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ABSTRACT

The emergence of efficient algorithms in variational and

Bayesian frameworks braught significant advances to the field

of inverse problems. However, such problems remain chal-

lenging when the observation operator is not perfectly known.

In this paper we propose a Bayesian Plug-and-Play (PP) algo-

rithm for solving a wide range of inverse problems where the

signal/image is sparse in the original domain and the obser-

vation operator has to be estimated. The principle consists of

plugging the prior considered for the target observation opera-

tor and keep using the same algorithm. The proposed method

relies on a generic proximal non-smooth sampling scheme.

This genericity makes the proposed algorithm novel in the

sense that it can be used to solve a wide range or inverse prob-

lems. Our method is illustrated on a deblurring problem with

unknown blur operator where promising results are obtained.

Index Terms— MCMC, ns-HMC, proximity operator,

myope inverse problems

1. INTRODUCTION

The inverse problem literature shows continuous develop-

ments in finding the best estimation methods for many im-

age processing applications including denoising, restoration

and deconvolution. These developments are mainly due to

the emergence of a new generation of variational [1–4] and

Bayesian [5–8] optimization algorithms. These algorithms

have been used to solve various inverse problems like image

deconvolution [7, 9, 10] or reconstruction [11–14]. When the

observation operator is not perfectly known, the problem be-

comes myope and requests specific algorithms that have been

investigated for medical imaging [15–17], astronomy [18]

or remote sensing [19]. Generally speaking, estimating both

the target signal and the observation operator directly from

the data, in addition to the regularization hyperparameters

is a difficult task. Moreover, convergence issues can limit

the interest of some methods like those based on alternating

minimization. More recently, the inverse problem literature

has faced the emergence of a new generation of regularization

algorithm called Plug-and-Play (PP). The concept is to plug

any denoiser that can be used within the algorithm steps. This

has raised the issue of convergence guarantees, which means

that this new research area is still looking for well established

algorithms that enjoy solid theoretical guarantees [20, 21].

In this paper, we propose a Bayesian PP algorithm that al-

lows solving inverse problems where the observation oper-

ator is also unknown. In order to design a fully automatic

method, a Bayesian model is adopted to build a hierarchi-

cal Bayesian model. The main contribution of this paper

lies in the genericity of the proposed algorithm in the sense

that the user has only to plug the prior adopted to model the

observation operator. The proposed algorithm also enjoys

good convergence properties inherited from the convergence

guarantees of Markov chains. Indeed, the properties of the

observation operator can dramatically change from an in-

verse problem to another. This generally implies big dif-

ferences between Bayesian models developed to solve each

problem. For instance, the observation operator in parallel

magnetic resonance imaging is complex-valued [12], while

the point spread function (PSF) for two photon microscopy

is real positive [22]. Using the recently proposed general

non-smooth Hamiltonian Monte Carlo (ns-HMC) [23, 24]

sampling scheme, the sampling of the observation operator

can be done in the same way for a wide range of inverse

problems, provided that the adopted prior belongs to the

family of exponential probability density functions. The

proposed method is therefore applicable even for non-linear

inverse problems with possibly high-dimensional observa-

tion operators for which standard schemes suffer from a high

computational cost and poor convergence speed. Moreover,

if other efficient sampling strategies such as standard HMC

[6] or Langevin-based [25] are used, they cannot be applied

to priors with non-smooth energies, which can be done with

the proposed method.

As regards the target signal, we limit our focus (without

loss of generality) to inverse problems where the target sig-

nal/image is sparse in the original domain. A Bernoulli-

Laplace model is used to model this sparsity [26]. We also

consider problems for which the acquisition noise is Gaussian

for illustration purpose.

The rest of the paper is organized as follows. Section 2 de-

scribes the problem formulation. In Section 3 we detail the

adopted hierarchical Bayesian model. The PP algorithm in-

vestigated in this work is described in Section 4. Section 5



evaluates the performance of the proposed algorithm for im-

age deconvolution. Conclusions and future work are finally

reported in Section 6.

2. PROBLEM FORMULATION

Let x ∈ R
N
+ be the target signal (or vectorized image) which

has to be recovered from an observation y ∈ R
N . This ob-

servation is defined as a perturbation of x by an observation

operator K ∈ R
k×k and an additive Gaussian noise n with

variance σ2
n. The observation model can therefore be summa-

rized as

y = T (K,x) + n (1)

where T (·, ·) denotes the possibly non-linear function that

links the observation operator K to the target signal x. For

linear inverse problems, this function is simply expressed as

T (K,x) = Kx. Since such a problem is generally ill-posed,

regularization can help to recover a stable solution through

using adequate prior information. In this paper, we handle

a particular family of ill-posed inverse problems where the

observation operator K is not perfectly known. Specifically,

we handle myope problems where the target signal is esti-

mated from a vague knowledge about the observation oper-

ator. Moreover, we adopt a Bayesian framework in order to

design a fully automatic approach where the model parame-

ters and hyperparameters are directly estimated from the data.

3. HIERARCHICAL BAYESIAN MODEL

Following a probabilistic approach, the target and observed

signals (resp. x and y) are assumed to be realizations of ran-

dom vectors (resp. X and Y ). The core of our method will be

to characterize the probability distribution of X|Y , by con-

sidering a parametric probabilistic model and by estimating

the associated hyperparameters.

3.1. Likelihood

Since the observation noise is additive and Gaussian with

variance σ2
n, the model likelihood can be expressed as

f(y|x, σ2
n) =

(
1

2πσ2
n

)N/2

exp
(
−

‖y − T (K,x)‖22
2σ2

n

)

(2)

where ‖.‖2 is the Euclidean norm.

3.2. Priors

In our model, the unknown parameters are gathered in the

unknown vector θ = {x,K, σ2
n}.

Prior for σ2
n

In order to use a non-informative prior for σ2
n while ensuring

positive values, a Jeffrey’s prior is considered for σ2
n defined

as [5]

f(σ2
n) ∝

1

σ2
n

1R+(σ2
n) (3)

where 1R+ is the indicator function on R+, i.e., 1R+
(ξ) = 1

if ξ ∈ R+ and 0 otherwise.

Prior for x

We assume that the signal coefficients xi are a priori inde-

pendent. The prior distribution for x can be written as

f(x|ω, λ) =
N∏

i=1

f(xi|ω, λ). (4)

In this paper we focus on a category of inverse problems

where the target signal/image is sparse in the original space.

In order to inforce sparse real valued signals, we consider a

Bernoulli-Laplace prior for each xi as in [26], defined by

f(xi|ω, λ) = (1− ω)δ(xi) +
ω

2λ
exp

(
−
|xi|

λ

)
(5)

where δ(.) is the Dirac delta function, λ > 0 is the parame-

ter of the Laplace distribution, and w ∈ [0, 1] is a parameter

weighting the contribution of the non-zero signal coefficients.

Note that for positive real-valued signals, an exponential dis-

tribution can be used instead of the Laplace one in (5) akin to

[27]. It is worth noticing that this model can still be used for

signals that are sparse in some transform domain.

Prior for K
For myope inverse problems, the observation operator is not

perfectly known. In this paper, we consider the generic case

where no accurate knowledge about the observation operator

is available, and where only a prior information can be defined

as a member of an exponential family, i.e.,

f(K|ϕ) = C(ϕ) exp
(
− g(K, ϕ)

)
, (6)

where ϕ is the set of involved hyperparameters.

3.3. Hyperpriors

The model hyperparameters are gathered in the vector Φ =
{λ, ω, ϕ}. As already used in a number of recent works [26,

27], a non-informative version (by setting α = β = 10−3) of

the inverse gamma distribution IG(λ|α, β) is used for λ.

As regards the weight parameter ω, we simply consider a uni-

form prior on the interval [0, 1] denoted as ω ∼ U[0,1](ω). A

more informative version can also be used if further informa-

tion is available for ω. Finally, for the hyperparameter ϕ, an

appropriate prior has to be set according to the problem.

4. PLUG-AND-PLAY ALGORITHM

Adopting a maximum a posteriori (MAP) strategy to estimate

both the parameter and hyperparameter vectors θ and Φ, we

combine the model likelihood, priors and hyperpriors in order

to derive the joint posterior distribution of {θ,Φ} that can be

expressed as

f(θ,Φ|y, α, β) ∝ f(y|θ)f(θ|Φ)f(Φ|α, β), (7)



which can be reformulated in a detailed version as

f(θ,Φ|y, α, β) ∝

(
1

σ2
n

)N/2

exp
(
−

‖y − T (K,x)‖22
2σ2

n

)

×
N∏

i=1

[
(1− ω)δ(xi) +

ω

2λ
exp

(
−
|xi|

λ

)]

×
1

σ2
n

1R+(σ2
n)× U[0,1](ω)× C(ϕ) exp

(
− g(K, ϕ)

)
. (8)

In order to handle the posterior in (8) which has a com-

plicated form, a Gibbs sampler is built following many re-

cent works [5, 8, 28]. This sampler is based on sequential

iterations of sampling according to the conditional distri-

butions f(x|y, ω, λ,K, σ2
n), f(σ2

n|y,x,K), f(K|ϕ,y,x),
f(λ|x, α, β), f(ω|x) and f(ϕ|K).
The sampling steps that have to be used for x, ω, σ2

n and λ can

be found in many studies including [26,27]. For the hyperpa-

rameter vector ϕ, the conditional distributions to sample from

have to be derived based on the likelihood and the adopted

priors.

The conditional distribution of the observation operator K
can be expressed as

f(K|ϕ,y,x) ∝ exp
(
−Eϕ,σ2

n
(K)

)
(9)

where Eϕ,σ2
n
(K) = −g(K, ϕ)− ‖y−T (K,x)‖2

2

2σ2
n

is the energy of

the conditional posterior in (9).

We propose here a sampling scheme that allows K to be sam-

pled for all possible exponential priors. Specifically, we pro-

pose to use a Metropolis-Hastings (MH) -based move for this

sampling. However, to bypass the difficulties due for instance

to the large size of the operator, we resort to a non-smooth

Hamiltonian Monte Carlo (ns-HMC) scheme recently inves-

tigated in [6, 23, 24]. It has been established in the recent

literature that ns-HMC allows us to efficiently sample multi-

dimensional distributions with high acceptance ratios in com-

parison to the standard MH algorithm. We recall here that

the standard ns-HMC relies on Hamiltonian dynamics to sam-

ple from the target distribution f(K|ϕ,y,x) and extends the

standard HMC algorithm by resorting to the concept of prox-

imity operator [29]. This scheme has recently been general-

ized by performing a Bayesian calculation of the target energy

proximity operator [24]. In this paper, we use this principle

with the constructed hierarchical Bayesian model to design a

generic PP Bayesian regularization algorithm. This algorithm

can be configurated according to the used prior for the obser-

vation operator by setting the energy function g in Eϕ,σ2
n

. The

resulting Gibbs sampler is summarized in Algorithm 1. Af-

ter convergence, Algorithm 1 provides chains of coefficients

sampled according to the target parameters and hyperparam-

eters. These chains can be used to compute an MMSE (mini-

mum mean square error) estimator (after discarding the sam-

ples corresponding to the burn-in period) for x̂ and K̂, in ad-

dition to the hyperparameters λ̂, σ̂2
n, ω̂ and ϕ̂.

5. APPLICATION TO IMAGE DECONVOLUTION

In this section we apply the proposed algorithm to a myope

image deconvolution problem. We first set the prior model of

the PSF as

f(K|K, σ2
k) ∝

(
1

2πσ2
k

)k2/2

exp

(
−
||K − K||22

2σ2
k

)
(10)

where K is an approximation of the PSF that could be a priori

estimated or calibrated, and σ2
k is the prior variance. The pro-

posed PP algorithm can therefore be configurated by setting

g(K) =
||K−K||22

2σ2
k

in (6).

Using this prior, and assuming that K is fixed, the hyperpa-

rameter vector ϕ reduces to the hyperparameter σ2
k, for which

a Jeffrey’s prior can be set akin to σ2
n. The conditional poste-

rior of σ2
k can therefore be expressed as

σ2
k|K ∼ IG

(
σ2
k|N/2, ||K − K||22

)
. (11)

Algorithm 1: Proposed Plug-and-Play algorithm.

- Initialize with some x(0) and K(0,0);

- Set the iteration number r = 0, Lf and ǫ;

- Compute P0 = proxEϕ,σ2
n
(K)(K

(0,0)) using the

Bayesian algorithm in [24, Algorithm 2];

while not convergence do

- Sample σ2
n according to f(σ2

n|y,x,K);
- Sample ϕ according to f(ϕ|K);
- Sample λ according to f(λ|x, α, β).;
- Sample ω according to f(ω|x).;
- Sample x according to f(x|y, ω, λ,K, σ2

n).;
- Sample K according to f(K|ϕ,y,x) as follows

begin

* Sample q(r,0) ∼ N (0, IN );

* Compute q(r, 1
2
ǫ) =

q(r,0) − ǫ
2

[
2K(r−1,0) −K(0,0) − P0)

]
;

* Compute K(r,ǫ) = K(r−1,0) + ǫq(r, 1
2
ǫ);

for lf = 1 to Lf − 1 do

• Compute q(r,(lf+
1
2
)ǫ) =

q(r,lf ǫ) − ǫ
2

[
2K(r,lf ǫ) −K(0,0) − P0

]
;

• Compute

K(r,(lf+1)ǫ) = K(r,lf ǫ) + ǫq(r,(lf+
1
2
)ǫ);

end

* Compute q(r,(Lf+
1
2
)ǫ) =

q(r,Lf ǫ) − ǫ
2

[
2K(r,Lf ǫ) −K(0,0) − P0

]
;

* Apply the MH acceptation rule to (K∗, q∗)
with q∗ = q(r,ǫLf ) and K∗ = K(r,ǫLf );

end

end

The following sections illustrate the deconvolution results

obtained for synthetic and real data.



5.1. Simulated data

In this section, a reference image x0 ∈ R
32×32 is used to

simulate a blurred observation using a Gaussian PSF of size

3 × 3 and a Gaussian noise of variance σ2
n = 1. The ground

truth and observed images are displayed in Fig. 1.

Ground truth Observation: SNR = 3.77 dB

Fig. 1. Ground truth and observed images.

As initialization, the observed image and a uniform PSF

have been used for the target image and the observation oper-

ator, respectively.

Fig. 2 illustrates the deblurred images using the proposed

method (a), the blind maximum likelihood (b) [30], regular-

ized filter (c) [31] and Lucy-Richardson (d) [32] deconvolu-

tions. A visual inspection of the obtained images shows that

the proposed method provides the lowest blur level with re-

spect to the other methods. Some quantitative results in terms

of signal to noise ratio (SNR) and structural similarity (SSIM)

values are reported in Tab. 1. These values demonstrate the

good performance of the proposed method providing an ac-

curate image that best fits the ground truth (see Fig. 2(a). The

estimated and actual PSFs are illustrated in Fig. 3. The SNR

value of the estimated PSF with respect to the ground truth

is also provided to indicate the good estimation precision of

our method. Regarding the computational time, 100 iterations

were enough to reach convergence within 60 seconds.

(a) Proposed method (b) Maximum Likelihood

(c) Regularized filter (d) Lucy-Richardson

Fig. 2. Deblurred images using (a) our method, (b) blind maximum likeli-

hood, (c) regularized filter and (d) Lucy-Richardson deconvolutions.

Table 1. SNR (dB) and SSIM for the competing methods.

Prop. meth. Blind M. L. Reg. filter L.-R.

SNR 24.58 4.02 12.45 15.31

SSIM 0.978 0.586 0.914 0.941

Ground truth Estimation: SNR = 36.33 dB

Fig. 3. Ground truth and estimated PSF.

5.2. Two-photon microscopy data

In this section, deblurring of two-photon microscopy data

is performed using the proposed method. Two-photon mi-

croscopy [22] is among the most recent cell imaging tech-

niques. Due to the deep penetration level, the noise level is

generally lower that single photon-based microscopy. How-

ever, the collected images still suffer from a high blur level.

The observed 3D data is of size 221 × 247 × 14, acquired

with 5 channels, 14 slices and 50 frames. Fig. 4(a) displays a

2D 50× 50 patch that has been deblurred using the proposed

method. The deblurred image is displayed in Fig. 4(b), in

addition to the deblurred images using the blind maximum

likelihood Fig. 4(c) and Lucy-Richardson Fig. 4(d) methods.

The sparsity levels evaluated using the ℓ0 pseudo-norm are

also reported in Fig. 4. These values clearly indicate that

the proposed method provides sparser estimation, which is an

interesting property.

(a) Observation: ‖x̂‖0 = 2601 (b) Prop. method: ‖x̂‖0 = 1482

(c) M. L.: ‖x̂‖0 = 2445 (d) L.-R.: ‖x̂‖0 = 2374

Fig. 4. (a) Observed and deburred images using (b) the proposed method,

(c) blind maximum likelihood, and (d) Lucy-Richardson deconvolutions.

6. CONCLUSION

In this paper, we proposed a Bayesian Plug and Play algo-

rithm for solving sparse inverse problems where the target



signal/image is sparse in the original domain, and where the

observation operator is not perfectly known. The main nov-

elty of the proposed algorithm is that it can be applied to a

wide set of inverse problems and has simply to be configu-

rated by setting the energy function of the adopted prior on

the observation operator. The efficiency of this algorithm, es-

pecially for high-dimensional observation operators is due to

the use of the general ns-HMC sampling. Results obtained af-

ter applying our algorithm to an image deconvolution problem

demonstrate its ability to accurately recover the target image

in addition to a clean version of the observation operator.
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