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Abstract
Background: Chronic myelomonocytic leukemia (CMML) is a hematological disease close to, but separate from both
myeloproliferative disorders (MPD) and myelodysplastic syndromes and may show either myeloproliferative (MP-
CMML) or myelodysplastic (MD-CMML) features. Not much is known about the molecular biology of this disease.

Methods: We studied a series of 30 CMML samples (13 MP- and 11 MD-CMMLs, and 6 acutely transformed cases) from
29 patients by using Agilent high density array-comparative genomic hybridization (aCGH) and sequencing of 12
candidate genes.

Results: Two-thirds of samples did not show any obvious alteration of aCGH profiles. In one-third we observed
chromosome abnormalities (e.g. trisomy 8, del20q) and gain or loss of genes (e.g. NF1, RB1 and CDK6). RAS mutations
were detected in 4 cases (including an uncommon codon 146 mutation in KRAS) and PTPN11 mutations in 3 cases. We
detected 11 RUNX1 alterations (9 mutations and 2 rearrangements). The rearrangements were a new, cryptic inversion
of chromosomal region 21q21-22 leading to break and fusion of RUNX1 to USP16. RAS and RUNX1 alterations were not
mutually exclusive. RAS pathway mutations occurred in MP-CMMLs (~46%) but not in MD-CMMLs. RUNX1 alterations
(mutations and cryptic rearrangement) occurred in both MP and MD classes (~38%).

Conclusion: We detected RAS pathway mutations and RUNX1 alterations. The latter included a new cryptic USP16-
RUNX1 fusion. In some samples, two alterations coexisted already at this early chronic stage.
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Background
Chronic myelomonocytic leukemia (CMML) is a hetero-
geneous hematopoietic disease currently classified by the
WHO organization as an entity close to, but separate from
both myeloproliferative disorders (MPD) and myelodys-
plastic syndromes. CMML is included in the category of
MPD/MDS diseases and defined by persistent peripheral
monocytosis greater than 1 × 109/L, fewer than 20% blasts
in the blood or bone marrow (BM), and BM dysplasia in
one or more myeloid lineage. Because the blast number is
a prognostic factor, CMML is divided in two types: type 1
with fewer than 5% in blood and 10% blasts in BM, and
type 2 between 5 and 19% in blood or 10 and 19% in BM
[1,2].

The problem of CMML resides in its classification and in
the clinical and/or biological relevance of separating the
proliferative and dysplastic presentations. The FAB system
has recommended a division of CMML in two classes
upon leucocyte count: leucocytosis < 13 × 109/L defines
CMML as MDS-like (MD-CMML) and leucocytosis > 13 ×
109/L as MPD-like (MP-CMML) [2]. The two classes have
been variably associated with prognosis and their distinc-
tion is a matter of debate [3-7]. This reflects that, except in
few imatinib-sensitive cases with PDGFRB alterations, the
pathogenesis of CMML is poorly understood. Conse-
quently, the definition and therapy of CMML remain
unsatisfactory.

To better understand CMML and improve its classification
we have studied the genome of a series of CMML samples
by using genome-wide, high-density array-comparative
genomic hybridization (aCGH) and DNA sequencing of
candidate genes.

Methods
Patients and samples
A consecutive series of 30 BM samples were collected from
29 patients including 24 CMMLs and 6 acute transforma-
tions of CMML (AT-CMML). Patients were newly diag-
nosed or were known for hematopoietic disease and the
therapeutic impact was evaluated every 3 months. Three
patients (3, 52, 90) had received prior chemotherapy for
an independent solid tumor. One had an 11q inversion
and one had a t(1;3). Clinical and biological data of the
30 samples are presented in Additional file 1. Cytology
and phenotype were assessed by three specialists (VGB,
CA, DS). Nucleic acids extraction was done as described
[8]. Gene expression profiles for the cases with available
RNA have been reported [8]. The patients all signed an
informed consent. The project and collection of samples
were reviewed by the independent scientific review board
of the Paoli-Calmettes Institute (COS), in accordance with
current regulations and ethical concerns.

Array comparative genomic hybridization (aCGH)
Genomic imbalances were analyzed by aCGH using 244 K
CGH Microarrays (Hu-244A, Agilent Technologies,
Massy, France) as previously described [9,10]. The resolu-
tion is up to 6 kb. Scanning was done with Agilent Auto-
focus Dynamic Scanner (G2565BA, Agilent
Technologies). Data analysis was made as previously
described [10,11] and visualized with CGH Analytics 3.4
software (Agilent Technologies). Extraction data (log2
ratio) was done with CGH analytics while normalized and
filtered log2 ratio were obtained from << Feature extrac-
tion Ŭ software (Agilent Technologies). Copy number
changes were characterized as reported [9,10].

The RUNX1 gene map established within Mb scale was
extracted from the build 36.1 from NCBI (March 2006
version) while its sequence (Ensembl Transcript ID
ENST00000300305) was extracted from Ensembl data-
base http://www.ensembl.org/Homo_sapiens/, which is
based on the Ensembl release 48 – Dec 2007 assembly of
the human genome. Genomic profile was established
with CGH analytics® software (Agilent Technologies),
from centromere to telomere, within the genomic inter-
vals [28.0–30.5 Mb] and [33.8–36.3 Mb] of the short arm
of the chromosome 21 (hg17 human genome mapping;
build 35 from NCBI, May 2004 version).

DNA sequencing
Somatic mutations of BRAF, JAK2, HRAS, KRAS, NRAS,
NF1, RAF1, RB1, RUNX1, SOS1, SPRED1 and STK11
genes were searched by sequencing exons and consensus
splicing sites after PCR amplification of genomic DNA
(Additional file 2). Most PCR amplifications were done in
a total volume of 25 μl PCR mix containing at least 10 ng
template DNA, Taq buffer, 200 μmol of each deoxynucle-
otide triphosphate, 20 pmol of each primer and 1 unit of
Hot Star Taq (Qiagen). PCR amplification conditions
were as follows: 95°C 10 min; 95°C 30 sec, variable tem-
perature 30 sec, 72°C 45 sec for 30 cycles; 72°C 10 min.
PCR products were purified using Millipore plate
MSNU030.

Two microliters of the purified PCR products were used
for sequencing using the Big Dye terminator v1.1 kit
(Applied Biosystems). After G50 purification, sequences
were loaded on an ABI 3130XL automat (Applied Biosys-
tems). The sequence data files were analyzed using the
SeqScape software (Additional file 2) and all mutations
were confirmed on an independent PCR product.

PCR detection of RUNX1 alterations
The USP16-RUNX1 gene fusion was detected by using
nested PCR amplification of retrotranscribed mRNA (RT-
PCR) from BM cells of the patients as previously described
[12]. Wild-type and fusion transcripts were amplified
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using RUNX1 and USP16 primer sequences (Additional
file 3). PCR products were visualized on agarose gel with
ethidium bromide, and sequenced.

Results
Three types of aCGH profiles in CMML
Using genome-wide, high-density arrays we established
the aCGH profiles of 30 samples from 29 patients, com-
prising 24 CMMLs and 6 AT-CMMLs. Examples of profiles
are shown in Figure 1 and results are summarized in Table
1. Three main types of profiles were observed. Type 1 pro-
files showed gains or losses visible on the karyotype and
affecting large regions of the genome, such as trisomy 8
(10%: cases 5, 12 and 88), deletions of part of the 20q arm
(10%: cases 3, 74, and 96), or deletion (case 106) or com-
plex rearrangements of chromosome 7 (case 3). Type 2

profiles showed rare and limited gains or losses that
affected few or single genes such as deletions encompass-
ing NF1 at 17q11 (case 80), RB1 at 13q14 (case 74),
RUNX1 at 21q21 (case 88), CALN1 at 7q11 (case 12),
amplification of 7q21 including the CDK6 gene (case 3)
or a series of short deletions on the 3q arm (case 1). A sur-
prising deletion of the MYC locus was observed in case
106. The type 3 profile was said "normal-like" since no
obvious alteration was detected. It occurred in two-thirds
of the cases.

Mutations of RAS and RUNX1 genes
We analyzed the sequences of the three RAS genes. No
mutation of HRAS was found. NRAS mutations were
found in cases 12 and 78, and KRAS mutations in cases 79
and 89 (Table 1). One of these mutations affected codon

Examples of aCGH profilesFigure 1
Examples of aCGH profiles. A: aCGH profile of chromosome 17 in case 80. Red arrow shows deletion including NF1. B: 
aCGH profile of chromosome 13 in case 74 showing RB1 deletion. For a and b, a zoom of the region is shown to the right of 
the profiles. C: aCGH profile of chromosome 3 in case 1 showing a series of deletions at 3q. D: aCGH profiles of chromosome 
20 in cases 3, 37, 74 and 96 (3 and 37 are from the same patient).
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99 Table 1: Molecular features of the 30 studied CMML

No Diagnosis Karyotype Array-CGH H, K, NRAS NF1 PTPN11 E3, 13 RUNX

1 CMML 2 46, XY [20] 3q22-24 losses 
(EPHB1, NEK11, 

MRAS...)

no nd p.Asp61Tyr p.Pro425L

5 CMML 2 47, XX, +8 [20] Tri 8 no nd p.Ala72Thr Splicing de

6 CMML 2 46, XY [20] 3p23 loss 
(GLB1, CRTAP)

no nd no p.Arg166

7 CMML 1 46, XX [20] normal-like no nd no no

12 CMML 1 47, XX, +8 [20] Tri 8, 7q11 loss 
(CALN1)

N- p.Gly12Asp nd no p.Tyr377Le
23

13 CMML 1 46, XY [20] normal-like no nd no no

15 CMML 1 46, XY [20] normal-like no nd no p.Gly50Gln

51 CMML 1 46, XY [20] normal-like no nd no no

72 CMML1 46, XY [20] 7p21 gain (AHR) no nd no no

78 CMML 1 45, X, -X?c [20] X loss N- p.Gly12Asp nd no no

79 CMML 1 46, XY [20] normal-like K- p.Gly12Ser p. = no no

2 CMML 1 46, XY [20] normal-like nd nd no no

95 CMML 1 46, XX [20] normal-like no nd no no

75 CMML 1 46, XY [20] normal-like no nd no no

89 CMML 1 46, XY [20] normal-like K- p.Ala146Val nd no no

3 CMML 1 46, XY, 
del(20)(q11q13) [20]

nd no nd no p.Arg166

38 CMML 1 46, XY [20] normal-like no nd no no

52 CMML 2 46, XX, 
inv(11)(p15q22) [20]

normal-like no nd no no
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90 CMML 2 46, XX, 
t(1;3)(p36;q21) [20]

normal-like no nd no p. =

8 CMML 2 46, XY [20] normal-like no nd no no

25 CMML 1 46, XY [20] normal-like no nd no p.Leu56S

63 CMML 2 46, XY [20] normal-like no nd no no

74 CMML 1 46, XY, 
del(20)(q11q13) [20]

20q11-q13 loss, 
13q14 loss (RB1)

no nd no no

87 CMML 1 46, XY [20] normal-like no nd no p.Arg320

34 AT-CMML 46, XX [20] normal-like no nd p.Gln510His no

37 AT-CMML 46, XY, 
del(20)(q11q13) 
[13]/46, idem, -7, 

+mar [5]/46, idem, 
del(12)(p11-12p13) 

[5]

20q11-q13 loss, 7p 
loss, 7q11-q21 loss, 
7q31-qter loss, 7q21 

gain (CDK6)

no nd no p.Arg166

80 AT-CMML 46, XY, 
del(9)(q21q34) [19]/

46, XY [20]

9q21.11-q22.33 loss, 
17q11 loss (NF1)

nd no no no

88 AT-CMML 47, XY, +8 [11]/46, 
XY [9]

Tri 8, 21q21 losses 
(RUNX1)

no nd no no

96 AT-CMML 46, XY, 
del(20)(q11q13), 

+mar [18]

20q11-q13 loss no nd nd no

106 AT-CMML 46, XY [20] 7 loss, 8q24 loss 
(MYC)

no nd nd no

CMMLs are classified by a double line as in Additional file 1.
CMML: chronic myelomonocytic leukemia.
AT-CMML: acute transformation of CMML in acute myeloid leukemia (all M4 FAB type).
Samples 3 and 37 are from the same patient.
In bold: myeloproliferative CMML.
nd: not done.
E: exon.
Tri: trisomy.

Table 1: Molecular features of the 30 studied CMML (Continued)



BMC Cancer 2008, 8:299 http://www.biomedcentral.com/1471-2407/8/299
146 in coding exon 3, a rare type of RAS mutation that has
been found in 4% colorectal cancers and two hematopoi-
etic cell lines [13]. For patient 79 we determined that the
mutation was present in a heterozygous state in the
CD34-purified fraction of the BM cells, in the polynuclear
neutrophils, monocytes and B lymphocytes but absent in
the T cells (data not shown).

We examined the sequence of exons 3 and 13 of the
PTPN11 gene. Mutations were found in three cases. No
mutation was found in exon 7 of RAF1, which is a hotspot
for mutations in Noonan syndrome (NS) [14,15]. SOS1
and BRAF were also sequenced in their most frequently
mutated regions (exons 7–11 and kinase-encoding exons,
respectively). One mutation was identified in SOS1 in a
region involved in NS [16], none in BRAF. No mutation
was found in SPRED1 [17].

The NF1 gene was analyzed for mutations in cases 79 and
80. A silent, so far unreported point mutation
(c.2178G>C) was found in case 79 (Table 1). The deletion
of an RB1 allele was confirmed by sequencing in case 74
and the remaining RB1 allele was normal. There was no
JAK2 p.Val617Phe mutant in our panel of CMML cases.

Mutations were found in the RUNX1 gene in 10 patients
(30%). Mutation in case 90 is predicted to induce neither
amino acid change nor splicing effect and thus was not
considered as functionally deleterious. The nine other
nucleotide variations would result in truncated or mutant
proteins. RUNX1 mutations are described in Figures 2 and
3.

Finally, no mutation was found in the STK11/LKB1 and
SYK kinase genes.

A novel, cryptic rearrangement of RUNX1 following 
inv(21q)
The aCGH profile of case 88 showed two losses at 21q21.3
and q22.12 of about 1.04 Mb and 0.82 Mb, respectively
(Figure 4A). They spanned the 3' part of USP16, including
exons 2 to 19, CCT8, BACH1 and GRIK1 as well as the 5'
part of RUNX1 (including exons 1 to 4), respectively. We
hypothesized that such a peculiar pattern could be due to
a cryptic inv(21)(q21q22) associated with a microdele-
tion at one of the breakpoints. Given the features and ori-
entation of the various potentially-involved genes, we
surmise that a fusion could involve RUNX1 and USP16
(encoding a de-ubiquitinating enzyme). This was con-
firmed by nested PCR amplification of reverse-transcribed
RNA from the patient's BM cells, which detected a 245 bp-
long USP16-RUNX1 transcript (Figure 4B). No reciprocal
transcript was detected. Sequence analysis showed that
the result of the inversion/fusion generated a chimeric
USP16-RUNX1 transcript. The break/fusion was not

present in the germline since we did not find the USP16-
RUNX1 transcript in buccal smear cells of the patient. The
USP16-RUNX1 gene fuses exon 1 of USP16 to exon 5 of
RUNX1 thus not preserving the canonical ATG codons.
The chimeric transcript exhibited several stop codons in
its 5' part but the presence of multiple ATG codons
through exons 5 to 7 of RUNX1 sequence could be used as
new start codons and generate putative truncated RUNX1
proteins. A similar USP16-RUNX1 fusion (without micro-
deletion) was found in CMML 34 (Table 1). In the two
cases, the USP16-RUNX1 fusion transcripts did not have
an open reading frame using the canonical start codons of
USP16 or RUNX1 (Figure 5). According to the SMART
program http://smart.embl-heidelberg.de/, functional
domains (i.e. RUNT and RUNXI [for RUNX Inhibitor
domain], as defined by PFAM accession numbers
PF00853 and PF08504, respectively) should disappear in
such putative truncated RUNX1 proteins. RUNT and
RUNXI domains are encoded mainly by exons 3 to 5 and
exon 8, respectively (Figure 3). The partial conservation of
RUNX1 transcript sequence (exons 5 to 8) and a new fold-
ing could explain conformational changes and the
absence of RUNT and RUNXI domains.

In total, RUNX1 was altered by mutation (9) or break (2)
in 11 patients (8 CMMLs and 3 AT-CMMLs) (Table 2).

Unsurprisingly, the 11q inversion in case 52 and the bal-
anced t(1;3)(p36;q21) in case 90 escaped aCGH detec-
tion. The 11q inversion was probably a case of NUP98-
DDX10 fusion [18] and the t(1;3) a case of PRDM16/
MEL1-RPN1 fusion [19].

Different alterations in MP- and MD-CMML
Excluding the 6 AT-CMMLs, RAS and PTPN11 mutations
were found in 6 of the 13 MP-CMMLs (~46%) whereas no
such mutation was found in the 11 MD-CMMLs (Table 2).
In contrast, RUNX1 mutations occurred in both MP- (5
cases) or MD-CMML (3 cases).

Discussion
We have established the first high resolution genome pro-
filing of CMML and found a high frequency of RAS and
RUNX gene alterations.

CMML and the RAS pathway
In the majority of cases the aCGH profiles did not show
any alteration. This suggests that rearrangements and copy
number aberrations are not prominent in CMML and that
aCGH is only in part suited for obtaining further insight
into the pathogenesis of this disease. However, in a small
proportion of the cases aCGH was informative, pointing
to known tumor suppressor genes such as NF1 and RB1.
However, neither gene was mutated in the remaining
allele. Deletion of NF1 was particularly interesting since it
Page 6 of 14
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Mutation of RAS, PTPN11 and RUNX1 genes in CMMLFigure 2
Mutation of RAS, PTPN11 and RUNX1 genes in CMML. Examples of mutations in candidate genes. From top to bottom, 
sequence of the mutated KRAS, PTPN11, SOS1 and RUNX1 alleles, demonstrating base change in the forward sequence at the 
position indicated by an arrow. The corresponding sequence is shown above. Primers and conditions used are described in 
additional file 2.
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Characterization of RUNX1 mutations in CMML patientsFigure 3
Characterization of RUNX1 mutations in CMML patients. A: Genomic organization of RUNX1 gene at 21q22.12 and 
RUNX1 protein. Functional (i.e. RUNT and RUNXI [for RUNX Inhibitor domain], as defined by PFAM accession numbers 
PF00853 and PF08504, respectively) and motifs of the RUNX1 protein were positioned according to the SMART program 
http://smart.embl-heidelberg.de/. Nucleotide (cDNA level) and deduced aminoacid sequences of the RUNX1 protein are posi-
tioned above and below the corresponding protein, respectively. The genomic RUNX1 sequence of CMML 5 exhibited a muta-
tion in the consensus splicing sequence of intron 3. B: Mutations of RUNX1. All mutations but one introduced an aberrant stop 
codon (cases 3, 6, 12, 15 and 87). Two missense mutations (cases 1 and 25) were also observed. The mutations are located 
with respect to the modified aminoacid of the RUNX1 protein. C: Representation of putative mutated RUNX1 proteins. 
According to the SMART program, all putative modified proteins have lost their RUNT and RUNXI domains.
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Genomic rearrangements involve USP16 and RUNX1 genes in CMML patientsFigure 4
Genomic rearrangements involve USP16 and RUNX1 genes in CMML patients. A: CMML 88 aCGH profile of chro-
mosome 21 shows regional deletions in 21q21.3 and 21q22.12. Arrows point to USP16 and RUNX1 genes targeted by transi-
tion profiles located in these respective regions. This suggests that potential gene breaks involve USP16 and RUNX1. B: PCR 
characterization of USP16-RUNX1 fusions in CMML. USP16, RUNX1 and USP16-RUNX1 transcripts were detected in the BM 
cells of the patients. The size of amplified products is shown on the right. The existence of alternatively spliced RUNX1 prod-
ucts could explain the various sizes observed for USP16-RUNX1 and RUNX1 transcripts. cDNA of normal lymphocytes were 
used as control. Primers specific for the human GUSB transcript were used for control of the RT-PCR quality control.
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led us to suspect an alteration of the RAS pathway and a
similarity with juvenile myelomonocytic leukemia
(JMML). JMML is a chronic myelomonocytic disease that
occurs early in life, often on a genetic background of NS,
and neurofibromatosis type 1. [20-22]. Half of NS are
caused by germline mutations in the PTPN11 gene, which
encodes a RAS pathway-regulating phosphatase. Germ-

line mutations in KRAS, SOS1, RAF1, BRAF and other
genes of the RAS pathway account for the other NS cases
[14,15,20,23]. Syndromes caused by a hyperactivation of
the RAS pathway also include Costello, cardio-facio-cuta-
neous (CFC), hereditary gingival fibromatosis and LEOP-
ARD syndromes, and are collectively called neuro-cardio-
facial-cutaneous (NCFC) syndromes [24].

USP16-RUNX1 rearrangement in CMML 88Figure 5
USP16-RUNX1 rearrangement in CMML 88. Organization of chromosomal region 21q21.3-q22.12 with the location of 
the breakpoints (BP) and deleted regions from centromere (cen) to telomere (tel). Mb scale of the corresponding 21q21.3, 
21q22.11 and 21q22.12 regions corresponds to cytogenetic bands. Only genes flanking affected regions are reported on the fig-
ure. Breakpoints BP1 and BP3 targeting USP16 and RUNX1 are associated with deletions defined by intervals [BP1-BP2] and 
[BP3-BP4]. The USP16-RUNX1 gene fusion is explained by the inversion of the central interval [BP2-BP3]. ATG codons are in 
exon 2 (ex 2) and exon 1 (ex 1) of USP16 and RUNX1, respectively.

Table 2: Summary of results.

All CMMLs 
(N = 30)

All non AT-CMMLs 
(N = 24)

MP-CMMLs 
(N = 13)

MD-CMMLs 
(N = 11)

AT-CMMLs 
(N = 6)

RUNX1 
alteration

Normal-like 17 16 6 10 1 7
Trisomy 8 3 2 2 0 1 3

Del20q 4 2 1 1 2 3
RAS pathway mutation 7 6 6 0 1 4

RUNX1 alteration 11 8 5 3 3 11
RUNX1 mutation 9 8 5 3 1 9

USP16-RUNX1 2 0 0 0 2 2

RAS pathway mutations include point mutations in KRAS, NRAS and PTPN11. RUNX1 alterations include RUNX1 mutations and breaks. Two cases 
(1 AT and 1 non-AT) are from the same patient.
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We thus sequenced genes coding for proteins involved in
the RAS signaling pathway and a RAS mutation was found
in four cases (~14%), including a codon 146 mutation in
KRAS. In a recent study of CMML, mutations of KRAS and
NRAS genes were found in 9 patients out of 32 [25]; two
of the six KRAS mutations were in codon 146. It is thus
possible that mutation at this site is more frequent than
expected, at least in hematopoietic diseases. Germline
mutations of KRAS have been found in NCFC syndromes
[24,26]. Germline RAS mutations induce precursor
lesions and especially myeloproliferative disorders that
resemble JMML and CMML [27-29]. In patient 79 the
KRAS p.Gly12Ser substitution was present in the myeloid
and B lymphoid lineages but not in T cells. We found
mutations of PTPN11 exon 3 in 2 cases and exon 13 in
one case (other exons were not screened). Somatic muta-
tions of PTPN11 occur in approximately one-third of
JMMLs but are less frequent in CMMLs [30,31]. Our com-
bined results indicate that mutations in the RAS pathway
occurred in at least one-fourth of CMML cases. No HRAS
mutation was detected, in agreement with the absence of
hematological manifestations in HRAS-linked Costello
syndrome. CMML (at least MP-CMML) shares molecular
features with JMML, i.e. similar non-specific alterations of
chromosomes 7, 8 and 20, gene fusions [32] and altera-
tions of genes suggesting activation of the RAS pathway.
Inhibitors of the RAS pathway might be efficient in treat-
ing CMML [33,34].

CMML and RUNX1 alterations
Two cases showed a break in RUNX1 due to an inversion
of chromosomal region 21q21-22. RUNX1 encodes the
DNA-binding, alpha subunit of the core binding factor
(CBF) and is viewed as a tumor suppressor gene whose
haplo-insufficiency or dominant-negative mutations play
a role in leukemogenesis [35,36]. The gene is also fre-
quently involved in translocations, with more than 15 dif-
ferent partners [37,38]. CBFB is the β subunit of the
heterodimeric CBF factor. CBF regulates hematopoietic
stem cell behavior and is essential for definitive hemat-
opoiesis [39]. We show here that RUNX1, already known
as a major translocation breakpoint, may even be more
frequently altered than thought. Indeed, the 21q inver-
sion is not detectable by karyotyping and, if not for the
interstitial microdeletion, would not be detected by
aCGH.

RUNX1 mutations were frequent in our series of CMML.
In contrast to RAS pathway mutations, mutations of
RUNX1 have been reported unfrequently in CMML and
JMML, perhaps due to the experimental approach [40].
Overall, we found alterations of RUNX1 in roughly half of
the non-acutely transformed cases. They resulted in vari-
ous truncated or aberrant proteins that could act as dom-
inant-negative isoforms or result in haplo-insufficiency.

Case 12 shows a deletion of CALN1, encoding calneuron
1, a calmodulin-like protein. Calmodulin regulates cal-
cineurin, which is recruited by RUNX1 to regulate granu-
locyte-macrophage colony-stimulating factor [41].
Finally, CDK6, whose gene is amplified in case 3, inhibits
RUNX1 activity [42]. Noticeably, amplification of CDK6
has been recently described in lymphoma [43]. Thus,
alteration of RUNX1 function may occur frequently and
by different mechanisms in CMML.

Other alterations
Patient 52 had been treated for breast cancer and the
CMML may be due to a therapy-related pericentric inver-
sion of chromosome 11 with NUP98-DDX10 fusion.
CMML 90 may be due to a fusion between PDRM16
(EVI1-like) and RPN1. Such fusion is found in MDS and
AML-M4 [44].

Not surprisingly, CMML shares molecular features with
MDS and AML, especially therapy-related diseases, includ-
ing loss or partial deletions of chromosome 7, rearrange-
ment of the RUNX1 gene, mutations of RAS and PTPN11
[45].

Cooperative and exclusive alterations
RAS pathway mutations and RUNX1 alterations were not
mutually exclusive. RAS mutations, PTPN11 mutations
and NF1 deletion were mutually exclusive. However, in
case 1, mutations of PTPN11 and SOS1 were found. The
two mutations could synergize but the SOS1 mutation has
never been reported and its functional relevance remains
unknown.

Myeloproliferative vs myelodysplastic CMML
Six RAS pathway alterations were found in 13 MP-CMMLs
but none in 11 MD-CMMLs (p = 0.016, Fisher exact test).
An even higher proportion of MP-CMMLs may be due to
mutation in the RAS pathway because other cases could be
due to mutations occurring elsewhere in these genes or in
other genes of the RAS pathway. This suggests that MP-
and MD-CMMLs could develop along two different onco-
genic pathways, specific of two distinct diseases. This
hypothesis reinforces our previous observation on CMML
gene expression [8]. However, in a recent study RAS muta-
tions were distributed independently of the white blood
cell count [25].

RB1 deletion, RUNX1 mutation and inv(11)(p15q22)
were the only identified alterations in our series of MD-
CMML. These alterations are neither specific of CMML nor
of MD-CMML (p = non significant) since we found several
(5/13) alterations of RUNX1 in MP-CMMLs. Thus, the
molecular biology of MD-CMML remains unclear. Yet, we
now know that MD-CMML shares RUNX1 alteration with
other diseases. It is tempting to speculate that RUNX1
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alterations are responsible for the dysplasia whereas RAS
pathway mutations are responsible for the myeloprolifer-
ation. In terms of treatment, CMMLs with a RAS pathway
mutation may benefit from drugs able to target the RAS/
RAF/MAPK pathway [33,34] (e.g. sorafenib), while all
CMMLs may benefit from therapy restoring RUNX func-
tion.

Conclusion
We have identified two important features of the molecu-
lar biology of CMML: i) – RAS pathway mutations are
involved, at least, in roughly half of MP-CMML; ii) –
RUNX1 alterations are frequent in CMML; they may result
from mutations or chromosome rearrangements. Impor-
tantly, RAS and RUNX1 alterations are not exclusive,
showing that, already, two oncogenic hits may coexist at
this chronic stage.
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Additional File 1
Clinical and hematological features of the studied CMMLs. This table 
provides details on disease and patients. CMMLs are classified by a double 
line according to antecedents. Samples 3 and 37 are from the same 
patient. CMML: chronic myelomonocytic leukemia. In bold: myeloprolif-
erative CMML and corresponding WBC. AT-CMML(AML-M4): acute 
transformation of CMML in acute myeloid leukemia of M4 FAB type. 
MDS: myelodysplasic syndromes. RARS: refractory anemia with ring 
sideroblasts. EPO: erythropoïetin. WBC: white blood cell count. TA: ther-
apeutic abstention. DGP: dysgranulopoiesis, DMK: dysmegakaryocytopoi-
esis, DEP: dyserythropoiesis. 2, 95, 75: hematological malignancies were 
concomitant of the diagnosis of CMML. 8*: thrombopenia with a diagno-
sis of MDS (not done in our Institute). Apparition of anemia 2 weeks 
before the sampling and then treated with EPO. Variable monocytosis 
around 1.2 G/L but unlikely below 1 G/L at the time of sampling. 25*: 
persistant and stable monocytosis since June 2006 (1.2 G/L) but unlikely 
below 1 G/L at the time of sampling. 63*: mild anemia and thrombopenia 
with a diagnosis of MDS (not done in our Institute) and then under sur-
veillance. 74*: treated for AML (not in our Institute) in 1992 (chemo-
therapy) and relapse (AML-M5) in our Institute in 2005 
(chemotherapy). The cytological aspect of the bone marrow in January 
2007 was CMML type 2. 34*: because of the important bone marrow dys-
plasia and the imprtant cellularity the diagnosis of a acute phase of 
CMML was made. 80*: antecedent of monocytosis non explored. 88*: 
thrombopenia since 2005 and diagnosis of CMML (2006) made out of 
our Institute. 106*: stable monocytosis since February 2000. One sister 
with breast cancer. One brother with head and neck cancer and her 
mother with colon cancer (deceased).
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Additional File 2
Conditions of DNA sequencing used in this study for various genes. 
the table provides information (primers, PCR conditions) on sequence 
experiments conducted in this study.
Click here for file
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Additional File 3
Primers used for PCR detection of RUNX1 alteration. The table pro-
vides information of primers used to detect USP16-RUNX1 fusion.
Click here for file
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