movement vectors, errors in estimating the 

motion vectors and in estimating F will be duplicates, and the 

motion non-deformability thresholds will be again unreliable. 

Following the experiments, the ALMF should fall between 

seven and ten. For that, the motion vectors inputted during the 

third step (viz., transformation) should have an average length 

between seven and ten. By changing (i.e., by eloigning or 

approaching) the input-compared frame imi (i.e., the frame 

compared with the current frame imn) and repeating the first 

and the second
 
steps (viz., motion estimation and motion 

filtering), the desired average length of the motion field can 

be obtained. 

Normalization 1 2 3 4 5 

 
(0.6, 

83.36) 

(1, 

79.13) 

(1.4, 

76.92) 

(1.8, 

76.04) 

(2.2, 

75.52) 

: 81.56 82.16 82 82.05 82.04 

Normalization 6 7 8 9 10 

 
(2.8, 

76.65) 

(3.8, 

80.91) 

(4.8, 

82.56) 

(5, 

81.06) 

(6, 

90.76) 

: 82.32 82.93 82.68 80.98 80.51 

Normalization 1 2 3 4 5 

(0.6, 
81.31) 

(2.2, 
80.16) 

(3.8, 
76.6) 

(6.6, 
76.25) 

(15, 
81.31) 

: 81.8 82.58 82.09 82.41 82.79 

Normalization 6 7 8 9 10 

(25, 
83.08) 

(35, 
83.02) 

(47, 
82.61) 

(51, 
81.26) 

(72, 
81.18) 

: 82.92 83.12 82.64 81.45 82.44 

Table 1: Ultimate thresholds: where (x,y): x is the mapping error 

threshold, and y is the motion non-deformability threshold; below 

these thresholds is the corresponding percentage of success (%) 

Deformable and Non-deformable Objects. 

2.5  Deformable and Non-deformable Objects 

2

-

-

 Errors in classifying the temporal motion:

- -

 A deformable object can have non-deformable motion:

-

-

2
The motion (i.e., the temporal motion) is denoted according to the frame of its motion 

vectors and the destination frame. For example, the displacement of the object from 

frame Xk (the suitable corresponding frame of Xj for the study) to frame Xj (Xk  Xj) is

called motion Xj.



First, the temporal consistency will be studied when the 

motion is classified for all series of movements to correct 

classification errors, and to exclude the inconsistent non-

deformable movements in a deformable object. Second, 

object deformability will be inferred. 

-

N,

N2

where  is the number of correct classifications in  frames, 

and   is the number of false classifications. In [7],  is the

probability of success,  is the probability of failure, 

 is the probability of a false alarm in a frame, and ;

in our case (without misdetection), , and . 

To find the optimal values for  and  that suit our aim, the 

numerical resolution proposed in [7] was used to maximize 

the expression. We considered the case of the Symmetric 

Epipolar distance as the distance measure, normalization level 

two, the mapping error threshold  =2.2, and the motion

non-deformability threshold = 80.16, table 1  give us a

probability of success  and a probability of failure 

. 

However, the set of solutions was a plateau, and a solution 

was found that can be generic to several applications. Thus, 

the couple (N, N2) taken is: (N, N2) = (11, 6), where, 

 is maximized to 0.988454).

This step can be reiterated as needed, until the final output 

is completely smooth and stable. When temporal-consistency 

was applied, it increased the percentage of success by more 

than 6%, see the examples in Table 2, below. When applied a 

second time, the percentage of success (percentage of true 

classification) increased to more than 91.8%. 

The final step in classifying the object is simple; we 

classify the object as deformable or not by looking on the 

motion-classification series of its appearance. If all the 

persistent motion classifications are non-deformable, then the 

object is non-deformable. However, the existence of one sub-

series of deformable classifications is sufficient for the object 

to be classified as deformable. 

% of true 

classification 

% of false 

classification as 

deformable 

% of false 

classification as 

non-deformable 

Before 

temporal 

consistency 
82.58 9.06 8.36 

After temporal 

consistency 
89.025 6.025 4.95 

Table 2: The temporal-consistency amelioration results: tested 

on 75 different videos (2141 frames), using the Symmetric 

Epipolar distance, and the normalization level 2, where    =2.2

and    = 80.16.

3 EXPERIMENTS 

-

3

-

-

For better understanding, we explain how to derive the 

motion non-deformability thresholds when the mapping error 

thresholds are fixed. Then thresholds are improved when we 

apply the ultimate thresholds with variable mapping error 

thresholds. 

3.1  Mapping Error Thresholds Fixed to 1 

mapping

error thresholds 

 

The set  contains deformable and non-deformable 

motion. Each motion is classified manually, as deformable or 

not, by reference to its movement between the two 

corresponding frames, and in a critical and rigorous way. For 

3
 http://www.irit.fr/recherches/SAMOVA/CORPORA/DND/DNDO.zip  (30/08/2016).



example, if only a small part of a human body (e.g., a part of 

a hand) is moving in a manner different from the body, 

regardless of whether this motion was correctly estimated 

with the Marzat optical flow, the object is considered 

deformable. 

-

-

-

motion non-deformability thresholds

-

motion non-deformability thresholds

motion non-deformability thresholds

- .

 The biggest number of motions in  have their own

percentages of correctly mapped points ( ), above the

corresponding threshold. In other words, we retain the 

"best maximum" of non-deformable motions above the 

threshold, and an "acceptable minimum" of non-

deformable motions below the threshold.  

 Similarly, the biggest number of motions in  have

their own percentages of correctly mapped points ( ),

below the corresponding threshold. 

- )

 The sub-set NDs of the non-deformable motions is sorted

in descending order, according to the percentage of 

correctly mapped points for each frame in the sub-set. 

 On the other hand, the sub-set Dr of the deformable

motions is sorted in ascending order, according to the 

percentage of correctly mapped points for each frame in 

the sub-set. 

 A percentage is given for each element in the two sub-

sets, representing its placement within the sub-set. This 

value is called the "Placement Percentage". For 

example, the 5
th

 element in NDs will be given the

percentage , and the 5
th

 element in Dr will

have the percentage .

Fig. 3 shows the graph for a normalization level of 2, using 

the mean distance, with a mapping error threshold . 

Here the requested threshold t is a value of y=t, where:  

((maximum of points in Series 1 are above line y=t) 

(maximum of points in Series 0 are below line y=t)). 

With this type of graph, the intersection of the two curves 

represents the best existing solution, where the maximum 

number of non-deformable motions (in NDs) have their 

percentages of correctly mapped points above this 

coincidence point, and the maximum number of deformable 

motions (in Dr) have their percentages of correctly mapped 

points below this coincidence point. 

Fig. 1.  (left) Frame 97, (right) Zoomed motion 

vectors between frames 97 and  96; (755×2 corresponding points). 

Fig. 2.  (left) Frame 83, (right) Zoomed motion 

vectors between frames 83 and 80; (365×2 corresponding points). 

For example, in Fig. 3, if we settle for y= 70, rather than the 

intersection point, we know that 97% of non-deformable 

motions are above this threshold, and consequently well 

classified. However, only 62.6% of deformable motions are 

below this threshold, meaning that only 62.6% are well 

classified. Alternatively if we take y=t=79.13 (the ordinate of 

the intersection point), then 82.16% of deformable and 83% 

of non-deformable motions are well classified, and this is the 

optimal percentage. 

Let  be the intersection point, with  denoting the 

requested threshold. Notice that the abscissa, , for the point 

of intersection  represents, in this case, the percentage of 

success for the entire algorithm, insofar as the number of 

deformable motions and the number of non-deformable 

motions that are tested are approximately the same. 

Moreover, the Placement Percentage is the same for both 

series ND and D. Accordingly, we calculate the motion non-

deformability thresholds for each normalization level (see

Table 1). 

Fig. 3. Graph for F2: with a mapping error threshold , y=70, 

intersecting with Series 0 at 62.6, and Series 1 at 97. 

3.2  Ultimate Thresholds 

mapping error thresholds

1 mapping error thresholds

motion non-deformability

thresholds



mapping

error thresholds

For each normalization level n, each type of distance 

measure, and for F and H, we generated a graph of the 

variation in the curves with intersection points according to 

the variations in the mapping error thresholds. For example, 

for the normalization 3, the mean distance, and a mapping 

error threshold of  , varying between 0.2 and 10 with

intervals of 0.2 the graph will take the

form in Fig. 4. In Fig. 4, it is clear that the mapping error 

threshold  is the threshold that maximizes the

percentage of success to 82%, which corresponds to the 

ultimate motion non-deformability threshold of 76.92 %. 

Furthermore, for each normalization level n, we calculate the 

ultimate corresponding couple (mapping error threshold and 

motion non-deformability threshold) that maximizes the 

percentage of success, using different distance measurements. 

The values from this calculation are found in Table 1.  

Fig. 4. Graph of the variation of curves: with intersection points 

according to variable mapping error thresholds, for F, normalization 3, 

mean distance, and a mapping error threshold of . 

The thresholds in Table 3, and the ultimate thresholds in 

Table 1, confirm that when the mapping error threshold is 

fixed, the best motion non-deformability thresholds will have 

decreasing values proportional to the normalization level (see 

Table 3). However, if the mapping error threshold is variable 

in the appropriate way, the ultimate motion non-deformability 

thresholds will have approximately the same value, regardless 

of the normalization level or the distance type used (see Table 

1). This ensures high stability and reliability with regard to 

our algorithm.  

Normalization 1 2 3 4 5 

mean distance 

 

(79.95, 
92.49) 

(82.16, 
79.13) 

(80.45, 
67.22) 

(79.23, 
57.87) 

(77.57, 
49.82) 

Normalization 6 7 8 9 10 

mean distance 

 

(74.86, 
42.16) 

(72.95, 
36.62) 

(72.2, 
31.47) 

(71.08, 
27.3) 

(73.52, 
23.21) 

Table 3: Temporal motion non-deformability thresholds: for 

each normalization when the mapping error threshold is fixed to 1 

/ where (x,y): x is the percentage of success (%S), and y is the 

motion non-deformability threshold. 

On the basis of our experiments we recommend using the 

Symmetric Epipolar Distance, normalization level 2, the 

mapping error threshold , and the motion non-

deformability threshold  (note: this is not to suggest

that other thresholds are undesirable). As an example, when 

we compared our results for the two scenes above (viz., 

2,  = 94.1722

 = 68.7671) with the corresponding threshold (  = 80.16),

we can easily infer the deformability of each corresponding 

2 -

classified as deformable motion and both classifications

were correct. 

4 CONCLUSION 

- -

-

-

-

92% Such a

precision rate is largely sufficient to address new topics where 

knowledge about object deformability is an input. 

This study can provide the video surveillance research a 

rigorous and precise algorithm, which can be built on when 

examining the video analysis and indexing. In the future, we 

intend to generalize this approach by addressing multiple 

objects on the basis of multiple-target-tracking tool. Major 

issues in this perspective will be to take into account partial or 

complete occultation and possible interactions between 

objects.  
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