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ABSTRACT 
During the surface mechanical attrition treatment (SMAT), residual stress, work hardening and grain 
nano-crystallization are produced simultaneously, which allows to enhance the mechanical properties 
of materials. In this work, a dislocation density-based constitutive model is adapted to describe the local 
mechanical behavior of the gradient microstructure generated by SMAT and predict the macroscopic 
behavior of a SMATed cylindrical structure under tensile loading. A finite element (FE) model is built 
to perform uniaxial tensile simulation with the introduction of a residual stress field and a work 
hardening gradient obtained by X-ray diffraction (XRD). The results of simulation are in good 
agreement with the experimental results. Furthermore, it has been found that the residual stress plays a 
significant role in the initial stage of deformation. It decreases the yield stress of such gradient 
microstructure materials. 
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1. Introduction 

Surface Mechanical Attrition Treatment (SMAT) is based on multi-directional impacts on 
the surface of a material with shot boosted by an ultrasonic generator [1,2]. The severe plastic 
deformation due to the remarkably increased strain and strain rate can produce a great number 
of microscopic defects, which progressively induces nano-crystallization in the superficial layer 
of materials. However, SMAT cannot affect the metallurgical features and mechanical 
properties in the bulk material. Hence, a gradient microstructure is generated from the treated 
surface to the bulk with continuously increased grain sizes [3–5]. 

In the literature, various techniques such as Electron backscatter diffraction (EBSD), nano-
indentation and X-ray diffraction (XRD), are widely used to investigate the morphological 
features and properties of gradient microstructure materials [6–8]. However, it is difficult for 
experimental investigations to precisely characterize the mechanical properties at different 
depths, especially for the nanocrystallized layer. Therefore, in the literature, theoretical 
modeling is implemented to investigate the microscopic mechanical performances. For instance, 
a mechanism-based strain gradient plasticity model was modified to describe the mechanical 
response of gradient microstructure materials [9–11]. In another work, the Kocks-Mecking-
Estrin (KME) model was employed to describe the evolution of dislocation density with plastic 
strain rate and gradient grain size [12].  
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Besides the gradient microstructure, high compressive residual stresses are inevitably 
induced in the near-surface region. The impacts also generate a gradient work hardening region, 
which could also have a significant effect on the mechanical behavior of materials [3]. In most 
work, the generated residual stresses are not considered in modeling, and only the work 
hardening gradient is taken into account through a dislocation density distribution [13]. In order 
to numerically and accurately investigate the mechanical properties of the gradient 
microstructure generated by SMAT, the residual stress and work hardening should be 
considered in the modelling. 

This work aims thus to study the effect of residual stress on the properties of the gradient 
microstructure. For this purpose, the gradient microstructure of a SMATed 316L stainless steel 
is considered using a dislocation density and grain size based constitutive model. A 2D-
axisymmetric cylindrical structure is built to analyze the uniaxial tensile mechanical behavior. 
Both the equilibrated residual stresses and the initial dislocation density distribution are 
implemented in the FE structure through user-defined subroutines. 

2. Material and SMAT 

2.1. Gradient microstructure obtained by SMAT 

In this work, a dumbbell shape specimen of 316L stainless steel is treated on the entire gauge 
area, and the SMAT conditions are presented in a previous work [7]. As illustrated in Fig.1, a 
gradient microstructure can be observed on the cross-section of a SMATed specimen through 
EBSD. The microstructure manifests a clear gradient feature from a nanocrystallized layer at 
the top treated surface to a coarse-grained microstructure in the bulk region. Due to the multi-
directional severe plastic deformation induced by the impacts of flying balls, the grain size is 
refined and it ranges from 50 nm to 300 nm within a superficial nanocrystallized layer with a 
thickness of 5 μm.  
 

 

Fig. 1. Microstructure observation on the cross-section of the SMATed specimen. 

2.2. Measurement of residual stress and work hardening 

After the specimen was treated by SMAT, residual stresses and work hardening were 
measured by XRD. Work hardening cannot be directly measured, and it is usually evaluated by 
microscopic features (such as plastic slip and dislocation density). Iterative electrolytic 
polishing was performed to obtain their in-depth distributions in the near-surface region of the 
SMATed specimen [14]. The data points shown in Fig. 2a present the in-depth distribution of 
two residual stress components, respectively in the axial and circumferential directions. It can 
be seen that these two residual stresses exhibit compressive nature with a depth until about 500 
µm. These residual stresses profiles will be taken into account in the further modeling. 

As highlighted in Fig. 1, a large near-surface region is mechanically affected by SMAT due 
to high strain rate impacts. During the treatment, plastic strain is gradually accumulated in the 
near-surface region. In previous work [14], the residual accumulated plastic strain p

rs , which 

can describe the extent of work hardening, was assessed from FWHM of XRD peaks by Eq. (1). 
The obtained in-depth distribution of ΔFWHM is shown in Fig. 2b.  

p
rs FWHM      (1) 
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where r and rmax are the distance to the axis of the cylindrical structure and the radius of the 
specimen, respectively;   is a coefficient of proportionality; FWHM is the variation of 
FWHM between SMATed and untreated samples. 

An equilibrium method for reconstruction of the residual stress field and the work hardening 
gradient is used in a cylindrical structure by FE modelling [14]. According to the elastic-plastic 
equilibrium and boundary conditions, the residual stresses and work hardening are recalculated 
to obtain the true residual stress field inside a cylindrical structure. 
a b

Fig. 2. In-depth distribution of (a) residual stress, and (b) ΔFWHM whose fitted curve based on Eq. (2) is given. 

3. Modelling of gradient microstructure materials 

3.1. Constitutive model 

In the framework of elastic-viscoplastic model, the total strain rate tensor ij  can be 

decomposed into elastic and plastic parts: 
e p

ij ij ij         (3) 
The elastic part obeys the linear relationship between elastic strain rate and stress rate defined 

by Hooke’s model: 
1

2 9
e kk
ij ij ijK

  


 
     (4) 

where 
1

3ij ij kk ij         is the deviatoric stress rate, kk  is the hydrostatic stress rate, ij  is the 

Kronecker’s symbol;  and K are the shear modulus and bulk modulus, respectively. The 

plastic strain rate tensor is related to the deviatoric stress 
1

3ij ij kk ij       based on the J2-

flow theory of plasticity: 
3
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p
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where 
2

3
p p p

ij ij      and 
3

2e ij ij     are the equivalent plastic strain rate and the von 

Mises effective stress, respectively. In order to calculate without employing higher order 
stresses, a power law viscoplastic model [9] is used to determine the effective plastic strain rate: 
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where m (larger than 20) is the rate-sensitivity exponent; 0 is a reference strain rate; flow  is 

the flow stress. According to Taylor’s hardening model and Hall–Petch strengthening [15,16], 
the flow stress in the gradient microstructure materials can be described as: 

0
HP

flow

k
M b

d
         (7) 

where 0  is the lattice friction stress; HPk  is the Hall-Petch slope; d is the grain size; M is the 

Taylor factor;   is a material constant ;   is the shear modulus; b  is the magnitude of 
Burger’s vector of the material ;   is the dislocation density. A modified KME model is 
employed to represent the evolution of the dislocation density. Moreover, an additional 
dynamic recovery term is added to decrease the work hardening due to grain refinement: 
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   (8) 
where 0k  and 1k are geometric factors related to grain boundary and dislocation forests; 20k  is 

the dynamic recovery constant; 0n  is an exponent inversely proportional to temperature; ed  is 

the reference grain size. 

3.2. Grain size distribution 

As indicated in Section 2.1, the grain size varies from nanometric at the top treated surface 
to micrometric in the non-affected bulk region. This grain size distribution should be included 
in the finite element model. Based on experimental results reported in the literature [6,7], an 
exponential relationship is adopted to describe the variation of grain size in the gradient 
microstructure: 

010 dk zd d    (9) 
where z is the distance from the treated surface;  0lg / /d c gk d d h , with gh  being the 

thickness of the gradient grain size layer; d0 and dc are the grain size of the topmost surface and 
the one of the non-affected bulk region, respectively. The material parameters which describe 
the gradient grain size are provided in Table 1. 

Table 1. Material parameters for gradient grain size [7]. 

Symbol d0 (nm) dc (µm) hg (µm) 
Value 50 20 550 

3.3. Dislocation density distribution 

As presented in Section 2.2, the work hardening induced by SMAT was assessed through 
measuring FWHM by XRD. As a consequence, the residual accumulated plastic strain p

rs  was 

calculated based on ΔFWHM (Eq. (1) and (2)). It is well documented that there is a link, to 
some extent, between accumulated plastic strain and dislocation density, and models were 
proposed previously in the literature [17,18] to calculate dislocation density based on measured 
accumulated plastic strain. In this work, the initial dislocation density is related to the residual 
accumulated plastic strain through the following equation:  

1
2 2

0

( )
2 3

p
rs

bd

     (10) 
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As shown in Fig. 3, the initial dislocation density (based on Eq. (10)) and the accumulated 
plastic strain decrease gradually from the treated surface to the bulk region. The decrease rate 
is lower as the depth increases. It can also be seen that this distribution is consistent with the 
data points presented by Ghosh et al. [18].  

 
Fig. 3. In-depth distribution profile of initial dislocation density and accumulated plastic strain. The data points 

obtained from the literature are also given. 

3.4. Reconstruction of residual stress field 

The residual stress profiles are measured using XRD, as shown in Fig. 2a. These profiles 
should be implemented in the finite element structure. As presented in previous work [14], 
exponential functions based on the stress equilibrium conditions are built to describe the in-
depth distribution of residual stress:  
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where L0, Li, li, T0, Ti and ti are constant and fitted from the residual stress profiles presented in 
Fig. 2b. Table 2 lists the values of the parameters involved in Eq. (11).  

We can obtain the residual stress components distribution, as shown in Fig. 2a. It can be seen 
that the maximum compressive stress values are at the near-surface region for both axial and 
circumferential components. It should be noted that tensile residual stress, which occurs in the 
bulk region, is present to insure the equilibrium of the whole structure. 

Table 2. The parameters of residual stress reconstruction model. 

Axial Circumferential 
L1 (MPa) l1 L2 (MPa) l2 L0 (MPa) T1 (MPa) t1 T2 (MPa) t2 T0 (MPa)
10547.64 6.95 -11303.32 6.19 188.58 315.23 17.36 -832.24 2.84 91.60 

4. Finite element simulation 

4.1. The model with initial variables and fields 

A 2D-axisymmetric model is built to analyze the tensile properties of gradient microstructure 
materials. In order to build a complete model of gradient microstructure materials, the residual 
stresses are introduced as initial state at the beginning of simulation through the user-defined 
subroutine SIGINI. The grain size and initial dislocation density are compiled as functions 
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implemented into the subroutine UMAT with an elastic-viscoplastic behavior. Material 
parameters for the model are defined in Table 3. Two analysis steps are performed for the 
procedure, including a self-equilibrium analysis and followed by a tensile simulation. The 
residual stress and work hardening distributions are introduced and balanced during the first 
step. 

Table 3. Parameters for the model of gradient microstructure materials. 

Symbol σ0 (MPa) KHP (MPa⋅m1/2) M Α μ (GPa) b (nm) 

Value 70 [1] 0.25 [1] 3.06 [9] 0.3 [9] 82 0.256 [9] 

Symbol k0 k1 k20 n0 ϵ0 (s-1) de (μm) 

Value 0.1 [9] 0.026 2.5 21.25 [9] 1 [9] 20 [7] 

After implementing the finite element model, the distribution of each variable can be verified. 
It can be observed in Fig. 5a that the yield stress significantly increases with grain size. In the 
nanostructured layer, the stress level can reach about 1560 MPa, whereas the value in the bulk 
region is only about 190 MPa. This is due to the fact that the grain boundary strengthening effect 
can significantly improve the yield strength of the gradient microstructure materials (see Eq. 
(7)). It shows that there is a good agreement between the calculated curve and these 
experimental points. The implemented grain size distribution can be found in Fig. 5b. The grain 
size varies from 50 nm at the top surface to 20 µm in the bulk region based on Eq. (9). 
a b

Fig. 5. In-depth distribution profiles of (a) yield stress; (b) grain size.  

4.2. Results and discussion 

4.2.1. Mechanical behavior of gradient microstructure materials  

In order to compare the local mechanical behavior of the gradient microstructure, four 
representative depths associated with grain sizes corresponding to 50 nm, 200 nm, 1 µm and 20 
µm are chosen to illustrate the stress-strain curves under uniaxial tension loading. For 
comparison, the simulated stress-strain curve of gradient microstructure with residual stress is 
also given by dash curves in Fig. 6. It can be observed that the residual stress mainly influences 
the mechanical behavior in the initial stage of deformation. Moreover, the presence of 
compressive residual stresses delays the occurrence of plastic deformation, which is more 
significant in the nanocrystallized layer. 

4.2.2. Evolution of dislocation density with strain 

Fig. 7 shows the evolution of equivalent plastic strain and dislocation density during tensile 
loading for the materials with different grain sizes, i.e. at different depths. It can be found that 
the equivalent plastic strain increases with the imposed strain for all the grain sizes, i.e. in the 
whole structure (both SMAT affected and bulk regions). Note that the equivalent plastic strain 
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remains constant during the elastic deformation stage. Except for the nanocrystallized layer 
(Fig. 7d), the dislocation density increases and its increase can be associated with the equivalent 
plastic strain (see Fig. 7a-c). The phenomenon of dislocation density reduction shown in Fig. 
7d can be attributed to the dynamic recovery of dislocations due to work hardening effect in the 
nanocrystallized layer, as mention in Eq. (8). 

By referring to the residual stress profiles presented in Fig. 2a, it can be seen that the residual 
stress has a small influence on the evolution of equivalent plastic strain and dislocation density 
(see dashed curves in Fig.7). 

 
Fig. 6. The simulated stress-strain curves of different grain sizes with and without residual stress (RS). 

a b

c d

Fig. 7. Evolution of equivalent plastic strain (EQPL) and dislocation density of gradient microstructure with and 
without residual stress (RS). The grain sizes are: (a) 20 µm; (b) 1 µm; (c) 200 nm; (d) 50 nm. 

5. Conclusions 

In this study, a dislocation density-based model is adapted to investigate the tensile behavior 
of gradient microstructure materials by taking into account the residual stress and the grain size. 
Based on the obtained results, the following conclusions can be drawn: 

 By comparing the tensile stress-strain curves of gradient materials with different grain 
sizes (i.e. at different depths), it can be found that the residual stress plays a significant 
role in the initial stage of deformation. Moreover, the compressive residual stress delays 
the occurrence of plastic deformation especially in the very near surface region (with 
grain sizes of 50 nm and 200 nm). 
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 In the region far from the surface (with grain sizes of 1 µm and 20 µm), the residual 
stress has a small influence on the evolution of equivalent plastic strain and dislocation 
density, whereas in the very near surface region, this influence is more pronounced. 
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