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This paper presents a fully automated approach to classifying deformable and non-deformable moving objects in a video surveillance scene. We estim Marzat optical-flow algorithm. We filter the motion vectors and attempt to find the transformation that represents the correct mapping between the two positions. The Fundamental transformation is estimated using the Normalized Eight-Point Algorithm. We introduce a new type of graph to set the thresholds between deformable and non-deformable motion. Furthermore, we use temporal consistency to classify deformable and non-deformable objects. For experiments, we used a varied corpus of real surveillance videos. Our proposed approach for motion classification achieved a precision rate of 92 percent.

Introduction

In the recent years, the concerns about security in public forever advancing surveillance camera technology can be a valuable tool in the management of public safety and security, in the protection of people and property, in the prevention and investigation 1 . But this valuable tool has two main limitations: 1-The all-time shortage of human operators compared to the needed number of actively monitored cameras; 2-The extreme difficulty faced when forensically investigating the enormous recorded video database. Therefore, the recent need identified for video surveillance systems and research is the semantic video understanding and indexing by automatic video analysis. For that purpose, it is especially important to recognize and study the video content i.e., the background, actions, objects, and their movements to better understand their meaning. Accordingly, object properties are of considerable importance. One property that significantly facilitates the understanding of object movement is object deformability. In many research works, object deformability is a mandatory prior piece of information which is not actually automatically extracted. The existing Intelligent Video Analytic Softwares (IVAS) are hardly dealing with all kinds of video surveilled detecting whether an object is deformable or non-deformable would allow a tracking system and an IVAS to rely on more appropriate measurements. There are few related works that deal with this problem [START_REF] Lipton | Local application of optic flow to analyse rigid versus non-rigid motion[END_REF][START_REF] Cutler | Robust real-time periodic motion detection, analysis, and applications[END_REF].

This study presents a new fully automated method for classifying deformable and non-deformable objects. It aims mainly to deal with video-surveillance content specifically in scenes recorded with a static grayscale or colored camera and where there is only one moving object in the scene.

A deformable object is an object that, when in motion, can undergo shape deformations, for example, a walking man, or a running animal. A non-deformable object, by contrast, has a rigid shape, for example, a passing car, an opening door. We define temporal motion as a fragment of an object motion for a small number of successive frames. "Non-rigid motion" is standardly used to refer to all articulated, elastic, and fluid motion, denoted here "deformable motion". Likewise, rigid motion is denoted as "non-deformable motion". Importantly, deformable objects can have both deformable and nondeformable motion, whereas non-deformable objects are restricted to non-deformable motion.

In Section 2, we explain our approach. We then present, in Section 3, the experiments we have done in order to validate and evaluate our method.

PROPOSED APPROACH

In the real world, a general moving object has displacement, for example, from position A 3D to position B 3D . Its features correspond at both positions, as do the points along its surface. This displacement can be represented by 3D motion vectors . In a video, using a general projective camera, this object is projected on image planes (of different positions A 2D , B 2D , C 2D motion vectors are projected to 2D motion vectors from frame position A 2D to frame position B 2D , where each vector represents the displacement of a pixel from one image to another. This gives the corresponding points , where and are the two extremities of the vector .

When a static camera is used, the background estimated motion in the frames will be a null vector. Moreover, because there is only one moving object in the scene, the motionestimation will point out the object movement represented by motion vectors.

This process begins by deciding, for each temporal motion, whether the displacement between time t 1 and t 2 is deformable or not. In the case of non-deformable object motion, there will be a particular transformation to map to its corresponding . Later, we will attempt to calculate this transformation, which is the Fundamental matrix. The temporal displacement may be deformable or non-deformable. However, in each of the above cases, the object can be either. Thus, we studied the temporal consistency of the displacements to determine whether the object is deformable or non-deformable.

To summarize, first, we detect object movements and estimate the motions vectors in the scene. Then, we filter the motions vectors. Next, we search for the Fundamental transformation matrix, if there is one, which satisfies these movements. Subsequently, we determine whether the transformation correctly maps the two sets of corresponding points. By reference to this, the decision is made about the detected temporal motion as to whether it is deformable. Finally, from the sequence of the temporal deformability of movements, we can infer the deformability of the moving object. This step will ultimately classify the object moving through the scene, as deformable or non-deformable.

Motion estimation

For our study, a reliable method is needed one that can produce a very accurate (to the extent of using subpixels), and regular field of vectors representing the pixel displacements of a moving object. Moreover, the capability to track each moving object pixel through frames is required. This must be combined with the ability to estimate any kind of movement, even slow movement or object rotation. In addition, for further application and interpretation of an action, it is not possible to sacrifice the availability of dense and regular information in order to avoid missing any part of Many approaches for motion estimation (Optical flow approaches, featurewell examined and tested. To achieve our main goals with best results, when no prior information about the content of the scene is available and with a minimum number of hypotheses, assumptions, and constraints an optical-flow algorithm [START_REF] Marzat | Estimation temps réel du Flot Optique[END_REF] algorithm presents a pyramidal implementation of the Lucas-Kanade method [START_REF] Lucas | An iterative image registration technique with an application to stereo vision[END_REF] with regularized least squares (i.e., a multiresolution approach) and in plus an iterative and temporal requires filtering to ameliorate its results and to remove unreliable motion vectors.

Motion filtering

--1) Small-vectors Filter: All insignificant vectors with a very small abscissa and ordinate (<0.5) are eliminated (e.g., the motion of tree leaves), noise, or poor detections.

2) Uniformity Filter: Where there are uniform areas in the -motion vectors. Thus, if a vector exists in a uniform area, it will be eliminated.

3) Texture Filter:

-Kanade approach, which is based on motion-vector estimation according to a gradient calculation that can result in false estimations for vectors, especially along edges where vectors appear to be parallel with the local texture. Thus, we find intensity variations in the vector surrounding block, in the the same direction and orientation as the local texture. These vectors must be eliminated.

Transformation

We consider a kinematics theory of non-deformable bodies. For general 3D non-deformable static bodies, a wellknown transformation exists between two corresponding points (X i X i ') taken from two different camera positions at two different times. This case is equivalent to the case of one static camera taking two images of a 3D non-deformable moving body at two different times. Thus, when a nondeformable object is observed in two perspective-camera views, its feature correspondences satisfy an epipolar constraint for a general non-deformable body. The transformation is called the Fundamental matrix. Where :

- x i x i ' F :
where and e did use the Symmetric Epipolar Distance [START_REF] Hartley | Multiple View Geomerty in Computer Vision[END_REF] to calculate this error:

(2)

Deformable and Non-deformable Motion

F F N F
The error margin when mapping the corresponding points if (respectively ) then F correctly maps the couple ; mapping error thresholds The error margin in the percentage of correctly mapped points:

(deformable, non-deformable, small, medium, and large, with texture, smooth, etc.) and movements (slow, medium, fast, small, large, in all directions, etc).

im n-1 im n F p F ,
-For that, F should be investigated as to whether they can be affected by the following two parameters:

Number of motion vectors. Average Length of the Motion Field ( ). on tests, it was clear that the number of motions vectors does not seriously affect the motion nondef F . Only a few vectors (8 vectors) are needed to define and represent the true temporal displacement of the object. Thus, the density of the motion field can be reduced in order to diminish the time required for filtering.

Concerning the length of the motion, initially in the experiments, the mapping error threshold for F is fixed regardless of the motion length, and different lengths of F in such a way that the smallest average length of the motion field will have the highest motion non-deformability threshold for F to minimize the errors in discriminating between non-deformable and deformable. Therefore, seeking the generality, a normalization step is added to normalize the length of the motion field after motion filtering and before calculating the transformation F. For that, all motion vectors are normalized to an average motionround (original average length)).The Fundamental matrix was calculated for each of the normalization level n. Therefore, for each normalization level n, the mapping error threshold ( , ) must be found in a way to lead to the ultimate motion non-deformability threshold ( , ). In paragraph 3 the method of searching for thresholds is explained and the ultimate couple mapping error threshold ( ,

) and the motion non-deformability threshold ( , ) are found in a way that maximizes the success (the percentage of success) of the algorithm. The ultimate thresholds are shown the Table 1. It should be noted here that, for small object movement, deformable motion can be confused with non-deformable motion in the real world. Furthermore, the length of the motion vectors and the difference in length among motion vectors are very small. Thus, the Fundamental matrix F and the motion nondeformability thresholds are unreliable. Moreover, by having especially long movement vectors, errors in estimating the motion vectors and in estimating F will be duplicates, and the motion non-deformability thresholds will be again unreliable. Following the experiments, the ALMF should fall between seven and ten. For that, the motion vectors inputted during the third step (viz., transformation) should have an average length between seven and ten. By changing (i.e., by eloigning or approaching) the input-compared frame im i (i.e., the frame compared with the current frame im n ) and repeating the first and the second steps (viz., motion estimation and motion filtering), the desired average length of the motion field can be obtained. 

Deformable and Non-deformable Objects

--

Errors in classifying the temporal motion:

--

A deformable object can have non-deformable motion:

--First, the temporal consistency will be studied when the motion is classified for all series of movements to correct classification errors, and to exclude the inconsistent nondeformable movements in a deformable object. Second, object deformability will be inferred.

-

N, N 2
where is the number of correct classifications in frames, and is the number of false classifications. In [START_REF] Jaffré | Improvement of a Temporal Video Index Produced by an Object Detector[END_REF], is the probability of success, is the probability of failure, is the probability of a false alarm in a frame, and ; in our case (without misdetection), , and .

To find the optimal values for and that suit our aim, the numerical resolution proposed in [START_REF] Jaffré | Improvement of a Temporal Video Index Produced by an Object Detector[END_REF] was used to maximize the expression. We considered the case of the Symmetric Epipolar distance as the distance measure, normalization level two, the mapping error threshold =2.2, and the motion non-deformability threshold = 80.16, table 1 give us a probability of success and a probability of failure . However, the set of solutions was a plateau, and a solution was found that can be generic to several applications. Thus, the couple (N, N 2 ) taken is: (N, N 2 ) = (11, 6), where, is maximized to 0.988454).

This step can be reiterated as needed, until the final output is completely smooth and stable. When temporal-consistency was applied, it increased the percentage of success by more than 6%, see the examples in Table 2, below. When applied a second time, the percentage of success (percentage of true classification) increased to more than 91.8%.

The final step in classifying the object is simple; we classify the object as deformable or not by looking on the motion-classification series of its appearance. If all the persistent motion classifications are non-deformable, then the object is non-deformable. However, the existence of one sub-series of deformable classifications is sufficient for the object to be classified as deformable. 

% of true classification % of false classification as deformable % of false classification as non-deformable

EXPERIMENTS

- 3 - -
For better understanding, we explain how to derive the motion non-deformability thresholds when the mapping error thresholds are fixed. Then thresholds are improved when we apply the ultimate thresholds with variable mapping error thresholds.

Mapping Error Thresholds Fixed to 1 mapping error thresholds

The set contains deformable and non-deformable motion. Each motion is classified manually, as deformable or not, by reference to its movement between the two corresponding frames, and in a critical and rigorous way. For example, if only a small part of a human body (e.g., a part of a hand) is moving in a manner different from the body, regardless of whether this motion was correctly estimated with the Marzat optical flow, the object is considered deformable.

--motion non-deformability thresholds motion non-deformability thresholds motion non-deformability thresholds -.

The biggest number of motions in have their own percentages of correctly mapped points ( ), above the corresponding threshold. In other words, we retain the "best maximum" of non-deformable motions above the threshold, and an "acceptable minimum" of nondeformable motions below the threshold. Similarly, the biggest number of motions in have their own percentages of correctly mapped points ( ), below the corresponding threshold.

-)

The sub-set ND s of the non-deformable motions is sorted in descending order, according to the percentage of correctly mapped points for each frame in the sub-set.

On the other hand, the sub-set D r of the deformable motions is sorted in ascending order, according to the percentage of correctly mapped points for each frame in the sub-set. A percentage is given for each element in the two subsets, representing its placement within the sub-set. This value is called the "Placement Percentage". For example, the 5 th element in ND s will be given the percentage , and the 5 th element in D r will have the percentage . Fig. 3 shows the graph for a normalization level of 2, using the mean distance, with a mapping error threshold . Here the requested threshold t is a value of y=t, where: ((maximum of points in Series 1 are above line y=t) (maximum of points in Series 0 are below line y=t)).

With this type of graph, the intersection of the two curves represents the best existing solution, where the maximum number of non-deformable motions (in ND s ) have their percentages of correctly mapped points above this coincidence point, and the maximum number of deformable motions (in D r ) have their percentages of correctly mapped points below this coincidence point. For example, in Fig. 3, if we settle for y= 70, rather than the intersection point, we know that 97% of non-deformable motions are above this threshold, and consequently well classified. However, only 62.6% of deformable motions are below this threshold, meaning that only 62.6% are well classified. Alternatively if we take y=t=79.13 (the ordinate of the intersection point), then 82.16% of deformable and 83% of non-deformable motions are well classified, and this is the optimal percentage. Let be the intersection point, with denoting the requested threshold. Notice that the abscissa, , for the point of intersection represents, in this case, the percentage of success for the entire algorithm, insofar as the number of deformable motions and the number of non-deformable motions that are tested are approximately the same. Moreover, the Placement Percentage is the same for both series ND and D. Accordingly, we calculate the motion nondeformability thresholds for each normalization level (see Table 1). Fig. 3. Graph for F 2 : with a mapping error threshold , y=70, intersecting with Series 0 at 62.6, and Series 1 at 97.

Ultimate Thresholds mapping error thresholds 1 mapping error thresholds motion non-deformability thresholds mapping error thresholds

For each normalization level n, each type of distance measure, and for F and H, we generated a graph of the variation in the curves with intersection points according to the variations in the mapping error thresholds. For example, for the normalization 3, the mean distance, and a mapping error threshold of , varying between 0.2 and 10 with intervals of 0.2 the graph will take the form in Fig. 4. In Fig. 4, it is clear that the mapping error threshold is the threshold that maximizes the percentage of success to 82%, which corresponds to the ultimate motion non-deformability threshold of 76.92 %. Furthermore, for each normalization level n, we calculate the ultimate corresponding couple (mapping error threshold and motion non-deformability threshold) that maximizes the percentage of success, using different distance measurements. The values from this calculation are found in Table 1. The thresholds in Table 3, and the ultimate thresholds in Table 1, confirm that when the mapping error threshold is fixed, the best motion non-deformability thresholds will have decreasing values proportional to the normalization level (see Table 3). However, if the mapping error threshold is variable in the appropriate way, the ultimate motion non-deformability thresholds will have approximately the same value, regardless of the normalization level or the distance type used (see Table 1). This ensures high stability and reliability with regard to our algorithm. On the basis of our experiments we recommend using the Symmetric Epipolar Distance, normalization level 2, the mapping error threshold , and the motion nondeformability threshold (note: this is not to suggest that other thresholds are undesirable). As an example, when we compared our results for the two scenes above (viz., 2, = 94.1722 = 68.7671) with the corresponding threshold ( = 80.16), we can easily infer the deformability of each corresponding 2 classified as deformable motion and both classifications were correct.

CONCLUSION

-----92% Such a precision rate is largely sufficient to address new topics where knowledge about object deformability is an input.

This study can provide the video surveillance research a rigorous and precise algorithm, which can be built on when examining the video analysis and indexing. In the future, we intend to generalize this approach by addressing multiple objects on the basis of multiple-target-tracking tool. Major issues in this perspective will be to take into account partial or complete occultation and possible interactions between objects.

Fig. 1 .

 1 Fig. 1. (left) Frame 97, (right) Zoomed motion vectors between frames 97 and 96; (755×2 corresponding points).

Fig. 2 .

 2 Fig. 2. (left) Frame 83, (right) Zoomed motion vectors between frames 83 and 80; (365×2 corresponding points).

Fig. 4 .

 4 Fig. 4. Graph of the variation of curves: with intersection points according to variable mapping error thresholds, for F, normalization 3, mean distance, and a mapping error threshold of .
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  Surveillance Camera Code of Practice. This code is issued in England and Wales by the Secretary of State under Section 30 of the 2012 Act.

Table 1 :

 1 

	Normalization	1	2	3	4	5
		(0.6,	(1,	(1.4,	(1.8,	(2.2,
		83.36)	79.13)	76.92)	76.04)	75.52)
	:	81.56	82.16	82	82.05	82.04
	Normalization	6	7	8	9	10
		(2.8,	(3.8,	(4.8,	(5,	(6,
		76.65)	80.91)	82.56)	81.06)	90.76)
	:	82.32	82.93	82.68	80.98	80.51
	Normalization	1	2	3	4	5
		(0.6,	(2.2,	(3.8,	(6.6,	(15,
		81.31)	80.16)	76.6)	76.25)	81.31)
	:	81.8	82.58	82.09	82.41	82.79
	Normalization	6	7	8	9	10
		(25,	(35,	(47,	(51,	(72,
		83.08)	83.02)	82.61)	81.26)	81.18)
	:	82.92	83.12	82.64	81.45	82.44

Ultimate thresholds: where (x,y): x is the mapping error threshold, and y is the motion non-deformability threshold; below these thresholds is the corresponding percentage of success (%) Deformable and Non-deformable Objects.

Table 2 :

 2 The temporal-consistency amelioration results: tested

	Before			
	temporal	82.58	9.06	8.36
	consistency			
	After temporal consistency	89.025	6.025	4.95
	on 75 different videos (2141 frames), using the Symmetric
	Epipolar distance, and the normalization level 2, where	=2.2
	and	= 80.16.		

Table 3 :

 3 Temporal motion non-deformability thresholds: for each normalization when the mapping error threshold is fixed to 1 / where (x,y): x is the percentage of success (%S), and y is the motion non-deformability threshold.

The motion (i.e., the temporal motion) is denoted according to the frame of its motion vectors and the destination frame. For example, the displacement of the object from frame Xk (the suitable corresponding frame of Xj for the study) to frame Xj (Xk Xj) is called motion Xj.

http://www.irit.fr/recherches/SAMOVA/CORPORA/DND/DNDO.zip (30/08/2016).