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Abstract Topological defects are at the root of the large-scale organization of liquid crystals. In two-dimensional active
nematics, two classes of topological defects of charges±1/2 are known to play a major role due to active stresses. Despite this
importance, few analytical results have been obtained on the flow-field and active-stress patterns around active topological
defects. Using the generic hydrodynamic theory of active systems, we investigate the flow and stress patterns around these
topological defects in unbounded, two-dimensional active nematics. Under generic assumptions, we derive analytically the
spontaneous velocity and stall force of self-advected defects in the presence of both shear and rotational viscosities. Applying
our formalism to the dynamics of monolayers of elongated cells at confluence, we show that the non-conservation of cell
number generically increases the self-advection velocity and could provide an explanation for their observed role in cellular
extrusion and multilayering. We finally investigate numerically the influence of the Ericksen stress. Our work paves the way
to a generic study of the role of topological defects in active nematics, and in particular in monolayers of elongated cells.

Topological defects are singularities in the topology of
the order-parameter field in a phase of broken continuous
symmetry [1, 2]. They were first observed in nematic liquid
crystals as early as 1904 by Lehman [3] and sparked theoret-
ical interest later by Frank and Kleman for their role in the
mechanical and optical properties of liquid crystals [2, 4].
In two-dimensional nematic liquids, topological defects are
point-like singularities of the director-field orientation. They
are classified by the defect strength or topological charge S,
which is equal to the number of full rotations of the liquid-
crystal director on a closed path of total angle 2π around the
defect core [5, 6]. Due to the nematic symmetry, this topo-
logical charge is either an integer or a half-integer. The re-
gions that surround a topological defect present strong gra-
dients of the director-field orientation, with high energetic
costs. Because of their relatively lower energy, the defects
that are mostly observed in passive nematic liquid crystals
have topological charge S =±1/2, which is the lowest pos-
sible charge in absolute value.

Largely driven by biophysical applications, much atten-
tion has been attracted more recently to active matter [7, 8].

ae-mail: jean-francois.joanny@college-de-france.fr
be-mail: thomas.risler@curie.fr

In active nematics, numerical simulations [9, 10] as well
as analytical analyses [11] have revealed a very rich dy-
namics, dominated by the creation, motion, and annihila-
tion of defects. Topological defects in living systems have
been first observed in 1968 by Elsdale in monolayers of fi-
broblast cells [12] and, since then, the topological charge
of the defects has helped to identify the nematic or polar
nature of cellular tissues [13–17]. Recent works looked at
the influence of topological defects on the onset of three-
dimensional morphogenesis [18,19]. Some material proper-
ties can also be extracted from the observation of the orienta-
tion of the director field around topological defects [16, 17].

The properties of topological defects in active nematic
liquid crystals are very different from the properties of their
equilibrium counterparts. The active stress in an active ne-
matic is proportional to the nematic orientational tensor. As
regions surrounding a topological defect have pronounced
nematic orientation gradients, they correspond to regions of
strong active force density, which induce local flows around
the defect. The structure of this flow depends on the topolog-
ical charge of the defect, but defects in general are associ-
ated with vortices of the flow field [9,10]. If the director field
around the defect breaks a left-right symmetry along a par-
ticular direction, and in the absence of any external force,

ar
X

iv
:2

20
2.

00
64

6v
1 

 [
co

nd
-m

at
.s

of
t]

  1
 F

eb
 2

02
2



2

the flow created by active stress gradients drags the defect
along that direction with a finite velocity, limited by viscous
dissipation. Defects of topological charge S = −1/2 have a
three-fold symmetry. Consequently, they have no preferred
direction of motion and passively diffuse. On the contrary,
defects of topological charge S = +1/2 break a ‘head-tail’
symmetry. In active nematics, they generically move along
their head-tail axis, with a direction dictated by their con-
tractile (motion toward the tail) or extensile (motion toward
the head) nature.

Experimental observations on nematic cell monolayers
show that topological defects are preferential sites of cell
extrusion [20, 21] and multilayering [22]. Similar observa-
tions have been made in bacterial monolayers [23]. In a re-
cent work by T. Sarkar and colleagues [22] on the sponta-
neous organization of cell monolayers on a solid substrate,
the authors measured the flow patterns around topological
defects of charges ±1/2. Some of the +1/2 topological de-
fects were found to be pinned at specific locations on the
substrate, while others had a spontaneous motion as expected
in active nematics.

In the current paper, we study theoretically the flows
generated by active, two-dimensional topological defects of
charges S=±1/2. One key ingredient of the hydrodynamics
of nematic liquid crystals is the backflow, the hydrodynamic
motion induced by the rotation of the director field [24]. An-
alytical results on topological defects have been obtained by
neglecting this backflow [25, 26], while numerical studies
have considered the coupling between the flow and the di-
rector fields in passive [27] as well as active [9, 25] nematic
defects. We provide here analytical solutions that account
explicitly for these effects. We compute the force necessary
to stall an active topological defect of charge S =+1/2 and
investigate the link between the two-dimensional flow pat-
terns and the trigger of multilayering. We limit our study to
a single, isolated defect in an infinite plane. Thereby, we rely
on analytical solutions of the active hydrodynamic equations
that depend on the bulk properties of the cellular tissue only.
Performing a perturbation analysis around the passive de-
fect orientation allows us to obtain analytical solutions for
weakly active systems. We also estimate the size of the spa-
tial domain over which this hypothesis is valid.

The paper is organized as follows: section 1 introduces
the hydrodynamic equations of active nematics by giving the
constitutive equations and computing the active force den-
sity generated by a topological defect of charge S = ±1/2.
We then study in section 2 the dynamics of the defect, as-
suming that the nematic orientation is unperturbed compared
to that of a passive defect of the same charge. We focus on
+1/2 defects, but computations for −1/2 defects are de-
tailed in Appendix E. We compute the flow field and the self-
advection velocity of the defect in section 2.1. In section 2.2,
we compute the force necessary to pin a topological defect to

a specific location on the substrate. In section 2.3, we study
the effect of inhomogeneous cell divisions and cell deaths
or extrusions on the self-advection velocity of the defect, in
the case where the rate of cell production is linearly coupled
to the differential pressure field. In section 3, we address the
role of the rotational viscosity, which induces feedback of
the flow on the nematic orientation. We first ignore the elas-
tic Ericksen stress and set the flow-alignment parameter to
zero in section 3.1. This allows for the computation of the
flow and the self-advection velocity to linear order in activ-
ity analytically. Within the same hypothesis, the crucial role
of the backflow on the stall force is detailed in section 3.2.
The first-order correction to the director orientation as well
as the spatial domain of validity of our calculations are dis-
cussed in section 3.3. Finally, we investigate numerically the
role of the Ericksen stress on the self-advection velocity in
section 3.4.

1 Hydrodynamic equations

We consider an active nematic deep in the nematic phase
where the order parameter has a constant modulus. To de-
scribe its dynamics, we make use of the hydrodynamic the-
ory of active nematic gels [8,28,29]. This very general frame-
work is based on symmetries and conservation laws [30] and
has been shown to adequately describe monolayers of elon-
gated cells that self-organize into a nematic phase [15, 31–
33]. More specifically, we aim at describing the dynamics
of nematic topological defects as observed experimentally
in monolayers of myoblast cells [22]. Because we are inter-
ested in monolayers of cells at confluence, we consider the
active nematic as a one-constituent dense phase, with a fixed
cell density.

Within the active hydrodynamic framework, the mono-
layer is described by a velocity field v and a director field
p. The two-dimensional Frank-Oseen free energy F asso-
ciated to gradients of the director-field orientation reads, in
the one-constant approximation where the splay and bend
constants are equal [24]:

F =
∫

dx dy
[

K
2

Tr
[
(∇⊗p) · (∇⊗p)T

]
− 1

2
h0
‖p2
]
, (1)

where ⊗ denotes the tensorial product, and h0
‖ is a Lagrange

multiplier to ensure that the director is a unit vector.
The evolution of the velocity and director fields is de-

scribed by two coupled vectorial equations. The first equa-
tion is the force-balance equation, which reads, at steady
state:

∇ ·σσσ = 0 . (2)

Inertia has been neglected since the Reynolds number for
typical cellular systems is much smaller than one.
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The total stress tensor is further split into a passive σσσp

and an active σσσa contribution. The passive contribution is
given by the hydrodynamic theory of passive nematics [24,
34, 35] as:

σσσ
p =2η ũ+

ν

2
(h⊗p+p⊗h− (p ·h)1)

+
1
2
(h⊗p−p⊗h)+ σ̃σσ

E−P1 . (3)

Here, η is the shear viscosity; ũ is the traceless part of the
symmetric part of the velocity-gradient tensor u = (∇⊗v+
(∇⊗ v)T)/2; ν is the so-called flow-alignment parameter;
h = −δF/δp is the orientational field; σ̃σσ

E is the traceless
part of the Ericksen stress tensor σσσE, which generalizes ther-
modynamic pressure for anisotropic systems [24,36]; and P
is the pressure, which is a Lagrange multiplier that ensures
the incompressibility condition ∇ ·v = 0, with 1 the identity
tensor. The elastic force density associated with the Ericksen
stress is obtained from the Gibbs-Duhem relation [24,29,37]

∇ ·σσσE =−(∇⊗p) ·h . (4)

The active contribution is linked to the existence of a
local cell alignment along the direction of the director field
p. It reads

σσσ
a =−ζ∆µ

(
p⊗p− 1

2

)
, (5)

where ζ∆µ is a scalar quantity that measures the activity of
the system. It is the product of a difference in chemical po-
tential ∆µ, which is positive, and an Onsager coefficient ζ,
which can have either a positive or a negative value. A pos-
itive value of ζ corresponds to an extensile active stress, in
which the cells push along their long axis. The stress ζ∆µ is
negative in a contractile system where the cells pull along
their long axis.

The second equation describes the evolution of the di-
rector field p:

Dp
Dt

=
1
γ

h−νu ·p . (6)

Here, Dp/Dt = ∂tp+(v ·∇)p+ωωω ·p is the co-moving co-
rotational derivative of the director, where ωωω = (∇⊗ v−
(∇⊗v)T)/2 is the vorticity tensor, and γ is the rotational vis-
cosity. The orientational field h = −δF/δp is associated to
changes of the free energy with respect to the director p. It is
parallel to p in a non-flowing steady state. It is convenient to
introduce the components of the orientational field, parallel
and perpendicular to p, h‖ and h⊥, respectively. The compo-
nent h⊥ controls the orientation of the director p, whereas
the component h‖ controls the modulus of p [28].

In the following, we define the orientation angle ϕ of
the director p as p = cosϕex + sinϕey in the fixed reference

Fig. 1 Passive orientation of the director field (solid lines) and result-
ing active force density (arrows) in the contractile case ζ∆µ < 0, for
+1/2 (a) and −1/2 (b) topological defects. The origin of the polar
angle θ is set by ex.

frame {ex,ey}. For passive nematics, the equilibrium con-
figurations correspond to minima of the Frank-Oseen free
energy given in eq. (1), which leads to ∆ϕ = 0. This equa-
tion has the solution ϕ(r,θ) = Sθ for a topological defect
of charge S, using polar coordinates (r,θ) centered at the
defect singularity. Defects with the lowest absolute topolog-
ical charge S = ±1/2 are the most stable. They are shown
in fig. 1. In free monolayers of nematic tissue, they are the
only observed defects.

For a director field corresponding to a passive defect,
using the polar coordinates (r,θ) in the Cartesian basis of
vectors {ex,ey}, the active force density reads:

fa = ∇ ·σσσa =−ζ∆µ
2r

{
ex , S =+1/2
−cos2θ ex + sin2θ ey , S =−1/2

(7)

As represented in fig. 1, the active force density for a +1/2
topological defect is along the axis of symmetry. This drives
a self-advection of the defect ‘from head to tail’ in the con-
tractile case and ‘from tail to head’ in the extensile case. For
−1/2 defects, because of the three-fold symmetry of the di-
rector field, the net total force on a disk of radius R vanishes,
such that the default, even tough active, can only diffuse.

2 Topological defects in the limit of vanishing rotational
viscosity

Throughout this section, we consider the case of vanishing
rotational viscosity. In this case, the molecular field vanishes
to satisfy eq. (6), so that δF/δp = 0 and the director orienta-
tion satisfies the equilibrium condition for passive nematics
∆ϕ = 0, illustrated in fig. 1. The force density associated to
the Ericksen stress as given by eq. (4) vanishes. The Erick-
sen stress can then be ignored and the passive stress as given
by eq. (3) reduces to σσσp = 2η ũ−P1.
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2.1 Flow field and self-advection velocity of a +1/2 defect

Under this assumption, we now compute the velocity field
of an isolated +1/2 topological defect in an infinite domain.
We write the equations of motion in the reference frame of
the defect. Force balance reads

η∆v−∇P−ξ(v+v0)−
ζ∆µ
2r

ex = 0 , (8)

where ξ is the friction coefficient of the cell layer with the
underlying substrate and v0 the self-advection velocity of
the defect with respect to the substrate. This bulk equation
is supplemented by two boundary conditions on the velocity
field: it vanishes at the core of the defect in the reference
frame of the defect v(0,θ) = 0, and it vanishes at infinity in
the reference frame of the substrate v(∞,θ) =−v0.

Considering the incompressibility condition ∇ · v = 0,
eq. (8) is solved by introducing the stream function ψ(r,θ),
defined by v = ∇× (ψ ez), where ez = ex× ey. We further
adimensionalize the equations using the length scale L =√

η/ξ and the time scale τ = 2η/(|ζ|∆µ). In the following,
all dimensionless quantities are denoted with a tilde. Tak-
ing the curl of eq. (8), the dimensionless stream function
ψ̃ = (τ/L2)ψ satisfies

∆ [∆ψ̃− ψ̃] =−s
sinθ

r̃2 , (9)

where r̃ = r/L, s = sign(ζ) and ∆ denotes the Laplace oper-
ator with respect to the reduced variable r̃.

A +1/2 topological defect is symmetric with respect to
the x-axis. Therefore, the radial component of the velocity
field is an even function of the polar angle θ, and the stream
function an odd function of that variable. Given that eq. (9)
is linear in ψ̃ with a forcing term in sinθ, only the Fourier
mode n = 1 contributes non trivially to the solution, and
the stream function can be written as ψ̃(r̃,θ) = ψ̃(r̃)sinθ.
The dimensionless velocity field has then polar components
ṽr(r̃,θ) = ṽr(r̃)cosθ and ṽθ(r̃,θ) = ṽθ(r̃)sinθ, which can be
derived directly from the generic solution of eq. (9) for ψ̃,
as detailed in Appendix B.1. Imposing that the solution is
non-divergent at infinity and vanishing in r = 0, the solution
for ṽr and ṽθ read:

ṽr(r̃) =−
s
r̃

{
I1(r̃)

∫ +∞

r̃
K1(u)(−

π

4
u2 +u) du

+ K1(r̃)
∫ r̃

0
I1(u)(−

π

4
u2 +u) du

}
(10)

ṽθ(r̃) =s
{(

I0(r̃)−
I1(r̃)

r̃

)∫ +∞

r̃
K1(u)(−

π

4
u2 +u) du

−
(

K0(r̃)+
K1(r̃)

r̃

)∫ r̃

0
I1(u)(−

π

4
u2 +u) du

}
,

(11)

where I1(u) and K1(u) are the modified Bessel functions of
the first and second kind, respectively [38] (see Appendix
A). The self-advection velocity can then be computed. Tak-
ing the limits of eq. (10) at infinity leads to

v0 =−
π

4
× ζ∆µ

2
√

ξη
ex , (12)

in physical units. This result is similar to that of ref. [26]. A
representation of this velocity field as well as of its ampli-
tude as a function of r̃ is shown in fig. 2a,c. Corresponding
expressions for−1/2 defects are given in Appendix E.1 and
plotted in fig. 2b,d. The solution (10) depends only on in-
trinsic properties of the system and can therefore be directly
compared with experimental measurements to determine in-
trinsic parameters in experimental systems.

Because of hydrodynamic screening, the velocity field
decays as 1/r at infinity in the substrate reference frame, as
does the active-force density. The total active force diverges
linearly with system size but is balanced by the total friction
force. These divergences exist here because we consider a
single defect in an unbounded space. For a pair of defects of
opposite charges +1/2 and −1/2, for example, the active-
force density and the velocity field decrease as 1/r2. The
pressure field is obtained from the force-balance eq. (8):

P(r,θ) =−ζ∆µ
2

cosθ+P0 , (13)

where P0 is a reference pressure. The active stress creates a
differential pressure between the head and the tail of the de-
fect. In the contractile case (ζ∆µ < 0), the pressure is higher
at the tail of the defect, and it is the opposite in the extensile
case.

2.2 Stall force of a +1/2 defect

Sarkar et al. observed two classes of +1/2 topological de-
fects in confluent monolayers of C2C12 mouse myoblasts [22]:
motile topological defects with a flow characteristic of self-
advected defects, as presented in sec. 2.1, and stalled, non-
motile defects. These defects where not immobilized by jam-
ming, as it can occur in other cellular systems [39], as signif-
icant flows were observed around them. In addition, a one-
to-one correspondence was observed between non-motile de-
fects and the initiation of a second layer of cells due to ex-
trusion of cells from the first layer, a process referred to as
multilayering. Immotile +1/2 defects in an active mono-
layer can only exist in the presence of an external force that
balances the total active force, other than the friction drag
that structurally vanishes for a vanishing cell-velocity field.

We determine in this section the local external force ap-
plied on the defect core necessary to pin an active, +1/2
defect. We introduce a core region of the defect of finite size
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Fig. 2 a,b Flow structure around active +1/2 (a) and −1/2 (b) topological defects. Thin, solid black lines represent the orientation of the director
field. Thick, arrowed blue lines are the directed streamlines of the velocity field in the reference frame of the substrate for a contractile nematic.
Vortices around +1/2 defects have a rotational direction that depends on the sign of ζ. The three-fold symmetry for −1/2 defects does not create
self-advection contrary to +1/2 defects. c,d Dimensionless azimuthal (orange) and radial (blue) velocities as a function of the dimensionless
distance to the core r̃ in the reference frame of the defect. For +1/2 defects (c), this velocity vanishes at the core and tends to a finite limit at
infinity. For −1/2 defects (d), this velocity vanishes both at the core and at infinity.

a of the order of the correlation length of the nematic or-
der [24], which we consider as a region where there is no
nematic order. We therefore model the monolayer as divided
into two regions: perfect nematic order with p2 = 1 as in sec-
tion 2.1 for r > a, and isotropic with p2 = 0 for r < a. This
assumption allows for an analytical treatment and is justi-
fied when looking at an isolated defect over large distances
compared to the characteristic length L: since the total ac-
tive force diverges with system size, the active force that

would result from the weak nematic order inside the finite
core region is negligible compared to the active force from
the bulk region in a large system. Indeed, recent work show
that, for isolated defects, the self-advection velocity given
by eq. (12) is valid even when considering the effect of the
weak nematic order inside the core [26].

Let us call f=− f ex the external force applied to the core
region necessary to stall the defect. We hypothesize further
that, in the core region r < a, the external force-density has
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the same mathematical form as the active force in eq. (8) to
allow for a similar treatment. Force balance then reads:

η∆v−∇P−ξv− ζ∆µ
2r

ex = 0 r > a (14)

η∆v−∇P−ξv− f
2πar

ex = 0 r < a . (15)

At the boundary r = a between these two regions, the global
flow and stress fields are continuous. This boundary con-
dition leads to an analytical treatment under the hypothesis
that the radius a of the core region is much smaller than the
hydrodynamic screening length L =

√
η/ξ, as detailed in

Appendix C.1. To leading order in a/L, we obtain

f =
√

η

ξ

π2ζ∆µ

log
(

a
√

ξ/η

) . (16)

A simple way to understand the result of eq. (16) is to
consider the defect velocity in an active nematic submitted
to a force localized at the core of the defect. As the hydro-
dynamic equations are linear, the velocity is the sum of two
contributions: an active contribution v0 proportional to the
active stress ζ∆µ and a passive contribution proportional to
the applied force f:

vdefect = v0 +χf , (17)

where χ is the two-dimensional mobility of the defect. To
linear order, this mobility is that of a defect in a passive ne-
matic. A naive guess is given by the Saffman-Delbrück re-
sult for the mobility of a disk of radius a in a two-dimensional
fluid of shear viscosity η: 1/χ ∼ η/ log(L/a), where the
large- and short-scale cutoffs are the screening length L and
the defect core size a, respectively. Using the active self-
advection velocity given by eq. (12) leads to eq. (16), up to
a numerical prefactor.

2.3 Effect of cell division/extrusion on the self-advection of
a +1/2 defect

We now look at the role of the non-conservation of the cell
number on the active flow created by a topological defect.
This non-conservation stems from cell-division and cell-death
processes, as well as from cellular extrusion from the mono-
layer. We introduce an effective cell-proliferation rate k, which
accounts for these three processes. With incompressible cells,
the continuity equation then reads:

∇ ·v = k . (18)

There is evidence that the effective cell-proliferation rate is
influenced by the cellular mechanical environment, and par-
ticularly by tissue pressure [40–43]. At a specific pressure
called the homeostatic pressure Ph, cell divisions and cell

deaths and extrusions balance on average, such that k(Ph) =

0. Far from the defect, the tissue is in its homeostatic state
P(r = ∞) = Ph. In the vicinity of the homeostatic state, the
pressure-dependent division rate reads to linear order:

k(P) =−1
κ
(P−Ph) , (19)

where κ is a phenomenological coefficient. It is positive to
ensure the monolayer stability and can be interpreted as an
effective, long-term, bulk viscosity.

To solve the force-balance equation (8) in this context,
we write the velocity field as a sum of a curl-free part and
a divergence-free part, also known as the Helmholtz decom-
position: v = ∇×(ψ ez)+∇φ. Taking the curl and the diver-
gence of eq. (8) leads to:

∆ [∆ψ̃− ψ̃] =−s
sinθ

r̃2 (20)

∆

[
∆φ̃− η

η+κ
φ̃

]
=−s

η

η+κ

cosθ

r̃2 , (21)

using the same adimensional variables and functions as in
Section 2.1. These equations are solved in Appendix D in a
similar way as in sec. 2.1 to obtain the velocity field. The
result for the self-advection velocity of the defect reads:

v0 =−
π

4

(
1+
√

η

η+κ

)
× ζ∆µ

2
√

ξη
ex . (22)

The pressure-dependent division rate promotes motion of
the defect in the same direction as what is dictated by the
active force. We recover the incompressible limit of eq. (12)
in the case of an infinite κ, that is when the cell number is
conserved. In the other limit κ = 0, corresponding to an in-
finite response of the effective proliferation rate to pressure
variations, the velocity of the defect is multiplied by two. In
a contractile nematic, active forces associated with a +1/2
defect create a low-pressure environment at the head of the
defect, which promotes cell division, and the opposite situ-
ation at the tail, as illustrated in fig. 3a. At large distances,
the divergence of the velocity field vanishes, as illustrated
in fig. 3c. This pattern of division and death/extrusion fur-
ther induces motion form head to tail, similarly to the active
force. For extensile systems, the situation is reversed. For a
−1/2 defect, the pattern of effective cell divisions follows
a three-fold symmetry. Corresponding expressions are given
in Appendix E.2 and illustrated in fig. 3b,d. Interestingly,
such a divergence profile has been observed in collective
self-organizations of bacteria [23].

3 Coupling between the velocity field and orientation
gradients of the nematic director

All calculations in section 2 are performed in the limit of
vanishing rotational viscosity γ. In this limit, the orienta-
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Fig. 3 a,b. Colormap of the dimensionless divergence of the velocity—or equivalently of the net division rate k—around a +1/2 (a) and a −1/2
(b) defect. The director-field orientation is represented by solid, thin lines. In the contractile case represented here (ζ < 0), there is an asymmetric
divergence profile for the +1/2 defect, with a positive divergence (orange) at the head and a negative one (blue) at the tail. For the −1/2 defect,
there is a three-fold symmetry alternating between a positive (orange) and a negative (blue) divergence around the defect. c,d. Radial dependence
of the dimensionless divergence for a +1/2 (c, ∇ · ṽ = D(r̃)cosθ) and a −1/2 (d, ∇ · ṽ− = D−(r̃)cos3θ) defect. The amplitude of this quantity is
maximum at the core of the defect and decays with the distance to the core.

tion of the director is obtained by minimizing the free en-
ergy eq. (1). Consequently, the velocity field was computed
with the fixed director orientation ϕ = θ/2, corresponding
to the orientation field of a passive defect at equilibrium.
We now relax this hypothesis to look at the coupling be-
tween the flow field and the orientation field of the director.
We therefore expect that activity influences the orientation
of the director, further modifying the flow field with respect
to the results of section 2. Since no global analytical solu-
tion can be found to this new system of equations, we com-
pute the velocity field in perturbation in activity. We limit
our investigation to first-order terms in activity. Since the

flow field is already of order one in activity with the passive
defect orientation ϕ = θ/2, the first-order modifications of
the orientation contribute only to a second-order term in this
velocity field. The first-order contribution of activity to the
velocity field can therefore be computed using the passive
defect orientation ϕ = θ/2.

As a first approximation, we consider the case where the
flow-alignment parameter ν vanishes, and we further neglect
the Ericksen stress tensor σσσE. The passive contribution to the
stress tensor then reads

σσσ
p = 2η ũ+

1
2
(h⊗p−p⊗h)−P1 , (23)
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and the molecular field h, given by eq. (6), reads at steady
state:

h = γ [(v ·∇)p+ωωω ·p] . (24)

3.1 Flow field and self-advection velocity

The active and passive contributions to the stress tensor as
given by eqs. (5) and (23) lead to the force-balance condi-
tion:

η∆v+
1
2

∇× (h⊥ez)−∇P−ξ(v+v0)−
ζ∆µ
2r

ex = 0 . (25)

The perpendicular component of the molecular field h⊥ reads,
using the equilibrium orientational field ϕ = θ/2:

h⊥ =
γ

2

(vθ

r
−ωs

)
, (26)

where ωs = (∇×v) ·ez is the vorticity. With this expression,
the curl of the force balance equation (25) leads to:

∆

[
∆ψ̄− λ

r̄
∂r̄ψ̄− ψ̄

]
=−s

sinθ

r̄2 , (27)

where we have adimensionalized the equation using the same
procedure as in sec. 2.1, except with an effective viscos-
ity η̄ = η + γ/4, and where λ = γ/(4η̄). More precisely,
we have defined a new lengthscale L̄ =

√
η̄/ξ and a new

timescale τ̄ = 2η̄/(|ζ|∆µ), defining the dimensionless vari-
able r̄ = r/L̄ and the dimensionless field ψ̄ = (τ̄/L̄2)ψ. The
term inside the brackets of the Laplace operator in eq. (27) is
a transformed version of the modified Bessel equation [44].
Similarly to what was done in sec. 2.1 and as detailed in Ap-
pendix B.2, we determine the velocity field. The resulting
self-advection velocity reads:

v0 =−c(λ)× ζ∆µ

2
√

ξη
ex , (28)

where

c(λ) =
Γ [1−β/2] Γ [1+1/(2β)]

2
√

λ Γ [3/2−β/2] Γ [3/2+1/(2β)]
(29)

with Γ the Euler gamma function [38] and β=
√

1+λ2/4+
λ/2.

We plot in fig. 4 the dimensionless amplitude ṽ0 of the
self-advection velocity as a function of λ, both not consider-
ing and considering the Ericksen stress (see section 3.4). The
rotational viscosity overall decreases this amplitude, which
is expected since it corresponds to an additive source of dis-
sipation.

0.0 0.5 1.0
0.0

0.4

Fig. 4 Self-advection velocity of a +1/2 defect in units of
ζ∆µ/(2

√
ξη) and as a function of λ. The dotted horizontal line shows

the value π/4, corresponding to eq. (12) when λ = 0. Two cases are
presented: without the Ericksen contribution to the stress (blue curve),
as determined by eq. (28), and with the Ericksen contribution (orange
curve), determined numerically (see section 3.4).

3.2 Stall force

Proceeding similarly as in section 2.2, the in-core force bal-
ance is unchanged as compared with eq. (15), since there is
no nematic order within the core region, and the out-core
force balance condition is given by eq. (25). Imposing con-
tinuity of the flow and stress fields at the boundary r = a
between the in-core and out-core regions as detailed in Ap-
pendix C.2 gives, to leading order in a/L̄:

f =−

√
η̄

ξ
ζ∆µ g(λ)

(
a

√
ξ

η̄

)β−1

, (30)

where

g(λ) =2β−λ
Γ [1−β/2] Γ [1+1/(2β)]

×6π(2−λ)
[λ(4−λ(1+β))+24(β−λ/2−1)]
(48−20λ2 +λ4)Γ(1+β−λ/2)

.

(31)

The force vanishes as a power law of the core size a with an
exponent β−1, which varies between 0 and (

√
5−1)/2 as λ

varies between 0 and 1. Compared to the previous case γ= 0,
the stall force here is comparatively smaller in the limit of
a small core size compared to the hydrodynamic length L̄,
with a power-law dependence on the core size a rather than
a logarithmic one.

3.3 First-order active correction to the director orientation

We can now investigate the effect of the flow on the orien-
tation of the director, to first order in activity. With a non-
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vanishing rotational viscosity γ, the perpendicular compo-
nent of the molecular field is given by eq. (26). Given the
definition of the molecular field and the expression of the
free energy eq. (1), we obtain, in terms of the stream func-
tion ψ,

K∆ϕ =
γ

2

[
∆ψ− ∂rψ

r

]
. (32)

For reasons similar to those presented in sec. 2.1, the stream
function remains of the form ψ(r,θ) =ψ(r)sinθ, and we ob-
tain a similar form for the term proportional to the rotational
viscosity γ in the expression of ϕ(r,θ):

ϕ(r,θ) =
θ

2
+

γ

2K
{rvr(r)

+
1
2

(
r
∫ r

0

vθ(u)
u

du− 1
r

∫ r

0
uvθ(u) du

)}
sinθ . (33)

Let us now investigate the behavior of the correction
δϕ(r,θ) to the passive orientation ϕ0(r,θ) = θ/2 at large dis-
tances r� L̄. Asymptotically, we get:

δϕ(r,θ) ≈
r�L̄

γ

4K
r ln
(

r
r0

)
v0 , (34)

where r0 is an arbitrary length that has been introduced based
on dimensional analysis. Since this expression diverges with
r, the solution given by eq. (33) is only valid up to a char-
acteristic lengthscale Ldefect ∝ K/(γv0). Using the scaling of
eq. (28), we define

Ldefect =

√
ξ(η+ γ/4)

γ/4
K
|ζ∆µ|

=
L2

a

λL̄
, (35)

where La =
√

K/|ζ∆µ| is the active length, corresponding
to the scale above which uniform bands of active nemat-
ics become unstable [45, 46] and active turbulence is ex-
pected [47,48]. This result gives an insight into the interplay
between active and hydrodynamic stresses. Note that our de-
scription is only valid if La� L̄. In this limit, eq. (34) is valid
at distances r from the core region such that L̄� r� La. If
this is not the case, the homogeneous nematic system does
not have a stable steady state and the passive orientation
ϕ0(r,θ) = θ/2 is spontaneously destroyed over length scales
of order L̄.

3.4 Contribution of the Ericksen stress tensor to the
self-advection velocity

Until now, we have only considered the coupling between
the velocity field and the nematic order through the torques
associated with the antisymmetric component of the stress
tensor. In the expression of the stress tensor, we have how-
ever neglected the Ericksen stress tensor σσσE as well as the

flow-alignment coupling term proportional to the parame-
ter ν. In perturbation theory around a homogeneous steady
state, neglecting the Ericksen stress is in general justified by
the fact that it is second order in the gradients of the director
orientation, and therefore nonlinear in activity [24]. Here,
however, the Ericksen stress is relevant because the ground
state upon which activity sets in has a non-homogeneous di-
rector orientation ϕ = θ/2. The force density resulting from
the Ericksen stress is given by the Gibbs-Duhem relation (4),
which here reads

∇ ·σσσE =−h⊥
2r

eθ . (36)

Accounting for the Ericksen stress while keeping ν = 0, the
curl of the force-balance condition leads to

∆

[
∆ψ̄− λ

r̄
∂r̄ψ̄− ψ̄

]
+

λ

r̄
∂r̄

[
∆ψ̄− ∂r̄ψ̄

r

]
=−s

sinθ

r̄2 , (37)

with the same dimensionless units as in eq. (27). Contrary
to the previous equations for the stream function in this pa-
per, this equation has no direct analytical solution. Using
asymptotic expansions close to the core and at large dis-
tances, we can however determine the velocity of the de-
fect using a shooting method. We plot in fig. 4 the result-
ing self-advection velocity of the defect as a function of λ

(orange curve), in comparison to the analytical solution ob-
tained in the absence of Ericksen stress (blue curve): there
is a decrease in amplitude due to the Ericksen stress, which
is expected given that it represents an additional source of
rigidity.

4 Discussion

In this manuscript, we have studied the flows generated by
±1/2 topological defects of an active nematic system in two
dimensions, which interacts with its underlying substrate via
viscous drag. The active nematic system lies deep in the ne-
matic phase, with an order parameter of constant, maximal
amplitude. Our study is inspired by monolayers of elongated
cells at confluence. In the case of a vanishing rotational vis-
cosity, we derived analytical expressions for the flow field.
In the case of a +1/2 topological defect, we determined its
self-advection velocity and stall force. We showed that the
non-conservation of cell number leads to an increase in the
self-advection velocity. We then investigated the effect of the
rotational viscosity, which couples the velocity field to the
nematic order. Taking the flow-alignment parameter to zero
and in the absence of the Ericksen contribution to the stress,
we derived analytical expressions of the self-advection ve-
locity and stall force, making use of the passive, equilibrium
configuration of the director around the defect. We finally
studied the validity domain of the small departure from the
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equilibrium nematic-order configuration, as well as the in-
fluence of the Ericksen stress.

Our results show that the self-advection velocity is lin-
ear in activity for a +1/2 defect, as it should, as well as its
corresponding stall force. The self-advection velocity of a
+1/2 defect decreases in the presence of a non-vanishing
rotational viscosity, which adds an extra source of dissipa-
tion. Accordingly, the stall force is also smaller, with a qual-
itatively different dependence on the size of the core region
of the defect, where the nematic order vanishes. On the con-
trary, the non-conservation of the cell number increases the
self-advection velocity, when coupled linearly to the depar-
ture from a homeostatic isotropic stress. Finally, accounting
for the Ericksen stress lowers even further that velocity, with
a similar qualitative interpretation.

Several assumptions used in our study can be questioned.
A first restriction consisted in studying an isolated, topolog-
ical defect in an infinite domain, as defects in an actual, free
monolayers come into pairs to ensure a vanishing total topo-
logical charge. This assumption allowed for an analytical
treatment that does not depend on finite-domain boundary
conditions. Importantly, section 3.3 provided a characteris-
tic system size, within which our calculations are valid, and
beyond which active effects drive the nematic far from its
passive, equilibrium configuration. At a qualitative level, the
presence of other defects introduces another length scale in
the problem, namely the characteristic distance d between
defects. If this distance is such that d� L̄, our results remain
valid as the defects interact only very weakly. The interac-
tions between defects becomes relevant in the limit where
d . L̄. In this case, one should consider the nematic layer as
a gas of interacting defects [49]. Within our approach, com-
puting the flow created by a pair of +1/2 and −1/2 defects
is the next logical step. A second restriction was to consider
only partially the coupling between flow and orientation. In
particular, for a non-vanishing rotational viscosity, we have
limited our study to the case of a vanishing flow-alignment
parameter. Beyond this approximation, no analytical solu-
tions to the flow equations could be found. Finally, consid-
ering proliferation and extrusion is of prominent relevance
for living systems, and we provided a first computation of
this effect on the self-advection velocity of +1/2 defects.

The initial goal of this work was to explain the obser-
vation of Sarkar et al. in ref [22] of motionless defects that
are preferential sites for multilayer formation. We computed
the self-advection velocity of motile defects and the force
necessary to stall them. However, the origin of the stalling
and the mechanism by which another layer of cells forms at
the defect is still elusive. Accounting for pressure-dependent
proliferation shows that, on average, more extrusion is to be
expected compared to the rest of the monolayer at the tail
of +1/2, contractile defects. Recent studies by Vafa & Ma-
hadevan [50] and by Hoffman et al. [51] show that, when

considering a deformable surface, there is an out-of-plane
force at topological defects that could be responsible for ex-
trusion and multilayering.
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Appendix A: Modified Bessel functions

Appendix A.1: Definition

The modified Bessel functions Iα,Kα are the two general so-
lutions of the following equation:

r2 f ′′(r)+ r f ′(r)− (α2 + r2) f (r) = 0 . (A.1)

A related equation to the modified Bessel equation (A.1) is
given by Bowman [44]:

r2 f ′′(r)+(1−2a)r f ′(r)− (b2c2r2c−a2 +d2c2) f (r) = 0 .

(A.2)

Two independent solutions of eq. (A.2) are raId(brc) and
raKd(brc).
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Appendix A.2: Derivatives

The first-order derivatives of the modified Bessel functions
are given by:

I′α(r) = Iα−1(r)−
α

r
Iα (A.3)

K′α(r) =−
(

Kα−1(r)+
α

r
Kα

)
(A.4)

I′0(r) = I1(r) (A.5)

K′0(r) =−K1(r) (A.6)

Appendix A.3: Asymptotic expansions

We also use the following asymptotic expansions:

Iα(r) '
r→0

1
Γ(α+1)

( r
2

)α

(A.7)

Kα(r) '
r→0

{
Γ(α)

2

( 2
r

)α
if α > 0

− ln( r
2 )− γ if α = 0

(A.8)

where γ denotes here the Euler’s constant. At infinity, we use

Iα(r) '
r→+∞

er
√

2πr
(A.9)

Kα(r) '
r→+∞

√
π

2r
e−r (A.10)

Appendix B: Velocity field

Appendix B.1: Limit of a vanishing rotational viscosity

This appendix is dedicated to the full computation of the
velocity starting from eq. (9). As justified in the main text,
the stream function reads ψ̃(r̃,θ) = ψ̃(r̃)sinθ. Integrating
one Laplace operator gives:

∆ψ̃(r̃,θ)− ψ̃(r̃,θ) =
[

Ar̃+
B
r̃
+ s
]

sinθ , (B.11)

where A and B are integration constants. The radial depen-
dence of the stream function then satisfies:

d2ψ̃(r)
dr̃2 +

1
r̃

dψ̃(r̃)
dr̃
−
(

1+
1
r̃2

)
ψ̃(r) = Ar̃+

B
r̃
+ s . (B.12)

The homogeneous solution ψ̃0 to this equation reads:

ψ̃
0(r̃) = A0I1(r̃)+B0K1(r̃) , (B.13)

where A0 and B0 are integration constants. The Wronskian
associated to eq. (B.12) reads

I1(r̃)K′1(r̃)− I′1(r̃)K1(r̃) =−
1
r̃
, (B.14)

which leads to:

ψ̃(r̃) =
{

I1(r̃)
(

A0−
∫ +∞

r̃
K1(u)(Au2 + su+B) du

)
+ K1(r̃)

(
B0−

∫ r̃

0
I1(u)(Au2 + su+B) du

)}
.

(B.15)

The velocity field ṽ = ṽr(r̃)cosθer + ṽθ(r̃)sinθeθ is ob-
tained from the derivatives of the stream function: ṽr(r̃) =
ψ̃(r̃)/r̃ and ṽθ(r̃) =−dψ̃(r̃)/dr̃. We obtain

ṽr(r̃) = r̃−1
[

I1(r̃)
(

A0−
∫ +∞

r̃
K1(u)(Au2 + su+B) du

)
+ K1(r̃)

(
B0−

∫ r̃

0
I1(u)(Au2 + su+B) du

)]
(B.16)

ṽθ(r̃) =−
[(

I0(r̃)−
I1(r̃)

r̃

)(
A0−

∫ +∞

r̃
K1(u)(Au2 + su+B) du

)
−
(

K0(r̃)+
K1(r̃)

r̃

)(
B0−

∫ r̃

0
I1(u)(Au2 + su+B) du

)]
.

(B.17)

Imposing a finite velocity at the origin leads to B0 = 0 and
B = 0, as a finite velocity at infinity leads to A0 = 0. We then
obtain ṽr(r̃ = 0) = −(A+ sπ/4) and ṽθ(r̃ = 0) = A+ sπ/4
at the origin, and ṽr(r̃ = ∞) = −A and ṽθ(r̃ = ∞) = A at
infinity. Imposing ṽr(0) = ṽθ(0) = 0 yields A =−sπ/4, and
imposing ṽr(r̃ =∞)=−ṽ0 and ṽθ(r̃ =∞)= ṽ0 yields A= ṽ0.
Coming back to the physical units, these lead to the self-
advection velocity given by eq. (12).

Appendix B.2: Velocity field with a finite rotational
viscosity

We start the computation from eq. (27) with the dependence
ψ̃(r̃,θ) = ψ̃(r̃)sinθ. Integrating one Laplace operator gives:

d2ψ̃(r)
dr̃2 +

(1−λ)

r̃
dψ̃(r)

dr̃
−(1+

1
r̃2 )ψ̃ = Ar̃+

B
r̃
+s . (B.18)

The left-hand side of this equation is of the form (A.2) with
a = λ/2, b = 1, c = 1, and d =

√
1+λ2/4. Following Ap-

pendix A, two independent homogeneous solutions to eq. (B.18)
are r̃λ/2Iα(r̃), r̃λ/2Kα(r̃), with α =

√
1+λ2/4. Following a

similar procedure as in Appendix B.1, the dimensionless ve-
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locity field has the form:

ṽr = r̃λ/2−1
{

Iα(r̃)
(

A0−
∫ +∞

r̃
u−λ/2Kα(u)(Au2 + su+B) du

)
+ Kα(r̃)

(
B0−

∫ r̃

0
u−λ/2Iα(u)(Au2 + su+B) du

)}
× cosθ (B.19)

ṽθ = r̃λ/2
{(

α−λ/2
r̃

Iα(r̃)− Iα−1(r̃)
)
×(

A0−
∫ +∞

r̃
u−λ/2Kα(u)(Au2 + su+B) du

)
+

(
α−λ/2

r̃
Kα(r̃)+Kα−1(r̃)

)
×(

B0−
∫ r̃

0
u−λ/2Iα(u)(Au2 + su+B) du

)}
sinθ .

(B.20)

The boundary conditions still set A0 = 0, B0 = 0, B = 0,
and A = ṽ0, similarly as in Appendix B.1. The asymptotic
expansion of the velocity field close to the core reads:

ṽr(r̃) '
r̃�1
− 2−α

Γ(α+1)
(sCλ

1 + ṽ0Cλ
2 )r̃

λ/2+α−1 (B.21)

ṽθ(r̃) '
r̃�1

2−α(λ/2+α)

Γ(α+1)
(sCλ

1 + ṽ0Cλ
2 )r̃

λ/2+α−1 , (B.22)

with

Cλ
1 =

∫
∞

0
du u1−λ/2Kα(u)

= 2−λ/2
Γ

[
1− 1

2

(
α+

λ

2

)]
Γ

[
1+

1
2

(
α− λ

2

)]
(B.23)

Cλ
2 =

∫
∞

0
du u2−λ/2Kα(u)

= 21−λ/2
Γ

[
1
2

(
3−α− λ

2

)]
Γ

[
1
2

(
3+α− λ

2

)]
.

(B.24)

Contrary to the case of a vanishing rotational viscosity, the
velocity field in the defect reference frame vanishes close to
the core for any finite value of ṽ0, since the exponent λ/2+
α−1 is positive. To set the value of ṽ0, we must consider the
tangential stress σrθ. Using the angular dependence of the
stream function and force balance, its dimensionless version
reads

σ̃rθ(r̃,θ) =
(

2
λ−1

r̃
(ṽθ(r̃)+ ṽr(r̃))− r̃ṽr(r̃)− ṽ0 r̃

)
sinθ .

(B.25)

Since λ/2+α− 2 is negative, ṽ0 must equal −sCλ
1/Cλ

2 for
this tangential stress to remain finite at the origin. This leads
to eq. (28) in physical units.

Appendix C: Stall force

Appendix C.1: Limit of vanishing rotational viscosity

In the limit of vanishing rotational viscosity, the stall force is
determined by the velocity and pressure solutions to eqs. (14)
and (15), together with the incompressibility condition ∇ ·
v = 0. Quantities defined inside the core r < a bear the su-
perscript ‘c’. Using the dimensionless units of sec. 2, the
stream function satisfies:

∆ [∆ψ̃− ψ̃] =−s
sinθ

r̃2 r̃ > ã (C.26)

∆ [∆ψ̃
c− ψ̃

c] =− f̃
sinθ

r̃2 r̃ < ã , (C.27)

with ã= a/L and f̃ = f/(πaζ∆µ) the normalized core radius
and overall force applied to the core. The solution for the
velocity field outside the core is given by eqs. (B.16) and
(B.17) with A0 = 0 and A = ṽ0 as in Appendix B.1. The
velocity field inside the core however reads:

ṽc
r(r̃) = r̃−1

[
I1(r̃)

(
Ac

0 +
∫ r̃

0
K1(u)(Acu2 + f̃ u+Bc) du

)
+ K1(r̃)

(
Bc

0−
∫ r̃

0
I1(u)(Acu2 + f̃ u+Bc) du

)]
(C.28)

ṽc
θ(r̃) =−

[(
I0(r̃)−

I1(r̃)
r̃

)
×(

Ac
0 +

∫ r̃

0
K1(u)(Acu2 + f̃ u+Bc) du

)
−
(

K0(r̃)+
K1(r̃)

r̃

)
×(

Bc
0−

∫ r̃

0
I1(u)(Acu2 + f̃ u+Bc) du

)]
.

(C.29)

The boundary condition vc(r̃ = 0) = 0 imposes that Bc, Bc
0,

and Ac
0 vanish. The other integration constants are set by im-

posing the continuity of the velocity and stress fields at the
boundary of the core r = a. Introducing P̃, the pressure nor-
malized by |ζ|∆µ/2 and taking the divergence of the force-
balance eqs. (14) and (15), we obtain:

∆P̃ = s
cosθ

r̃2 r̃ > ã (C.30)

∆P̃c = f̃
cosθ

r̃2 r̃ < ã . (C.31)

These equations are solved by:

P̃(r̃,θ) =
[

A∗r̃+
B∗
r̃
− s
]

cosθ (C.32)

P̃c(r,θ) =
[

Ac
∗r̃+

Bc
∗

r̃
− f̃
]

cosθ , (C.33)
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where A∗, B∗, Ac
∗, and Bc

∗ are integration constants. Pressure
and velocity are linked by force balance, imposing

B∗ = B (C.34)

Bc
∗ = Bc (C.35)

A∗ = 0 (C.36)

Ac
∗ = Ac− ṽ0 . (C.37)

The normal and tangential components of the stress read
σrr = 2η∂rvr−P and σrθ = η[(∂θvr−vθ)/r+∂rvθ], respec-
tively. We impose the continuity of the velocity and stress
fields at the boundary of the core in r = a in the limit of a
small core size ã� 1, in which case we can make use of the
following asymptotic expressions:

ṽc
r(r̃) 'r̃�1

Ac

8
r̃2 +

f̃
3

r̃ (C.38)

ṽr(r̃) '
r̃�1
−s

C0
1

2
− ṽ0

C0
2

2
+

B0

r̃2 +
B
2

log r̃ (C.39)

ṽc
θ(r̃) 'r̃�1

−3Ac

8
r̃2− 2 f̃

3
r̃ (C.40)

ṽθ(r̃) '
r̃�1

s
C0

1
2

+ ṽ0
C0

2
2

+
B0

r̃2 −
B
2

log r̃ , (C.41)

with C0
1 and C0

2 given respectively by eqs. (B.23) and (B.24)
with λ = 0. Finally, we obtain the stall force by imposing
ṽ0 = 0. The result is given by eq. (16), to leading order in
ã = a/L = a

√
ξ/η.

Appendix C.2: Finite rotational viscosity

The procedure to determine the stall force with a finite ro-
tational viscosity resembles that presented in Appendix C.1.
Since we assume no nematic order within the core region,
the fields inside the core are unchanged as compared with Ap-
pendix C.1. The pressure field outside the core does not
depend on the rotational viscosity and is unchanged. The
quantity that changes is the velocity field outside the core
region, now given by eqs. (B.21)–(B.24). Close to the core,
for ā < r̄� 1, the velocity components have the following
asymptotic expressions:

v̄r(r̄) '
r̄�1
− 2−α

Γ(α+1)
(sCλ

1 + ṽ0 Cλ
2 )r̄

λ/2+α−1

+2α−1B0Γ(α)r̄λ/2−α−1− B
λ

(C.42)

v̄θ(r̄) '
r̄�1

2−α(λ/2+α)

Γ(α+1)
(sCλ

1 + ṽ0 Cλ
2 )r̄

λ/2+α−1

+2α−1(α−λ/2)B0Γ(α)r̄λ/2−α−1 +
B
λ
, (C.43)

with the notations of Appendix B.2. Using the expressions
eqs. (C.32), (C.33), (C.38), (C.40), (C.42), and (C.43), con-
tinuity at the core boundary leads to the stalling force given
by eq. (30) for ṽ0 = 01.

Appendix D: Cell division/extrusion

In section 2.3, we introduce the Helmholtz decomposition
v=∇×(ψ ez)+∇φ. In dimensionless units, φ̃ satisfies eq. (21),
which is solved by:

φ̃(r̃) =
{

I1

(
r̃
δ

)(
A0

φ−
∫ +∞

r̃/δ

K1(u)(Aφu2 + su+Bφ) du
)

+ K1

(
r̃
δ

)(
B0

φ−
∫ r̃/δ

0
I1(u)(Aφu2 + su+Bφ) du

)}
,

(D.44)

where δ =
√
(η+κ)/η. The velocity then reads:

ṽr(r̃) =
(

ψ̃(r̃)
r̃

+
dφ(r̃)

dr̃

)
cosθ (D.45)

ṽθ(r̃) =−
(

dψ̃(r̃)
dr̃

+
φ̃(r̃)

r̃

)
sinθ , (D.46)

where ψ̃ is given by eq. (B.15) as in Appendix B.1. The
force-balance condition (8) then imposes:

B =
Bφ

δ
(D.47)

A+
Aφ

δ
= ṽ0 . (D.48)

Imposing that the divergence of the velocity field—or equiv-
alently the net division rate k—does not diverge at the core
nor at infinity, we find that A0

φ
, A0, B0

φ
, B0, B, and Bφ must all

vanish. At the center of the defect r̃ = 0, the components of
velocity then read ṽr(r̃ = 0) =−(ṽ0 + s(π/4)(1+1/δ)) and
ṽθ(r̃ = 0) = ṽ0 + s(π/4)(1+1/δ). Imposing ṽ(r̃ = 0) = 0 in
the reference frame of the default yields the self-advection
velocity given by eq. (22).

The divergence of the velocity field is then given by:

∇ · ṽ =− s
δ2

[
I1

(
r̃
δ

)∫ +∞

r̃/δ

K1(u)u du

+K1

(
r̃
δ

)∫ r̃/δ

0
I1(u)u du−1

]
cosθ . (D.49)

It is represented in fig. 3.

1Note that special care must be taken when matching the fields inside
and outside the core, because normalizations have been done in these
two instances using two different characteristic lengths, L=

√
η/ξ and

L̄ =
√

(η+ γ/4)/ξ, respectively.
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Appendix E: -1/2 defects

Appendix E.1: Velocity field

This appendix is dedicated to the computation of the veloc-
ity field around a −1/2 defect, plotted on fig. 2. We add the
superscript ‘-’ to denote the quantities associated to a −1/2
defect. Force balance reads:

η∆v−−∇P−−ξv−− ζ∆µ
2r

(−cos(3θ) er + sin(3θ) eθ) = 0 .

(E.50)

Here the defect is immotile, such that the velocity field sat-
isfies:

v−(+∞,θ) = 0 (E.51)

v−(0,θ) = 0 . (E.52)

The curl of eq. (E.50) gives:

∆
[
η∆ψ

−−ξψ
−]= 3

2
ζ∆µ

sin3θ

r2 . (E.53)

Using a normalization by a characteristic length L =
√

η/ξ

and a characteristic time τ− = 2η/(3|ζ|∆µ), we introduce
the dimensionless stream function ψ̃− = (τ−/L2)ψ− and
spatial variable r̃ = r/L. We then have:

∆
[
∆ψ̃
−− ψ̃

−]= s
sin3θ

r2 , (E.54)

where s= sign(ζ) and ψ− is of the form ψ̃−(r̃,θ)= ψ̃−(r̃)sin3θ.
Integrating one Laplace operator in this equation leads to:

d2ψ̃−(r̃)
dr̃2 +

1
r̃

dψ̃−(r̃)
dr̃

−
(

1+
3
r̃2

)
ψ̃
−(r̃) = A−r̃+

B−

r̃
− s .

(E.55)

Solving this equation leads to the following dimensionless
velocity field:

ṽ−r = s
{

I3(r̃)
∫ +∞

r̃
K3(u)u du

+ K3(r̃)
∫ r̃

0
I3(u)u du

}
cos3θ (E.56)

ṽ−
θ
= s
{(

3
r̃

I3(r̃)− I2(r̃)
)∫ +∞

r̃
K3(u)u du

+

(
3
r̃

K3(r̃)+K2(r̃)
)∫ r̃

0
I3(u)u du

}
sin3θ , (E.57)

accounting for the boundary conditions eqs. (E.51) and (E.52).
This velocity field is plotted on fig. 2b,d.

The pressure field P− is obtained by taking the diver-
gence of eq. (E.50):

∆P− =
3ζ∆µ
2r2 cos3θ , (E.58)

which yields, with the boundary conditions (E.51)–(E.52):

P−(r,θ) =−3ζ∆µ
2

cos3θ . (E.59)

Appendix E.2: Cell division/extrusion

We derive in this section the divergence of the velocity field
represented on fig. 3. The derivation resembles that for +1/2
defects as presented in section 2.3 with a pressure-dependent
division rate given by Eq. (19). The velocity field is decom-
posed into v− = ∇× (ψ− ez) +∇φ−. The divergence-free
and curl-free parts of the velocity respectively satisfy:

∆
[
∆ψ̃
−− ψ̃

−]= s
sin3θ

r̃2 (E.60)

∆

[
∆φ̃
−− 1

δ2 φ̃
−
]
= s

cos3θ

δ2r̃2 . (E.61)

Solving eq. (E.61), we get the divergence profile of the ve-
locity field represented on fig. 3b,d as:

∇ · ṽ− =
s

δ2

[
I3

(
r̃
δ

)∫ +∞

r̃/δ

K3(u)u du

+K3

(
r̃
δ

)∫ r̃/δ

0
I3(u)u du−1

]
cos3θ . (E.62)


	1 Hydrodynamic equations
	2 Topological defects in the limit of vanishing rotational viscosity
	3 Coupling between the velocity field and orientation gradients of the nematic director
	4 Discussion
	Appendix A: Modified Bessel functions
	Appendix B: Velocity field
	Appendix C: Stall force
	Appendix D: Cell division/extrusion
	Appendix E: -1/2 defects

