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Abstract

The problem of the goodness of-fit testing for stochastic differential
équation is considered. A test statistic of the Cramér-von Mises type
is proposed and its asymptotic behavior is studied. The asymptotic
corresponds to the “small noise” approach, i.e., the diffusion coeffi-
cient tends to zéro. The basic hypothesis is supposed to be composite
parametric and the test statistics dépends on the maximum likelihood
estimator of the parameter. We consider two types of problems (un-
der hypothesis): smooth (regular) and change point (singular) types.
The behaviour of the power function of the corresponding tests under
nonparametric alternatives is discussed too.
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1 Introduction

The goodness-of-fit testing is one of the main subjects of the classical math-
ematical statistics. These tests allow to verify if the mathematical model fits
well to the given data. Our goal is to présent some goodness-of-fit tests for
the dynamical System with small noise. The approach is similar to that used
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for the tests of Kolomgorov-Smirnov, Cramér-von Mises and Chi-square (see,
e.g., Durbin [6], Lehmann and Romano [14] and Greenwood and Nikulin [9]).
In fact the mentioned classical tests are distribution free, i.e., their limit dis-
tributions do not dépend on the basic hypothesis and therefore for different
statistical models the choice of the threshold can be the same.

Let us remind the properties of the classical tests. Suppose that we ob-
serve n independent identically distributed random variables (Xl5..., Xn) —

Xn with continuous distribution function F(x) and the basic hypothesis is
simple :

: F(x) — F*(x), x E üft.
Then the Cramér-von Mises W% and Kolmogorov-Smirnov Dn statistics are

Wl = n
n 2

Fn[x) - FjÈk dF*(x) Dn = sup y/n\Fn(x) - Fmi

where Fn(x) is the empirical distribution function. The corresponding Cra-
mér-von Mises and Kolmogorov-Smirnov tests are

ll>n(Xn) = 1{W2>cq}> = l{£»n>da}

and the thresholds ca, da are defined as follows. Let us introduce the Brow-
nian bridge {tLo(s)>0 < s < 1}, i.e., continuous Gaussian process with:

EWq(s) - 0, EW0(s)W0(t) = t A s — st.

Then the limit behaviour of these statistics can be described with the help
of this process as follows

K«. [ Wo(s)2ds, Dn sup WM
J 0 0<s<t

Hence to fix the asymptotic probability a E (0,1) of the first type error we
take the constants ca, da as solutions of the équations:

P{ f Wo(s)2ds > ca] = a, P{ sup |Wo(s)| > da} = a.
J0 0<s<t

These tests are distribution-free. It can be shown that they are consistent
against any fixed alternative (see Durbin [6]).

Remind that in i.i.d. case with the basic parametric hypothesis

3%> : F(x) = F*^, x), de O, a; G R

I
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the Cramér-von Mises and Kolmogorov-Smirnov tests are no more distribu-
tion free see [6].
For a somewhat different hypothesis

^ : F{x) p F^o, x), for a specified $o £ 6>, x € IR,
the following test of Cramer [3], Smirnov [16], is available, and the test
function is then

The limiting distribution of W%, if is true, was given by Smirnov; it has
been tabulate [1]. This test is distribution free for ail n, and it is consistent.

In an effort to modify the test to treat the hypothesis of (1),
Darling [5] propose the test function

where ùn is a suitable estimator for the unknown parameter 'd in F(x, $).
and by some condition we hâve

where Y(u) is a Gaussian process with mean 0 and covariance p(s,t) =

k(u,v) — ip(u)(p{v), see section 4 in Darling [5].
Note that the limit distribution of Cn not dépend of the parameter $.
This work is a continuation of the study started in [4], where the following

goodness of fit test is proposed. Let us consider the problem of hypothèses
testing for the stochastic differential équation

dXt — S(Xt) dt + e dWt, X0 = xq, 0 < t < T,

where Wt, 0 < t < T is a Wiener process. The basic hypothesis is simple

: S(x) = 5*(:r), x0 < x < xy,

where S* (•) is known function and the alternative, as usual in goodness of
fit testing, is nonparametric:

: S(x) ^ ^(x), Xq < X < Xy.
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Here S*(x) > 0 for x > Xq and x* is the solution of the ordinary differential
équation under the hypothesis Mq:

At*
= S,(x’), x0, 0 < t < T.

Then the following Cramér-von Mises (W2) and Kolmogorov-Smirnov
(De) type statistics are proposed :

w: fT (Xt-xj
o \eS*(x*t)2

dt,

De r dt i
o

-1/2
sup

0<t<T

Xt ~ x*t
e S»(æî)2

It is shown that these statistics converge (as £ —> 0) to the following func-
tionals

i

We2=> [ W(s)2 ds, De=> sup \W(s)\,J0 0<t<T

where {14^(s),0 < s < 1} is the Wiener process. Hence the corresponding
tests

i>e(Xe) M 1{W£2>cq}) 0£(^£) = ü{e-iD£>da}
with the constants Cq,, da defined by the équations:

W(s)2ds > ca} = <a, P{ sup |W(s)| > da} — a
o <s<t

are of asymptotic size a. Note that the choice of the thresholds does not
dépend on the hypothesis (distribution free) and theses tests are consistent
against any fixed alternative.

At the présent work, we consider the similar problem but with the com-
posite basic hypothesis. We suppose that under hypothesis the trend coeffi-
cient dépends on the unknown one-dimensional parameter, i.e.,

AXt = S{d,Xt)At + eAWu X0 = x0, 0 <t <T,

and we describe the limit (e —» 0) distributions of the Cramér-von Mises type
statistic in this parametric case in two situations: smooth and change-point
type dependence of the trend coefficient on the unknown parameter.
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al 2 Model of observation

Suppose that we hâve an observation Xe = {Xt,0 < t < T} in continuous
time of the solution of the stochastic differential équation:

dXt = S(Xt)dt + edWu X0 = x0, 0 < t < T, (1)
)V

where {Wt, 0 < t < T} is the Wiener process and Xq is deterministic initial
value. The trend coefficient is in general unknown and usually the statisti-
cal problems concern this coefficient. We suppose that the trend coefficient
satisfies the global Lipschitz condition, i.e., there exist a constant L such
that

\S(x) - S(y)\ < L\x-y\. (2)
for ail x,y G M. This condition provides the existence and uniqueness of the

> strong solution of the équation (1) [15]. We consider the statistical problem
of hypothèses testing in the asymptotics of small noise, i.e., e —» 0. It is
well known that the process X = {Xt, 0 < t < T} converges uniformly in
t G [0,T] to the deterministic function {xt, 0 <t< T}, which is solution of
the ordinary differential équation (see [8], [10]) :

^ = S(xt), x0, 0 < t < T. (3)
We hâve two hypothèses: the basic hypothesis is

o : ^ ^Qi

where &q = {5($, x), x G [æo,Æt($)]'> ïï G G = [a, b]}, i.e., we suppose that
t under this hypothesis the observations corne from the stochastic differential
t équation

dXt = S ($, Xt) dt + e dWt, X0 = x0, 0 < t < T,

where î!g0 and S (•, •) is some known positive function. The limit function
a;*,0<*<Tin (3) now dépends on $, i.e., xt = xt (iï) because it satisfies
the équation

f)rr+
— = S('d,xt), M| 0 <t<T. (4)

The test statistic below is constructed with the help of the maximum
likelihood estimator, MLE $e, which is introduced as usual by the équation

L(ês,X‘) sup L ($, Xe).
■ôeo
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Here L ($, Xe) is the likelihood ratio function defined by

L (d, Xe) — exp 2e2
•& <E <9.

The properties of the MLE for this model of observations are studied in [10].
As alternative we take

JT! : S(x) i &e-

We hâve a parametric hypothesis against the nonparametric alternative.

3 Smooth case

3.1 Hypothesis
First we consider the hypothèses testing problem in the regular case, i.e.,
we suppose that the trend coefficient of the observed stochastic process is a
smooth function of the unknown parameter.

Let us dénoté by srf the following conditions (under Mq):

1. The function Sfô^x) has two continuons bounded dérivatives w.r.t. d
and x.

2. The trend coefficient S(-) > 0 and the Fisher information3.The function

has a unique minimum on y G 0 at point y = d.

We dénoté by S(-, •) the dérivative of S'(^, x) with respect to and by
S"(-, •) the dérivative of 5('d, x) with respect to x.

Note that these conditions of regularity allow us to show the consistency

P# — lim f)£ = d,
£—►0
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and the asymptotic normality (for ’â G (a, b)) of the maximum likelihood
estimator:

C^{£~lI{d)l/2{èe - #)} => Af(0,1), (5)
(see [10], Theorem 2.2).

To construct the test we use the following statistic:

Xt - Xti'âe) dt.

Below ca (i9) is solution of the équation

P <1 I W{^jW > °a W \ = U
is a stochastic intégral defined by

(t(V) = [ <S>e(s,t)dWs,J0

where

^ & SkUm S(&,xs)mmm) = or_Q _ N i{o<s<q -

(6)

(7)S{d,xs) IV ' I{â) '
Let us fix a number a G (0,1) and define the class of tests of asymp-

totic level 1 — a :

J^a = {^(-), lim E^^(Xe) = a, d G ©}.
£ >0

Remind that E^^(X£) is the probability to reject the hypothesis Mq.

Theorem 3.1 Let the condition srf be fulfilled, then the test

* = %>^(4)}e ife
Proof. Let us write

Xt - xt(êe)
_ Xt - xt{d) + xt{d) - xt(4e)

£ £ £

and study these two terms seperately. Here d is the true value.
Recall that the stochastic process £~l{Xt — xt{d)) converges uniformly on

t G [0,T] to the limit Gaussian process a^1 = solution of the linear
équation:

dx^ = S'id, xt)x^dt + dWt, x^ = 0. (8)
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This solution can be written explicitly

■k [ e^s'^Xu)dudWs.Jo

Using the équation (4), we can write

PHP \ j S'Oâ, xu) . Nl S'i'&iXu)Sfd^x^du — j ^-S('â,xu)du = I z-dx„ —
, S^^u)
'Xt

... WT)

s S(ti,Xu)
rxt

du = / (ln£($, u))7du = ln Sj'â.xt)
s(&,xay

For the details see [10], p. 136.
Hence

(i) _ /** Sj'ôjXt) HH

We can write

*
Jo S(^xs)

HB fs&xt)H
£ J0 Si&yXs)

To study the convergence of BiÉr^ÉÊA^ we need the following lemma:

(9)

Lemma 3.1 The function Xt(d) is différentiable with respect to d and the
dérivative is

xt{d) = £(tf, xt) ||^ryds- (10)
The proof is given in the appendix below.

According to this lemma we can write

it0),

where d satisfies |$ — $|<|$e — #|, and from the consistency of the MLE
it follows that

sup \xt(&) ~ itW| —* 0.
te[o,T]

The asymptotic normality of the MLE (5) yields the weak convergence

y s^Xt)m. (h)
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It can be shown (by a strangling of the proof of the Theorem 2.2 in [10])
that we hâve the joint asymptotic normality of the MLE and the dérivative
Xt . Hence, using (11) and (9), we obtain

R|
rT r rT

fs S'(0,xu)du XtW f
m L

'0 L Jo
rT „ rT

gP^Éil|JEt} - itW ^)‘W«
1 2

dt

S(û,xt)
I{o<s<t} -

Sj'â^s
m

T 2
(12)

0 0 S{ïï,x

[ \ [ $„(M)dwTdl = / &(t?)2dt = i(d)2.'o 0 J0

dt

The function ^^(s, t) was defined above (see (7)) and £t ($) =
is a stochastic intégral with a null mean and the covariance function which
dépends to $. Hence this test is not distribution free even asymptotically.
The continuity of the function c ($) can be verified as follows. Let us dénoté
by F{f),x) the distribution function of £($)2. Then o* ($) is an implicite
function defined by the équation

1 — F ($, c) = a.

Hence its dérivative

c($) —

F (#, c)
/ (#, c) ’

where f ($, x) is the density function of the r.v. £. Now the continuity of
c ($) follows from the existence of these two functions and / ($, ca ($)) > 0.

The limit expression can be slightly simplified if we consider another test
function. Let us introduce a family of stochastic processes lxt ($) 6 <9 j
by the relation

Xt('d)=x0+ [ S('â,Xs)ds, 0 <t<T,Jo

i.e., Xt ($) is a solution of the differential équation

dXt(0)
dt S(0,xt), Xq ($) = Xo, 0 < t < T.
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Note that such family was used in [12], for construction of a class of trajectory
fitting estimators. Introduce the statistic

B—
dt

and the test ^ (Xe) — ïï{£e>c(+)}- Then the first term in the représentation
xt-xtU£ Xt-Xt(&)

| Xtity-Xtiti'
£ £ £

is (Xt — Xt {’&))/£ — Wt. For the second term we hâve

Xt(0)-X(l0e I rt .

= £ £*(#) (l + o(l)), Xt{ïï)= / S(ïï,xs)ds.
£ £ Jo

Hence

T

[T S {S, x,)AW!
'0

2

I(ê) '0

dt.

This last expression hâve to be used in the définition of the threshold
ca (tf).

3.2 Alternative

Suppose now that S f with 6 = [a, 6] but the function S(x), as before,
has two continuous bounded dérivative. Then the solution of the correspond-
ing équation :

dXt - S(Xt)dt + e dWt, X0 = x0, 0 < t < T

converges to another determinist function yt, which is the solution of the
following équation:

% Cf I
-TT = S(yt), yo = x0.dt

We now verify that the test (Xe) = %>c«ft)> is consistent.
Let us introduce the quantity

U11 [ (yt ~ x^fdt = inf H - H (0) fi9e© J 0 ve&
(13)
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and note that g2s > 0. Indeed, if g\ — 0, then there exists a value fl £ O such
that yt = Xt (fl) for ail t G [0,T], which contradicts the condition S fi &q.

We hâve

Xt-yt yt- xt(fl£) >
Xt-yt yt - xt(fl£)

£ £ £ £

Remind that

sup
teM

Xt-yt
m

(i)

(14)

(15)

where y* is a Gaussian linear process:

dy? 1 S'(yt)y^] dt + dWt, y^. 0, 0 < t < T.

Hence the first term in (14) is bounded in probability. For the second term
we hâve the estimate

yt - xt(fl£) || > gs (16)
Hence by (15) and (16) we obtain,

in
Therefore

oo.

> Ca } 1 (17)
as £ —| 0 for ail S(-) fi Hence, this test is consistent against any fixed
alternative .

Remark. It can be shown, that like the case of simple basic hypothesis
studied in [4], this test is not uniformly consistent and

jlim inf P5 \ô£ > ca ( fl£ ) \ = a.

3.3 Example of Ornstein-Uhlenbeck Process
Suppose now that under the basic hypothesis Mq the observed process is
Ornstein-Uhlenbeck :

dXt = flXtdt + £dWt, X0 = x0, 0 <t<T (18)

where fl € (a, 6), fl =/=■ 0, |a| + |6| < 00 and Xo 7^ 0. The set = (*S'(rr) =

flx, x G [a^o, xt(A)], fl € 0}. Here xt (fl) — xq e®T.
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Hence we hâve the hypothèses testing problem

: S(x) € against : S(x) £
The solution of limit équation (under Mq)

— = iâxt('&), x0, 0 < t < T.

is, of course, xt (&) = xq eM.
The goodness of fit test studied in the Section 3.1 is not distribution free

and here we consider a different statement of the problem.
Let us suppose that T is large and we try to find the limit distribution (as

T —> oo) of the limit statistics obtained for e —» 0 in fîrst step and T —» oo
in second step (see [11]).

Let us introduce the following statistics:

7e,T —
/Xt-xt(è£)\
\ £g2 ,d£t )

2

dt, (19)

where the MLE fQT Xfdi) /QT XtdXt.
Below ca is solution of the following équation

w2dz > Cq,! = CK,

where wz, 0 < z < 1 is a Wiener process.

Proposition 3.2 The test (j)£ = -^{7eT>cQ} belongs to the class in the
following sens

lim limPtf {7e>T > ca} = 0, V d ^ 0.

Proof. According to the équation (12), we hâve (under Mq) the following
limit

Xt - xt('â£)\2dt J2.M

0
ipftMÉ -Airtmm

dt

w

where the Fisher information /j-('d) = |^(e2l9T — 1). It is easy to see that as
T —1 00 we obtain the relations

iÆ ë
îû. P2$T
2# * ’

_x£
>0

•& < 0.



I

43

îe

ts

o

and for any $ € (a, b), i9 =/=■ 0, we hâve

e (^{«<0 IT(fi)e ' 6 jWp
Hence for large T

JT (0) ~ F eMi ( f e~^dWs)V
and we can write (as e —> 0 and large T), see [11])

XtJ-_xt(ÿc)y
ro ? £e

dt
»T rt

*—2i?tTi/2/' / ^—2’ôs.e-2wr( / (1 + o (1))

where

[ W2([ e_2l?sds)d( f e_2l?sds) (1 + o (1))Jo io io
/*Qt Tl

/ W(u)2dtt(l + o(l)) = Qt / w2du(l + o(l)),Jo 4o

u = f e 2l9sds — v f e 2l?sds = uQr.
Jo Jo

Here = Qt1^2W(Qtv), 0 < v < 1 is a Wiener process.
Hence (as e —» 0 and then T —> oo)

le,T wldv.

Now the choice of thresholds ca does not dépend on the hypothesis and the
test is distribution free.

Remark. Note that for 79 = 0, and under the null hypothesis, the solution
of the limit équation is

xt SygL
hence for large T

jT~ F Fw?dt
Jo e J0

and

where wu, 0 < u < t is the Wiener process.

!
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4 Change point testing (Non smooth case)
4.1 Hypothesis
Suppose that under the null hypothesis we observe a trajectory Xe =

{Xt, 0 < t < T} of diffusion process

dXt — [g{Xt)l{t<$} + h{Xt)lp>i?}]di + edW*, Xq = xq, 0 < t < T,
where $ G 0 — [a, b], 0 < a < b < T. The parameter $ is an unknown instant
of switching of the trend coefficient (change point). The set of possible trend
coefficients (under this hypothesis) is

&e = {S(ïï,xt) = g(xt)l{t<#} + h(xt)l{t>#}, xt G [x0^T (#)],$ G O},
where xt = xt{d) is the solution of the deterministic switching System:

— = / t<r^
dt \ h{xt), t>d.

Let us introduce the condition 3S\
The fonctions h (x) and g (x) hâve continuons bounded non négatives dériva-
tives andTh (x) > g (x) > 0 for x G j)ro> Xt (a)].

Note that sup^G0 xt ($) — xt (a).
We test the following two hypothèses:

Jf0 : S(x) G 3Xq against M\ : S(x) fi
To construct the test, we use the statistic :

re= yT(^)] 2 / D(xuêe) Xt - xt{ê£) -i 2

dt. (20)

where

mm = 9(xt):
ds . ,2 fT ds

—+h(xx) I mn
D{xu-d) m 2g(xt)2g'(xt)

<o g{xs)
r» ds

Jo g(%s)
and ê£ is the MLE.

The constant ca is solution of the équation:
'l

w2dz > = a

2 h(xt)2h'(xt) / + 1,
h Kxs)

(21)

where wz, 0 < z < 1 is some Wiener process. Note that the choice of the
threshold ca does not dépend on the hypothesis (distribution free).
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Theorem 4.1 Let the condition SS be fulfilled, then the test = l{re>ca}
belongs to the class J(fa

Proof. Let us write

Xt - xt(d£)
_ Xt - xt(d)

_ xt(de) - xt(d)
£ £ £

and remind that the first term converges uniformly on t G [0,T] to the
Gaussian process (see details in [10], p. 160)

ïlZlM Jpp (22)
where a^1 , is a solution of the following équation for 0 < t < d,

Éli = g'{xt) x[1] dt + dWt, a^ =

Hence

H f 0 <t<d. (23)Jo 9(Xs)
and for t > d, x^ is a solution of another équation

da;^ = h'(xt) x^ d£ + dWt,
and

K = 41} + f t ^ (24)J$ h(xs)
To study the term xt(d£) — xt(d) we need the dérivative dxt (d) /dd. Its

existence can be shown by the following way. We hâve

xt(d) =
x0 + /o g(xs)ds, t<d,
x0 + fo d(xs)ds + jgh(xs)ds, t>d

Hence
dxt(d)

dd

then if we, suppose that d <

îmSÉF*I

f 0, t < d
\ g(xfl) - h(xfl),
d£, we obtain

t > d

+

+

p.ÿg -^|S|
Ifeà!M _ ^i(W)2dt.Jêe £ 6

(25)
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and if d >

F 2
dt= (

Xt - Xt(ÿ) )2d*+ i (
X* - £*(#) ) dt

£
(26)

+ [TJü £ £

Using theorem 5.7 of Kutoyants[10] and for ail $ we obtain
r*T xt - xt(ée) dt

10 \ £

combined with (4.1) one finds

IT 'Xt-x,(ê')\z

Xt-xt(ti)Ÿdt (27)

'0 £

rtf I rt

dt

WÈt)
>o 'Jo â'fe)

ptf I rt

dwA dt + Bi' f‘^ldW,) dt

—rdW^dt
x «/ o Q\p^s)

T I /.t

= / wJo

I# Wo #Os)

o ôfe) 1 J h(zs) .

T ■*!
2

h(xs)

®S1+1 h[xt)
h(xa)

dW,) dt

dt

i H I M iuj
o {*<tf} + ÜÜ& dS dt W>(t)]dt.

where u(t) = /0* (^1{S<19} + £[f^I{s>tf})2ds, in connection with the con-
dit ion it is easy to see that v(t) is an increasing function (see appendix),
which guaranteed the existence of the Wiener process,

Therefore we can write

0kk>M ’ÊkJÊÈSm
dt—| f D(xt,'â)W2(v(t))dtJo

rVrW /*!
s / W2(v)dv = VtW2 / w\dz,

i o '0

where wz = Vt($) 1/2W(Vt’^), 0 < 2: < 1 is a Wiener process.
Hence (as £ —I 0)

w2dz,
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and the test is distribution free. Therefore for the first type errors we hâve

ae(r£) = P^0{r£>ca}—> P w2zdz > ca\ = a. (28)

The theorem (4.1) is proved.

4.2 Alternative

Suppose now that S fi &q with © = [a, 6] but the function 5(-), as before,
has continuous bounded dérivative. Then the solution of the corresponding
équation :

dXt = S{Xt)dt + edWu X0 = x0, 0 < t < T, (29)

converges to another determinist function yt, which is solution of the following
équation:

àyt c'r S
—

- S{yt), Vo = x0l

with the same considération that in the alternative for the smooth case, the
test \I/pf£).= l{re>ca} is consistent and we hâve (17).
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