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Abstract: The paper presents an analysis and overview of vertex–frequency analysis, an emerging
area in graph signal processing. A strong formal link of this area to classical time–frequency analysis is
provided. Vertex–frequency localization-based approaches to analyzing signals on the graph emerged
as a response to challenges of analysis of big data on irregular domains. Graph signals are either
localized in the vertex domain before the spectral analysis is performed or are localized in the spectral
domain prior to the inverse graph Fourier transform is applied. The latter approach is the spectral
form of the vertex–frequency analysis, and it will be considered in this paper since the spectral
domain for signal localization is well ordered and thus simpler for application to the graph signals.
The localized graph Fourier transform is defined based on its counterpart, the short-time Fourier
transform, in classical signal analysis. We consider various spectral window forms based on which
these transforms can tackle the localized signal behavior. Conditions for the signal reconstruction,
known as the overlap-and-add (OLA) and weighted overlap-and-add (WOLA) methods, are also
considered. Since the graphs can be very large, the realizations of vertex–frequency representations
using polynomial form localization have a particular significance. These forms use only very localized
vertex domains, and do not require either the graph Fourier transform or the inverse graph Fourier
transform, are computationally efficient. These kinds of implementations are then applied to classical
time–frequency analysis since their simplicity can be very attractive for the implementation in the
case of large time-domain signals. Spectral varying forms of the localization functions are presented
as well. These spectral varying forms are related to the wavelet transform. For completeness, the
inversion and signal reconstruction are discussed as well. The presented theory is illustrated and
demonstrated on numerical examples.

Keywords: time–frequency; vertex–frequency; graph; big data

1. Introduction

Processing of big data, whose domain is irregular and can be represented by a graph,
has attracted significant research interest [1–10]. For big data, the possibility of using
smaller and localized subsets of the available information is crucial for their efficient
analysis and processing [11]. In addition, in practical applications when large graphs are
used as the signal domain, we are commonly interested in localized analysis than in global
behavior. In order to characterize the vertex-localized behavior of signals and their narrow-
band spectral properties, the joint vertex–frequency domain analysis is introduced. This
analysis represents a natural analogy to the time–frequency analysis, a well-established
area in classical signal processing [12–14].

In classical signal analysis, the basic short-time Fourier transform approach uses
window functions to localize the signal in time, while the projection of such a windowed
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signal onto Fourier transform basis functions provides its spectral localization. Time local-
ization, combined with the modulation by the basis functions, produces kernel functions
for classical time–frequency analysis. The classical time–frequency analysis approach
has been extended to vertex–frequency analysis for signals defined on graphs [15–22].
This generalization is not straightforward, since graph is a complex and irregular signal
domain. Namely, even a time-shift operation, which is trivial in classical time-domain
analysis, cannot be straightforwardly generalized to the graph signal domain. This has
resulted in several approaches to define vertex–frequency kernels. One approach is based
on the vertex domain windows defined using the graph spectral domain [23]. The ver-
tex domain windows can also be fully defined in the vertex domain, using the vertex
neighborhood [19].

The vertex domain approaches are based on local analysis with a vertex neighbor-
hood and can be very efficient in the large graph analysis. This paper will focus on the
vertex–frequency kernels defined in the spectral domain, with spectral shifts performed
as in classical signal analysis, while the vertex shifts are implemented in an indirect way,
using the basis functions. This approach produces practically very efficient forms, especially
when combined with polynomial approximations of the analysis kernels. This paper’s pri-
mary goal is to provide a strong link of the time–frequency analysis with vertex–frequency
analysis and to indicate some new possibilities for simple methods in the time–frequency
analysis of large-duration signals based on the vertex–frequency forms. Conditions for the
signal reconstruction, known as overlap-and-add (OLA) method and weighted overlap-
and-add (WOLA) are considered, and the window forms from the classical signal anal-
ysis are adapted to satisfy these conditions, with appropriate comments related to their
application to the vertex–frequency analysis, when the eigenvalues are used instead of
the frequency.

The paper is structured as follows. Basic definitions in graph theory and signals on
graphs, including the graph Fourier transform, are reviewed in Section 2. A solid formal
relation between the classical signal processing paradigm and graph signal processing is
provided in Section 3, where benchmark graphs and signals are introduced. In Section 4,
the spectral-domain localized graph Fourier transform is presented, along with a few
simple basic implementation forms. The general OLA and WOLA conditions for analysis
in the graph spectral domain are introduced, with illustration on several windows for each
of these conditions, including the spectral domain wavelet-like transform. The polynomial
approximations of the presented kernels are the topic of Section 5, where the Chebyshev
polynomial series, least-squares approximation, and Legendre polynomial approximation
are presented. Inversion of the local graph Fourier transform is elaborated on in Section 6,
where both of the defined kernel forms are analyzed. The support uncertainty principle
in the general form (such that it can be used for graph signals) is presented in Section 7,
along with the discussion on the relation of the local graph Fourier transform support and
the kernel function width in the spectral domain. The possibility of splitting large signals
into smaller parts and simplifying the analysis of such signals is considered in Section 8.
The presented theory is illustrated in numerous examples. The manuscript closes with
summarized conclusions and the reference list.

2. Basic Graph Definitions

A graph consists of N vertices, n ∈ V = {1, 2, . . . , N}, which are connected with edges.
The weight of edges are Wmn [24–26]. For the vertices m and n which are not connected,
by definition Wmn = 0. The weights of edges are the elements of an N × N matrix, W.
The graphs can be directed and undirected. For undirected graphs it is assumed that
the vertices m and n are connected by the same edge weight in both directions, resulting
in a symmetric weight matrix W, when W = WT holds. A graph is unweighted if all
nonzero elements of its weight matrix, W, are equal to 1. In this case the weight matrix,
W, assumes specific form and the edges are represented by a connectivity or adjacency
matrix, A. In addition to the adjacency and weight matrix, A or W, in graph theory several
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other matrices are used. All of them can be derived from the adjacency and weight matrix.
A matrix that indicates the vertex degree in a graph is called the degree matrix. It is of
diagonal form and its common notation is D. The elements Dnn of the degree matrix are
obtained as a sum of all weights corresponding to the edges connected to the considered
vertex, n. The diagonal elements of D are equal to Dnn = ∑m Wmn. A combination of the
weight matrix, W, and the degree matrix, D, produces one of the most commonly used
matrix in the graph theory, the graph Laplacian. It is defined by

L = D−W.

In the case of an undirected graph, the symmetric form of the weight matrix results in
a symmetric graph Laplacian, L = LT .

The eigendecomposition of the graph matrices (for example, of the graph Laplacian
L or the adjacency matrix A) is used for spectral analysis of graphs and graph signals.
The eigendecomposition of a graph Laplacian (or any other matrix) relates its eigenvalues,
λk, and the corresponding eigenvectors, uk, by

Luk = λkuk, for k = 1, 2, . . . , N.

where λ1, λ2, ..., λN , are not necessarily distinct. Since the graph Laplacian is a real-valued
symmetric matrix, it is always diagonalizable, that is, the geometric multiplicity equals the
algebraic multiplicity for every eigenvalue. The previous N equations can then be written
in a compact matrix form (the eigendecomposition relation for diagonizable matrices) as

LU = UΛ.

The transformation matrix U consists of the eigenvectors, uk, k = 1, 2, . . . , N, as its
columns, while Λ is matrix of diagonal form, whose diagonal elements are λk, k = 1, 2, . . . , N.

The same eigendecomposition relation can be used for the adjacency matrix
Auk = λkuk, k = 1, 2, . . . , N.

For diagonalizable matrix there exist a set of orthonormal eigenvectors. They are
used as the transformation basis functions for the definition of the graph Fourier trans-
form (GFT),

X = [X(1), X(2), . . . , X(N)]T ,

of a graph signal, x = [x(1), x(2), . . . , x(N)]T . The graph signal value at a vertex n is
denoted by x(n), n = 1, 2, . . . , N, while the notation x is used for the vector of signal values
at all vertices. The vector of the GFT of a graph signal x will be denoted by X, and the
elements (components) of the GFT vector by X(k), k = 1, 2 . . . , N. The elements of a graph
signal at a vertex n, x(n), can then be written as a linear combination of the eigenvectors

x(n) = IGFT{X(k)} =
N

∑
k=1

X(k) uk(n), (1)

where the basis function values uk, are the elements of the k-th eigenvector, uk, at the vertex
n, n = 1, 2, . . . , N. This is the definition of the inverse graph Fourier transform (IGFT).

Matrix form of the IGFT is x = UX. For real and symmetric matrices (corresponding to
undirected graphs) the transformation matrix U is orthogonal, UUT = I, that is U−1 = UT .
Then the graph Fourier transform (GFT) is defined by X = U−1x = UTx or in element-
wise form

X(k) = GFT{x(n)} =
N

∑
n=1

x(n) uk(n). (2)

For undirected graphs, both the Laplacian and the adjacency matrix are symmetric,
resulting in real-valued eigenvectors and the resulting transformation matrices. However,
for directed circular graphs, the eigenvalues (and eigenvectors) of the adjacency matrix are
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complex-valued. Then, the elements of the inverse transformation matrix U should be used
in the GFT definition. When U−1 = UH holds (normal matrices), the complex-conjugate
basis functions, u∗k (n), are used in (2).

3. Classical Signal Processing within the Graph Signal Processing Framework

The graph signal processing will be related to classical time–frequency analysis in
two ways: (1) using the directed circular graph and its adjacency matrix, or (2) using the
undirected circular graphs and the graph Laplacian. These two relations are discussed next.

Directed circular graph. The signal values, x(n), in classical signal processing systems,
are defined in a well-ordered time domain, defined by the time instants denoted by
n = 1, 2, . . . , N. In the DFT-based classical analysis it has also been assumed that the signal
is periodic. The domain of such signals is illustrated in Figure 1 for N = 8.

Consider next a classical form of a discrete-time finite impulse response (FIR) system.
The input–output relation for this system is given by

y(n) = h0x(n) + h1x(n− 1) + h2x(n− 2) + · · ·+ hMx(n−M).

In order to make a connection with graphs and graph notation of the signal domain,
notice that this input–output relation of the FIR system can be written in the matrix form as

y = h0x + h1Ax + h2A2x + · · ·+ hMAMx, (3)

where

y=


y(1)
y(2)
y(3)

...
y(N)

, x=


x(1)
x(2)
x(3)

...
x(N)

, and A=


0 0 0 . . . 0 1
1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 0

.

For this system, the time instants are well-ordered and their connectivity matrix
is given by the adjacency matrix. The instants (in graph notation vertices) relation is
defined by

• Amn = 1 if the vertex or instant m is a predecessor (connected) to the instant (vertex)
n, and

• Amn = 0 otherwise,

as shown in Figure 1 (left), for N = 8. Rows of the adjacency matrix indicate the corre-
sponding vertex connectivity. In the first row, there is value 1 at the position N. It means
that the vertex 1 is related to vertex N by a directed edge between these two vertices. In the
second row there is value 1 at the first position, meaning that the vertex 2 is connected to
vertex 1 with an edge, as shown in in Figure 1 (left).

1 2

3

4

56

7

8

1 2

3

4

56

7

8

Figure 1. Time domain of periodic signals presented as: Circular unweighted directed graph (left)
and an undirected graph (right), with N = 8 vertices (instants).
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The elements of the shift matrix relation y = Ax are y(n) = x(n − 1), as it has
been expected for a simple delay operation. The delay for two instants, y(n) = x(n− 2),
is calculated as A(Ax) = A2x, and so on.

Now, we will perform the eigendecomposition of this adjacency matrix A. According
to the eigendecomposition relation

Auk = λkuk,

or in the matrix form
AU = UΛ or A = UΛU−1.

Recall that U is the matrix whose columns are the eigenvectors, uk, and the eigenvalue
diagonal matrix is Λ. The eigenvalues λk are on the diagonal of this matrix. The adjacency
matrix of the directed circular graph is diagonalizable because all its eigenvalues are
distinct. The adjacency matrix of a directed circular graph is a circulant matrix. As it is
well-known that this kind of matrix is diagonalizable by the discrete Fourier transform
[27] (as it will be shown next). In general, the adjacency matrix of a directed graph may
not be diagonalizable, when the Jordan form should be used [1] and Appendix A in [3].
This kind of graphs is not considered in the paper. The input–output relation of a classical
FIR system (3) can now be written as

y = h0x + h1UΛU−1x + · · ·+ hMUΛMU−1x,

where the eigendecomposition property

AM = UΛMU−1,

is used.
Now, by left-multiplication by U−1 we can write

U−1y = h0U−1x + h1ΛU−1x + · · ·+ hMΛMU−1x,

or
Y = (h0 + h1Λ + h2Λ2 + · · ·+ hMΛM)X = H(Λ)X,

where
Y = UHy and X = UHx,

are the discrete Fourier transforms (DFT) of the output signal, y, and the input signal, x.
The diagonal transfer function is denoted by H(Λ) and its elements are given by

H(λk) =
Y(k)
X(k)

,

for X(k) 6= 0. Indeed, the presented forms represent the well-known classical DFT-based
relations. In order to confirm this conclusion, we will analyze the eigenvalue relation for
the presented adjacency matrix, A,

det(A− λI) = 0.

The corresponding characteristic polynomial is given by

det(A− λI) = λN − 1 = 0.

Since 1 = e−j2π(k−1), the solutions for the eigenvalues and eigenvectors are

λk = e−j2π(k−1)/N with uk(n) = 1√
N

ej2π(k−1)(n−1)/N ,
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for k = 1, 2, . . . , N. The eigenvectors are equal to the DFT basis functions, normalized in
such a way that their energy is unity.

We can easily arrive to the element-wise form of the DFT using the GFT definition
given in (2).

For implementation issues that will be addressed later, it is crucial to notice that
for the calculation of AMx we need only the signal neighborhood M with respect to the
each considered instant, n. In the time domain, it means the distance defined by (n−M).
The fact that AMx requires the signal samples within M neighborhood of the considered
vertex (instant) will hold for general graphs. The local neighborhood based calculation is
of key importance when large graphs are analyzed or signals, representing big data on
large graphs, are processed.

Undirected circular graph. When the circular graph is not directed, as shown in
Figure 1(right), then we should assume that every instant (vertex), n, is connected to
both the predecessor vertex (instant), n− 1, and to the succeeding vertex, n + 1. The adja-
cency or weight matrix for this kind of connection, A = W, and the corresponding graph
Laplacian, defined by L = D−W, are given by

W =


0 1 0 0 0 . . . 0 1
1 0 1 0 0 . . . 0 0
0 1 0 1 0 . . . 0 0
...

...
...

...
...

. . .
...

...
1 0 0 0 0 . . . 1 0

, D =


2 0 0 0 0 . . . 0 0
0 2 0 0 0 . . . 0 0
0 0 2 0 0 . . . 0 0
...

...
...

...
...

. . .
...

...
0 0 0 0 0 . . . 0 2

,

L = D−W =


2 −1 0 0 0 . . . 0 −1
−1 2 −1 0 0 . . . 0 0

0 −1 2 −1 0 . . . 0 0
...

...
...

...
...

. . .
...

...
−1 0 0 0 0 . . . −1 2

,

where D is the diagonal (degree) matrix with elements Dnn = ∑m Wmn. The eigendecom-
position relation written for the graph Laplacian, Luk = λkuk, in element-wise form is
given by

Luk (n) = −uk(n− 1) + 2uk(n)− uk(n + 1) = λkuk(n), (4)

where Lx(n) are the elements of the vector Lx.
The solution to the difference equation of the second order, (4), can be obtained in

the form

uk(n) = cos
(2π(k− 1)(n− 1)

N
+ φk

)
, (5)

with the eigenvalue

λk = 2
(

1− cos
(2π(k− 1)

N

))
= 4 sin2

(1
2

2π(k− 1)
N

)
= 4 sin2

(1
2

ωk

)
. (6)

For each of the eigenvalues, we can define two distinct orthogonal eigenvectors
in quadrature, for example, using φk = 0 and φk = π/2 in (5). These two eigenvec-
tors correspond to the classical sinusoidal basis functions, cos(2π(k− 1)(n− 1)/N) and
sin(2π(k− 1)(n− 1)/N), in the Fourier series analysis of real-valued signals. The excep-
tions are the eigenvalues λ1 = 0 and the last eigenvalue for an even N, when there is only
one basis function. The sine and cosine functions should be normalized to the unit en-
ergy, to represent eigenvectors. Therefore, a definition of the graph Laplacian eigenvalues
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and eigenvectors for an undirected circular graph (for an even N, for example, N = 8),
taking into account all previous properties, is given by

λ1 = 0 u1(n) = 1√
8

λ2 = 4 sin2
(

π
8

)
u2(n) = 1√

4
cos( 2π(n−1)

8 ),

λ3 = 4 sin2
(

π
8

)
u3(n) = 1√

4
sin( 2π(n−1)

8 )

λ4 = 4 sin2
(

2π
8

)
u4(n) = 1√

4
cos( 2π2(n−1)

8 ),

λ5 = 4 sin2
(

2π
8

)
u5(n) = 1√

4
sin( 2π2(n−1)

8 )

λ6 = 4 sin2
(

3π
8

)
u6(n) = 1√

4
cos( 2π3(n−1)

8 ),

λ7 = 4 sin2
(

3π
8

)
u7(n) = 1√

4
sin( 2π3(n−1)

8 )

λ8 = 4 sin2
(

4π
8

)
u8(n) = 1√

4
cos( 2π4(n−1)

8 ).

(7)

The smallest eigenvalue, λ1 = 0, corresponds to a constant vector, u1(n) = 1/
√

8,
while the largest eigenvalue, λ8 = 4, corresponds to the fastest-varying eigenvector
u8(n) = (−1)(n−1)/

√
4.

Smoothness and local smoothness. Notice that for an undirected circular graph and small
frequency, ω2

k , the relation in (6) can be approximated by

λk = 4 sin2(
1
2

ωk) ≈ ω2
k . (8)

This relation means that the graph Laplacian eigenvalue, λk, corresponding to the
eigenvector, uk, can be related to the classical frequency (squared), ω2

k , of a sinusoidal basis
function in classical Fourier series analysis.

In general, it is easy to show that the eigenvalue of the graph Laplacian can be used to
indicate the speed of change (called the smoothness) of an eigenvector or a graph signal,
in general. Namely, if we left-multiply by uT

k both sides of the eigenvalue definition relation
Luk = λkuk we obtain uT

k Luk = λk, since uT
k uk = 1. Now the quadratic form

λk = uT
k Luk =

1
2 ∑

m
∑
n
(uk(n)− uk(m))2Wmn,

measures the change of neighboring values (uk(n)− uk(m))2, weighted by Wmn. Fast changes
of uk(n) produce large values of λk, while the constant uk(n) results in λk = 0.

The local smoothness can be defined for a vertex n. It will be denoted by λ(n).
This parameter corresponds to the classical time-varying (instantaneous) frequency, ω(t),
defined at an time-instant t, in the form [28]

λ(n) =
Lx(n)
x(n)

. (9)

In this relation we used Lx(n) to denote the n-th element of the vector Lx. It has
been assumed that x(n) 6= 0. If we use x(n) = cos(ωkn) and the graph Laplacian of
an undirected circular graph, as in (4), we obtain the value from (8). In general, if the
signal x(n) is equal to an eigenvector uk(n) at the vertex n and at its neighboring vertices,
then λ(n) = λk.

System on a general graph. The relations presented in this section are the special cases of
the general graph Fourier transform (Section 2) and systems for graph signals.
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The most important difference between the classical systems and the systems for
graph signals is in the fact that the standard shift operator, x(n) = x(n− 1), just moves a
signal sample from one instant, n, to another instant, (n− 1), while the graph shift operator,
y = Ax or y = Lx, moves the signal sample to all neighboring vertices (in the case of
graph Laplacian, in addition to the signal being moved to the neighboring vertices (with a
change of sign), its sample is kept at the original vertex as well). Notice that the graph
shift operator does not satisfy the isometry property since the shifted signal’s energy is
not the same as the energy of the original signal. In analogy with the role of time shift in
standard system theory, a system for graph signals is implemented as a linear combination
of a graph signal and its graph shifted versions,

y =
(

h0L0 + h1L1 + · · ·+ hM−1LM−1
)

x =
( M−1

∑
m=0

hmLm
)

x = H(L) x, (10)

where, by definition L0 = I, while h0, h1, . . . , hM−1 are the system coefficients. The spectral
form of this relation is given by

Y =
(

h0 + h1Λ + h2Λ2 + · · ·+ hMΛM
)

X = H(Λ)X, (11)

where H(Λ) is a diagonal matrix representing the transfer function of the system for a
graph signal. Notice that if the transfer function, in general, can be written in a form
of polynomial, as in (11), then the system can be implemented using the graph-shifted
forms of the signal, L x, L2 x, . . . , up to LM−1 x, as in (10), which require only (M − 1)
neighborhoods of each signal sample to obtain the system output, independently of the
size of the considered graph.

Graph signal filtering—Graph convolution. Three approaches to filtering of a graph
signal using a system whose transfer function is G(Λ), with elements on the diagonal
G(λk), k = 1, 2, . . . , N, will be presented next.

(i) The simplest approach is based on the direct employment of the GFT. It is performed
by:

(a) Calculating the GFT of the input signal, X = U−1x,
(b) Finding the output signal GFT by multiplying X by G(Λ), Y = G(Λ)X,
(c) Calculating the output (filtered ) signal as the inverse DFT of Y, y = UY.

The result of this operation,

y(n) = x(n) ∗ g(n) = IGFT{GFT{x(n)}GFT{g(n)}} = IGFT{X(k)G(λk)},

is called a convolution of signals on a graph [25,29].
However, this procedure could be computationally unacceptable for very large graphs.

(ii) A possibility to avoid the full size transformation matrices for large graphs, is to
approximate the filter transfer function, G(λ), at the positions of the eigenvalues,
λ = λk, k = 1, 2, . . . , N, by a polynomial, h0 + h1λ + h2λ2 + · · ·+ hMλM, that is

h0 + h1λk + h2λ2
k + · · ·+ hMλM

k = G(λk), k = 1, 2, . . . , N. (12)

Then the system of N equations

Vh = diag{G}, (13)

is solved, in the least squared sense, for M < N unknown parameters of the system
h = [h0, h1, . . . , hM]T , with a given M and

diag{G} = [G(λ1), G(λ2), . . . , G(λN)]
T
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is the column vector of diagonal elements of G. The elements of matrix V are
V(k, m) = λm

k , m = 0, 1, . . . , M, k = 1, 2, . . . , N (Vandermonde matrix).
This system can efficiently be solved for a relatively small M. Then, the imple-
mentation of the graph filter is performed in the vertex domain using the so ob-
tained h0, h1, . . . , hM in (10) and the M-neighborhood of a every considered vertex.
Notice that the relation between the IGFT of diag{G} and the system coefficients
h0, h1, . . . , hM is direct in the classical DFT case only, while it is more complex in the
general graph case [25].
For large M, the solution to the system of equations in (12), for the unknown param-
eters h0, h1, . . . , hM can be numerically unstable due to large values of the powers λM

k for
large M.

(iii) Another approach that allows us to avoid the direct GFT calculation in the imple-
mentation of graph filters is in approximating the given transfer function, G(λ), by a
polynomial H(λ), using continuous variable λ.
This approximation does not guarantee that the transfer functions G(λ) and its polynomial
approximation H(λ) will be close at a discrete set of points λ = λp, p = 1, 2, . . . , N.
The maximal absolute deviation of the polynomial approximation can be kept as
small as possible using the so-called min–max polynomials. After the polynomial
approximation is obtained the output of the graph system is calculated using (10),
that is

y =
( M−1

∑
m=0

hmLm
)

x = H(L) x.

This approach will be presented in Section 5.

Case study examples. In the next example we shall introduce two graphs and signals on
these graphs, which will be used as benchmark models for the analysis that follows.

Example 1. Two graphs are shown in Figure 2. A circular undirected unweighted graph represents
the domain for classical signal analysis, with each of N = 100 vertices (instants) being connected
to the predecessor and successor vertices (top panel). A general form of a graph, with the same
number of N = 100 vertices, is shown in Figure 2 (bottom). These two graphs will be further used
to demonstrate classical and graph signal processing principles and relations.

A signal on the circular graph is shown in Figure 3 (top). We have formed this synthetic signal
using parts of three graph Laplacian eigenvectors (corresponding to three harmonics in classical
analysis). For the vertices in the subset V1 = {1, 2, 3, . . . , 40} ⊂ V , the eigenvector (harmonic)
with the spectral index k = 16 was used.

For the subset V2 = {41, 42, 43, . . . , 70}, the eigenvector uk(n), with k = 84, is used to
define the signal. The eigenvector with spectral index k = 29 was used to define the signal on the
remaining set of vertices, V3 ⊂ V .

A signal on the general graph is shown in Figure 3 (bottom). It is also composed of parts of
three Laplacian eigenvectors. For the vertices in V1, the eigenvector with spectral index k = 12 has
been used.

For the subset of vertices V2, containing the vertex indices ranging from n = 41 to n = 70,
the eigenvector uk(n)with k = 84 was used to define the signal. Within the subset, V3 = V \ (V1 ∪ V2),
the spectral index was k = 29. Supports of these three components are designated by different
vertex colors.

The local smoothness index λ(n), which corresponds to the speed of change of the corresponding
components, λ(n) = λk, is shown in Figure 4 for the presented graph signals. The local smoothness
in the classical signal analysis is related to the instantaneous frequency of each signal components
as λ(n) = 4 sin2(ω(n)/2).
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Figure 2. A circular undirected unweighted graph as the domain for classical signal analysis. Each of
N = 100 vertices (instants) is connected to the predecessor and successor vertices (top). A general
form of a graph, with N = 100 vertices (bottom).

Figure 3. Graph signal on a circular undirected unweighted graph (top), and a general graph (bottom).
Vertices from V1 are designated blue dots, vertices form V2 are marked by black dots, while vertices
form V3 are given by green dots.
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Figure 4. Local smoothness of the signals from Figure 3. The values are shown for nonzero signal
samples. The local smoothness in classical signal analysis is related to the instantaneous frequency as
λ(n) = 4 sin2(ω(n)/2).

Other graph shift operators. Finally, notice that in relation (10), we used the graph Lapla-
cian, L, as the shift operator. In addition to the adjacency matrix, A, as another common
choice for the shift operation, the normalized version of the adjacency matrix, (A/λmax),
normalized graph Laplacian (D−1/2LD−1/2), or the random walk (also called diffusion)
matrix, (D−1W), may be used as graph shift operators, producing corresponding spectral
forms of the systems for graph signals [30].

Remark 1. The normalized graph Laplacian,

LN = D−1/2LD−1/2 = D−1/2(D−W)D−1/2 = I−D−1/2WD−1/2

is used as a shift operator in the first-order system, to define the convolution operation and the
convolution layer in the graph convolutional neural networks (GCNN). Its form is

y =
(

h0L0
N + h1L1

N

)
x = (h0 + h1)x− h1D−1/2WD−1/2x. (14)

Using this relation, the input, x(l−1)
c and the output, x(l)c of the c-th channel of the l-th

convolution layer in the GCNN are implemented as

x(l)c = w(l−1)
0c x(l−1)

c + w(l−1)
1c D−1/2WD−1/2x(l−1)

c . (15)

where the weight w(l−1)
0c , in the c-th channel of the l-th convolution layer, corresponds to the weight

(h0 + h1) in (14) and w(l−1)
1c corresponds to (−h1) in (14).
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4. Spectral Domain Localized Graph Fourier Transform (LGFT)

Classical short-time Fourier transform (STFT) admits time–frequency localization of
the analyzed signal using the Fourier transform of the windowed and shifted versions of the
signal. This principle is possible in the graph signal processing [29,31]. However, since this
approach requires sophisticated approaches to the vertex shift operation on the signals,
the spectral domain localization is more commonly used in vertex–frequency analysis.
Although, the spectral domain is possible and well-defined in classical analysis, it has been
rarely used for time–frequency analysis of signals. The time–frequency localization of a
signal in the spectral domain is obtained using a spectral domain localization window,
which is shifted in frequency, while the time shift is achieved by the modulation of the
windowed Fourier transform of the signal.

We shall use the spectral approach to perform vertex–frequency localization. The graph
Fourier transform localized in the spectral domain (LGFT) is defined as an inverse graph
Fourier transform of the graph Fourier transform, X(p), multiplied by a spectral domain
window, H(k− p). The spectral domain window is nonzero at and around the spectral
index k. Therefore, the element-wise LGFT is calculated using

S(m, k) =
N

∑
p=1

X(p)H(k− p) up(m). (16)

The shift is here performed in the well-ordered spectral domain, along the spectral
index k, instead of the more complex signal shift in the vertex domain. As it will be shown,
this form of the vertex–frequency analysis, will also allow vertex localized implementations
of the vertex–frequency analysis, even without calculation of the graph Fourier transform
of the signal, which is of crucial importance in the case of very large graphs.

Remark 2. The counterpart of (16) in the classical time–frequency analysis is well-known short-
time Fourier transform (STFT) [12]

S(m, k) =
1√
N

N

∑
p=1

X(p)H(k− p)ej 2π
N (m−1)(p−1),

where H(k) is a frequency domain localization window.

The LGFT defined in the spectral domain by (16) can be realized by using bandpass
transfer functions, denoted by Hk(λp) = H(k− p). Then the LGFT definition is given by

S(m, k) =
N

∑
p=1

X(p)Hk(λp) up(m). (17)

The transfer function in (17), Hk(λp), is centered (shifted) at a spectral index, k, by
definition. The vertex–frequency domain kernel,Hm,k(n), of the form

Hm,k(n) =
N

∑
p=1

Hk(λp)up(m)up(n), (18)

is obtained from

S(m, k) =
N

∑
p=1

( N

∑
n=1

x(n) up(n)
)

Hk(λp) up(m) =
N

∑
n=1

x(n)Hm,k(n) = 〈x(n),Hm,k(n)〉. (19)
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Remark 3. In classical time–frequency analysis the elements of the inverse DFT matrix U are
equal to uk(n) = exp(j2π(n− 1)(k− 1)/N)/

√
N and Hk(λp) = Hk(ejωp) are the bandpass

transfer functions, with the kernel

Hm,k(n) =
1
N

N

∑
p=1

Hk(ejωp)ej2π(n−1)(p−1)/Nej2π(m−1)(k−1)/N . (20)

The STFT is then defined as

S(m, k) = 〈x(n),Hm,k(n)〉. (21)

The matrix form of the vertex–frequency spectrum (17) is
S(1, k)
S(2, k)

...
S(N, k)

=


u1(1) u2(1) · · · uN(1)
u1(2) u2(2) · · · uN(2)

...
u1(N) u2(N) · · · uN(N)




Hk(λ1) 0 · · · 0
0 Hk(λ2) · · · 0
...
0 0 · · · Hk(λN)




X(1)
X(2)

...
X(N)


or using vector/matrix notation

sk = UHk(Λ)X = UHk(Λ) UTx, (22)

where the column vector whose elements are S(m, k), m = 1, 2, . . . , N, is denoted by sk.

4.1. Binomial Decomposition

Consider the simplest decomposition when the total spectral domain of graph signal
is divided into K = 2 bands. These two bands, indexed by k = 0 and k = 1, cover the
low-pass part and high-pass part of spectral content of signal, respectively. First we will
use the linear functions of eigenvalue λ, to achieve these properties

H0(λp) = (1−
λp

λmax
), H1(λp) =

λp

λmax
. (23)

Using the relation between (10) and (11) we can conclude that the vertex-domain
implementation of this kind of LGFT analysis is very simple

s0 = (I− 1
λmax

L) x, s1 =
1

λmax
L x,

and for each vertex, m, the calculation of S(m, 0) = s0(m) and S(m, 1) = s1(m), requires
only the combination of the signal at this vertex and its neighboring vertices, to calculate
the elements of L x.

Remark 4. The classical time–frequency analysis counterpart of (23) is obtained using the eigen-
value to frequency relation for the circular undirected graph λ = 2 sin2(ω/2) to produce low-pass
and high-pass type transfer functions

H0(ω) = 1− sin2(ω/2) = cos2(ω/2),

H1(ω) = sin2(ω/2),

as shown in Figure 5 (top). These spectral transfer functions are dual to the classical Hann (raised
cosine) window forms, used for signal localization in the time domain.

To improve the spectral resolution and to divide the spectral range into more than two
bands. we can use the same transfer function forms by applying them to the low-pass part
of the signal and dividing the spectral content of this part of the signal into its low-pass
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part and its high-pass part. In classical signal processing, two common approaches are
applied:

(a) The high-pass part is kept unchanged, while the low-pass part is split. This approach
corresponds to the wavelet transform or the frequency-varying classical analysis.

(b) The high-pass part is also split into its low-pass and high-pass parts to keep the
frequency resolution constant for all frequency bands.

Next, we consider these two approaches for the division of frequency bands.

(a) In a two-scale wavelet-like analysis we keep the high-pass part s1, while the low-pass
part, s0, is split in its low-pass part, s00 and high-pass part, s01, using the same transfer
function, as

s1 =
1

λmax
L x,

s00 =
(

I− L
λmax

)2
x, s01 =

(
I− L

λmax

) L
λmax

x.

For the third scale step we would keep s1 and the high-pass part of the scale two
step, s01, and then split the low-pass part in scale two, s00, into its low-pass part, s000,
and high-pass part, s001, using

s000 =
(

I− L
λmax

)3
x, s001 =

(
I− L

λmax

)2 L
λmax

x.

This process could be continued until the desired scale (frequency resolution) is
reached.

(b) For the uniform frequency bands both the low-pass and the high-pass bands are split
in the same way, to obtain

s00 =
(

I− L
λmax

)2
x, s01 = 2

(
I− L

λmax

) L
λmax

x, s11 =
L2

λ2
max

x. (24)

Notice that this kind of spectral band division will produce two times the same result.
Once when the original low-pass part is multiplied by the high-pass function, and then
again when the original high-pass part is multiplied by the low-pass function. This is
the reason why the constant value of 2 has appeared in the new middle pass-band,
s01.
The bands in relation (24) can be obtained as the terms of the binomial expression(
(I− L/λmax) + L/λmax

)2
x. If we continue to the next level, by multiplying all the

elements in (24) by the low-pass part, (I− L/λmax), and then by the high-part part,
L/λmax, after grouping the same terms, we would obtain the signal bands of the same

form as the terms of the binomial
(
(I− L/λmax) + L/λmax

)3
x. We can conclude that

the division can be performed into K bands corresponding to the terms of a binomial
form (

(I− L/λmax) + L/λmax

)K
x. (25)

The transfer function of the k-th, k = 0, 1, 2, . . . , K, term, has the vertex domain form

Hk(L) =
(

K
k

)(
I− 1

λmax
L
)K−k( 1

λmax
L
)k

.

Of course, the sum of all parts of signal, filtered by Hk(L), produces the recon-
struction relation, ∑K

k=0 Hk(L)x = x, what is obvious from the identity in (25), that is,
from (I− L/λmax) + L/λmax = I.
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Example 2. The spectral domain transfer functions Hk(λp), p = 1, 2, . . . , N, k = 0, 1, . . . , K− 1,
which correspond to classical time–frequency processing and the binomial form terms for K = 2,
K = 3, and K = 26 are shown in Figure 5. The last two panels (the third and fourth panel) show the
case with K = 26. In the third panel, the amplitudes of every transfer function is normalized. In the
fourth panel, all transfer functions for K = 26 are shown, without the amplitude normalization.
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0.5

1

0 20 40 60 80 100
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0.5

1

0 20 40 60 80 100

0

0.5

1

0 20 40 60 80 100
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Figure 5. The spectral domain transfer functions Hk(λp), for a circular undirected and unweighted
graph (classical analysis), p = 1, 2, . . . , N, k = 0, 1, . . . , K − 1, that correspond to the terms of the
binomial form for K = 26.

Example 3. For a general graph, the spectral domain transfer functions Hk(λp), p = 1, 2, . . . , N,
k = 0, 1, . . . , K − 1, that can be obtained as the terms of the binomial form for K = 2, K = 3,
and K = 26 are shown in Figure 6. The last two panels (the third and fourth panel) again show the
case with K = 26. In the third panel, the amplitudes of every transfer function is normalized. In the
fourth panel, all transfer functions for K = 26 are shown, without the amplitude normalization.
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Figure 6. The spectral domain transfer functions Hk(λp), for a general graph p = 1, 2, . . . , N,
k = 0, 1, . . . , K− 1, that correspond to the terms of the binomial form for K = 26.

Example 4. Vertex-domain implementation is based on the multiplication of signal, x, by the
graph Laplacian L. For each vertex n it is localized to its neighborhood one. After the signal Lx is
calculated, then the new signal L2x is easily obtained as the graph Laplacian multiplication with

the calculated signal, Lx, that is L2x = L
(

Lx
)

. This procedure is continued up to the any order,

Lkx = L
(

Lk−1x
)

.
In classical time–frequency analysis the multiplication by the graph Laplacian of an undirected

circular graph, 1
λmax

Lx with λmax = 4, is equivalent to the convolution of the signal x with the
impulse response of the finite impulse response filter

h = [−1/4, 1/2,−1/4]T ,

that corresponds to the transfer function H1(ω) = sin2(ω/2) =
(

1− cos(ω)
)

/2. It means that
the high-pass and low-pass part of the signal are obtained as (the element-wise form of the Laplacian
operator applied to the signal is given by (4)

s1 = x ∗ [−1/4, 1/2,−1/4]T ,

s1(k) = −
1
4

x(k− 1) +
1
2

x(k)− 1
4

x(k + 1),
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and

s0 = x− x ∗ h = x ∗ [1/4, 1/2, 1/4]T ,

s0(k) =
1
4

x(k− 1) +
1
2

x(k) +
1
4

x(k + 1),

where ∗ denotes convolution operation. These convolutions can be repeated to produce wavelet-like
band distribution or uniform distribution of frequency bands.

If no downsampling is used, then the redundant representation of signal is obtained with each
of these components containing the same number of samples as the original signal. However, it is
possible to form nonredundant form of this representation. Using downsampling with factor of 2,
the values

s1(2n) = −1
4

x(2n− 1) +
1
2

x(2n)− 1
4

x(2n + 1),

s0(2n) =
1
4

x(2n− 1) +
1
2

x(2n) +
1
4

x(2n + 1),

are kept. The signal samples at the even indexed instants, 2n, are easily obtained as

x(2n) = s0(2n) + s1(2n),

while for the samples at the odd indexed instants, 2n + 1, we have

x(2n + 1) = 2s0(2n)− 2s1(2n)− x(2n− 1).

Using the initial condition x(−1), we can reconstruct all odd-indexed samples. This recon-
struction can be noise sensitive for large N, due to repeated recursions in the last relation.

Example 5. Time–frequency and vertex–frequency analysis based on the binomial decomposi-
tion of the signals from Example 1 is performed in this example. The corresponding transfer
functions for the time–frequency analysis (circular undirected graph, Figure 2 (top)) and vertex–
frequency analysis (general graph, Figure 2 (bottom)) are shown in Figures 5 and 6, respectively.
The time–frequency representation of the three-harmonic signal from Figure 3 (top) is shown
in Figure 7a, (left panel). Its reassigned version to the position of the maximum distribution
value is given in Figure 7a (right panel). The same analysis for the general graph signal from
Figure 3 (bottom) is shown in Figure 7b. Finally, in order to present the common complex-valued har-
monic form, the signal is composed by adding two corresponding sine and cosine components (as in
(7)) and forming the complex-valued components u16(n) + ju17(n), within V1, u84(n) + ju85(n),
within V2, and u28(n) + ju29(n), within V3. Time–frequency representation of this signal is given
in Figure 7c.
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Figure 7. Cont.
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Figure 7. Time–frequency and vertex–frequency representations of the signals from Example 1:
(a) Time–frequency analysis of the harmonic signal from Example 1, shown in Figure 3 (top), using
the transfer functions from Figure 5 (bottom). (b) Vertex–frequency analysis of the general graph
signal from Example 1, shown in Figure 3 (bottom), using the transfer functions from Figure 6
(bottom). (c) Time–frequency analysis of the harmonic complex signal from Example 1, using the
transfer functions from Figure 5 (bottom). The complex signal is formed by adding two corresponding
sine and cosine components. In all cases, the original representation is given on the left panel, while
the reassigned value to the position of the distribution maximum is given on the right panel.

Selectivity of the transfer functions can be improved using higher order polynomials,
instead of the linear functions in (23). Assuming that the high-pass part should satisfy
H1(0) = 0 and H1(λmax) = 1, and that its derivative is zero at the initial interval point,
(λp = 0), and the ending interval point (λp = λmax), as well as that H0(λ) + H1(λ) = 1,
we can use the following polynomial forms

H0(λp) = (1− H1(λp)), H1(λp) = 3
( λp

λmax

)2
− 2
( λp

λmax

)3
. (26)

The vertex-domain implementation is performed according to

s1 =
3

λ2
max

L2 x− 2
λ3

max
L3 x, s0 = (x− s1).

The same analysis can be now repeated as for (23). These polynomial forms will be
revisited later in this paper.
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4.2. Hann (Raised Cosine) Window Decomposition

We have presented the simplest decomposition to the low-pass and high-part of a
signal. However, the LGFT of the form (17) can be calculated using any other set of
bandpass functions, Hk(Λ), k = 0, 1, . . . , K− 1, as

sk = Hk(L)x, k = 0, 1, . . . , K− 1. (27)

The spline or raised cosine (Hann window) functions are commonly used as bandpass
functions. To further illustrate the concepts, we will consider next transfer functions in
general form of the shifted raised cosine functions. They are given by

Hk(λ)=


sin2

(
π
2

ak
bk−ak

( λ
ak
− 1)

)
, for ak <λ ≤bk

cos2
(

π
2

bk
ck−bk

( λ
bk
− 1)

)
, for bk <λ ≤ ck

0, elsewhere,

(28)

where the spectral bands for Hk(Λ) are defined with (ak, bk] and (bk, ck], k = 0, 1, . . . , K− 1.
If spectral bands were uniform within 0 ≤ λ ≤ λmax, the corresponding intervals are
based on

ak = ak−1+
λmax

K−1
, bk = ak+

λmax

K−1
, ck = ak+2

λmax

K−1
, (29)

with a1 = 0 and limλ→0(a1/λ) = 1. Here, only 0 = b0 ≤ λ ≤ c0 = λmax/K is used to
define the initial transfer function, H0(λ), while the interval aK−1 < λ ≤ bK−1 = λmax in
(28) is used for the last transfer function, HK−1(λ). The transfer functions with K = 15
uniform bands and λmax = 4 are shown in Figure 8 (top).

Example 6. The transfer functions (28) in the eigenvalue (smoothness index) spectral domain,
Hk(λp), p = 1, 2, . . . , N, k = 0, 1, . . . , K− 1, and the frequency domain for the classical analysis
(graph analysis on circular undirected unweighted graphs) are shown in Figure 8 (top) and (bottom),
respectively, for K = 15, 0 ≤ λ ≤ λmax = 4 and 0 ≤ ω ≤ π. Notice that the relation between
these two domains is nonlinear through λ = 4 sin(ω2/2).
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Figure 8. Transfer functions in the spectral eigenvalue and frequency domains for classical analysis:
(top) The eigenvalue spectral domain transfer functions Hk(λp), p = 1, 2, . . . , N, k = 0, 1, . . . , K− 1,
for K = 15 and 0 ≤ λ ≤ λmax = 4. (down) The frequency spectral domain transfer functions Hk(ωp),
p = 1, 2, . . . , N, k = 0, 1, . . . , K − 1, for K = 15 and 0 ≤ ω ≤ π. Horizontal axis represents the
continuous variable λ and discrete values λp, p = 1, 2, . . . , N, corresponding to the eigenvalues and
denoted by gray dots along the axis. The same notation is used for frequency ω and its discrete
values ωp that correspond to λp.
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Example 7. The transfer function for various widths of the Hann window are shown in Figure 9.
The most common case with uniform division of the spectral domain, as defined by (29), is given
in Figure 9a. Two forms of the spectral dependent widths are shown in Figure 9b,c. While the
widths, defined by the constants ak in (29) increase as in the wavelet transform case, the widths of
the transfer functions in Figure 9c are kept narrow around the spectral indices of signal components,
in order to make finer spectral resolution at these regions (signal adaptive approach). Finally,
Figure 9d shows polynomial approximations of the transfer functions form Figure 9a, which will be
discussed later.
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Figure 9. Transfer functions in the spectral domain. (a) The transfer functions corresponding to
the Hann form terms for K = 15. (b) The spectral index-varying (wavelet-like) transfer functions
whose terms are of half-cosine form, with K = 11. (c) The spectral domain signal adaptive transfer
functions with K = 17. (d) Approximations of transfer functions from panel (a) using Chebyshev
polynomials, with H9(λ) being designated by the thick black lines, whereas gray markers indicate
the corresponding discrete values.

Example 8. The transfer functions with various widths of the Hann window form Figure 9 are used
for time–frequency representation of the signal on the circular graph from Example 1. The results
are shown in Figure 10.
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Figure 10. Cont.
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(e) (f)

Figure 10. Time–frequency representation of a three-component time-domain signal from Example 1,
shown in Figure 3 (top), based on various transfer functions from Figure 5. The LGFT is calculated
based on: (a) the transfer functions in Figure 5, (b) the transfer functions in Figure 9a, (c) the wavelet-
like spectral transfer functions in Figure 9b, (d) the signal adaptive transfer functions from Figure 9b,
(e) Chebyshev polynomial-based approximations from Figure 9d, with M = 20 and (f) Chebyshev
polynomial-based approximations from Figure 9d, with M = 50.

Example 9. In this example, the same transfer functions form Figure 5 are used for vertex–frequency
representation of the signal on the general graph from Example 1. The results are shown in Figure 11.
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Figure 11. vertex–frequency representation of a three-component general graph signal from Example 1,
shown in Figure 3 (bottom). The LGFT is calculated based on: (a) the transfer functions in Figure 5,
(b) the transfer functions in Figure 9a, (c) the wavelet-like spectral transfer functions in Figure 9b,
(d) the signal adaptive transfer functions from Figure 9b, (e) Chebyshev polynomial-based approx-
imations from Figure 9d, with M = 20 and (f) Chebyshev polynomial-based approximations from
Figure 9d, with M = 50.
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4.3. General Window Form Decomposition—OLA condition

The spectral transfer functions in the form of the raised cosine transfer function (28)
are characterized by

K−1

∑
k=0

Hk(λp) = 1. (30)

We may use any common window for the decomposition which satisfies this relation.
Next, we will list some of these windows:

• A combination of the raised cosine windows. After one set of the raised cosine
windows is defined, we may use another set with different constants ak, bk, ck and
overlap it with the existing set. If the window values are divided by 1/2 then the
resulting window satisfies (30). In this way, we can increase the number of different
overlapping windows.

• Hamming window can be used in the same way as in (28). The only difference is that
the Hamming windows sum-up to 1.08 in the overlapping interval, meaning that the
result should be divided by this constant.

• Bartlett (triangular) window with the same constants ak, bk, ck as in (28) satisfies the
condition (30), along with combinations with different sets of ak, bk, ck to increase
overlapping.

• Tukey window has a flat part in the middle and the cosine form in the transition
interval. It can also be used with appropriately defined ak, bk, ck to take into account
the flat (constant) window range.

4.4. Frame Decomposition—WOLA Condition

For the signal reconstruction, using the kernel orthogonality and the frames concept,
the windows should satisfy the condition

K−1

∑
k=0

H2
k (λp) = 1. (31)

The graph signal reconstruction can be performed based on (30) and (31), as discussed
with more details in Section 6.

Several windows that satisfy the condition in (31) will be presented next:

• Sine window is obtained as the square root of the raised cosine window in (28).
Obviously, this window will satisfy (31). Its form is

Hk(λ)=


sin
(

π
2

ak
bk−ak

( λ
ak
− 1)

)
, for ak <λ ≤bk

cos
(

π
2

bk
ck−bk

( λ
bk
− 1)

)
, for bk <λ ≤ ck

0, elsewhere.

(32)

• A window that satisfies (31) can be formed for any window in the previous section,
by taking its square root.

Example 10. For the case of the Hann window and the triangular (Bartlett) window, their cor-
responding squared root forms, that will produce ∑K−1

k=0 H2
k (λp) = 1, are shown in Figure 12,

for a uniform splitting of the spectral domain and a signal-dependent (wavelet-like) form.
Notice that the squared root of the Hann window is the sine window form.
It is obvious that the windows are not differentiable at the ending interval points, meaning
that their transforms will be very spread (slow-converging).
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Figure 12. Transfer functions formed using the Hann window (a,b) and the Bartlett window (c,d)
square root so that the reconstruction condition ∑K−1

k=0 H2
k (λp) = 1 is satisfied, for a uniform splitting

(a,c) of the spectral domain and a wavelet-like splitting (b,d).

The windows defined as square roots of the presented windows (which originally
satisfy the OLA condition), do not satisfy the first derivative continuity property
at the ending interval points. For example, the raised cosine window satisfied that
property, but its square root (sine) window loses this desirable property Figure 12.
To restore this property, we may either define new windows or just use the same
windows, such as the raised cosine window, and change argument so that the window
derivative is continuous at the ending point. This technique is used to define the
following window form.

• Mayer’s window form modifies the square root of the raised cosine window (sine win-
dow) by adding the function vx(x) in the argument, x, which will make the first
derivative continuous at the ending points. In this case, the window functions be-
come [32]

Hk(λ) =


sin
(

π
2 vx

(
ak

bk−ak
( λ

ak
− 1)

))
, for ak < λ ≤ bk

cos
(

π
2 vx

(
bk

ck−bk (
λ
bk
− 1)

))
, for bk < λ ≤ ck

0, elsewhere,

(33)

with ak+1 = bk, bk+1 = ck, while the initial and the last intervals are defined as in (29).
In order to overcome the non-differentiability of the sine and cosine functions at the
interval-end points, the previous argument from (28), of the form
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vx(x) = x =
ak

bk − ak
(

λ

ak
− 1),

is mapped as
vx(x) = x4(35− 84x + 70x2 − 20x3),

for 0 ≤ x ≤ 1 with x = ak
bk−ak

( λ
ak
− 1), producing Meyer’s wavelet-like transfer

functions.
If we now check the derivative of a transfer function, dHk(λ)/dλ, at the ending
interval points, we will find that it is zero-valued. This was the reason for introducing
the nonlinear (polynomial) argument form instead x or λ, having in mind the relation
between the arguments x and λ.

Example 11. The transfer functions from the previous example, for the case of the Hann
window and the triangular (Bartlett) window of forms that will produce ∑K−1

k=0 H2
k (λp) = 1,

whose argument is modified in order to achieve differentiability at the ending points, are shown
in Figure 13. Due to differentiability, these transfer functions have a faster convergence than
the forms in the previous example, and are appropriate for vertex–frequency and time–frequency
analysis. The results of this analysis would be similar to those presented in Figures 10 and 11.
The difference exists is in the reconstruction procedure as well.
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Figure 13. Transfer functions formed using the Hann window (a,b) and the Bartlett window square
root with modified argument (c,d), using the argument x mapping vx(x) = x4(35− 84x + 70x2 −
20x3). The WOLA reconstruction condition ∑K−1

k=0 H2
k (λp) = 1 is satisfied.
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• Polynomial windows are obtained if the function vx(x) = x4(35− 84x + 70x2− 20x3)
is applied to the triangular window. Their form is

Hk(λ) =


vx

(
ak

bk−ak
( λ

ak
− 1)

)
, for ak < λ ≤ bk

1− vx

(
bk

ck−bk (
λ
bk
− 1)

)
, for bk < λ ≤ ck

0, elsewhere.

(34)

The simplest polynomial for that would satisfy the conditions vx(0) = 0, vx(1) = 1,
v′x(0) = v′x(1) = 0 is vx(x) = ax3 + bx2 with a + b = 1, 3a + 2b = 0, that is

vx(x) = −2x3 + 3x2.

In general, the conditions:

vx(0) = 0, vx(1) = 1,
dvx(x)

dx |x=0
= 0,

dvx(x)
dx |x=1

= 0,

are satisfied by
vx(x) = axn + bxn−1,

for n ≥ 3, if na + (n− 1)b = 0 and a + b = 1, a = −(n− 1), b = n. With n = 5 we
obtain

vx(x) = −4x5 + 5x4.

These transfer functions are the extension of the linear forms presented in (23) and
could be very convenient for the vertex (time) implementation. The polynomial of
the third order in λ will require only neighborhood 3 in the vertex (time) domain
implementation.

• Spectral graph wavelet transform. In the same way as the LGFT can be defined as
a projection of a graph signal onto the corresponding kernel functions, the spectral graph
wavelet transform can be calculated as the projections of the signal onto the wavelet
transform kernels. The basic form of the wavelet transfer function in the spectral
domain is denoted by H(λp). Then, the other transfer functions of the wavelet
transform are obtained as the scaled versions of the basic function H(λp) using the
scales si, i = 1, 2, . . . , K − 1. The scaled transform functions are Hsi (λp) = H(siλp)
[21,22,33–36].
The father wavelet is a low-pass scale function denoted by G(λp). It is a low-pass
function, in the same way as in the LGFT was the function H0(λp). The set of scales for
the calculation of the wavelet transform is s ∈ {s1, s2, . . . , sK−1}/ The scaled transform
functions obtained in these scales are Hsi (λp) and G(λp). Next, the spectral wavelet
transform is calculated as a projection of the signal onto the bandpass (and scaled)
wavelet kernel, ψm,si (n), in the same way as the kernelHm,k(n) was used in the LGFT
in (18). It means that the wavelet transform elements are

ψm,si (n) =
N

∑
p=1

H(siλp)up(m)up(n), (35)

with the wavelet coefficients given by

W(m, si) =
N

∑
n=1

ψm,si (n)x(n)

=
N

∑
n=1

N

∑
p=1

H(siλp)x(n)up(m)up(n) =
N

∑
p=1

H(siλp)X(p)up(m).
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The Meyer approach to the transfer functions is defined in (33) with the argument
vx(q(siλ− 1)). The same form can be applied to the wavelet transform using H(siλp)
and the intervals of the support for this function given by:

– 1/s1 < λ ≤ M/s1 for i = 1 (sine function in (33)).
– 1/si < λ ≤ M/si (sine functions in (33)), i = 2, 3, . . . , K− 1.
– M/si < λ ≤ M2/si (cosine functions in (33)), i = 2, 3, . . . , K− 1.
– where the scales are defined by si = si−1M = Mi/λmax.
– The interval for the low-pass function, G(λ), is 0 ≤ λ ≤ M2/sK−1 (cosine

function within M/sK−1 < λ ≤ M2/sK−1 and the value G(λ) = 1 as λ→ 0).

Notice that the wavelet transform is just a special case of the varying transfer function,
when the narrow transfer functions are used for low spectral indices and wide transfer
functions are used for high spectral indices, as shown in Figure 13b or Figure 10b,d.
In the implementations, we can use the vertex domain localized polynomial approxi-
mations of the spectral wavelet functions in the same way as described in Section 5.

• Optimization of the vertex–frequency representations. As in classical time–frequency
analysis, various measures can be used to compare and optimize joint vertex–frequency
representations. An overview of these measures may be found in [37]. Here, we shall
suggest the one-norm (in the vector norm sense), introduced to the time–frequency
optimization problems in [37], in the form

M =
1
F

N

∑
m=1

K−1

∑
k=0
|S(m, k)| = 1

F
‖S‖1, (36)

where F = ‖S‖F =
√

∑N
m=1 ∑K−1

k=0 |S(m, k)|2 is the Frobenius norm of matrix S, used
for the energy normalization. The normalization factor can be omitted if S(m, k) is a
tight frame. Here we will just underline that the functions, S(m, k), are referred to as a
frame. In the case of a graph signal, x, the set functions S(m, k), is a frame is [22]

a||x||22 ≤
K−1

∑
k=0

N

∑
m=1
|S(m, k)|2 ≤ b||x||22,

holds , with a and b being positive constants. This constants determine the stability
of reconstructing the signal from the values S(m, k). A frame is called Parseval’s tight
frame if a = b. The LGFT, as given by in (17), represents Parseval’s tight frame when

K−1

∑
k=0

N

∑
m=1
|S(m, k)|2 =

K−1

∑
k=0

N

∑
p=1
|X(p)Hk(λp)|2 = Ex = constant. (37)

Notice that Parseval’s theorem is used for the LGFT, S(m, k), as it is the GFT of the
spectral windowed signal, X(p)Hk(λp). With this fact in mind we obtain

N

∑
m=1
|S(m, k)|2 =

N

∑
p=1
|X(p)Hk(λp)|2.

The LGFT defined by (17) is a tight frame if the condition in (31) or (49) holds. This is
the condition that is used to define transfer functions shown in Figure 5b,c.
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5. Polynomial LGFT Approximation

Let us assume that the spectral domain localization window in the LGFT corresponds
to a transfer function of a bandpass graph system, Hk(λp). In the case of very large graphs,
for the vertex domain realization of the LGFT, it is of crucial importance to define or
approximate this transfer function by a polynomial

Hk(λp) = h0,k + h1,kλp + · · ·+ hM−1,kλM−1
p , (38)

where k = 0, 1, . . . , K− 1, K is the number of spectral bands and M is the polynomial order.
It is assumed that transfer function Hk(λp) is centered at an eigenvalue, λk, and is of a
bandpass type around it (as in (17)). The vector form of the LGFT, S(m, k), defined for the
vertex index m and spectral index k by (18) is given as follows

sk = UHk(Λ)UTx = Hk(L)x =
M−1

∑
p=0

hp,kLp x, (39)

In vector notation, sk is a column vector, whose elements are equal to S(m, k), m = 1,
2, . . . , N. The property of the eigendecomposition of a power matrix is used to obtain this
result. The number of shifted transfer functions, K, does not depend on the number of indices
N. The realization of the LGFT is based on the linear combination of the graph signal shifts Lp x,
and does not require any graph Fourier transform or other operation on the entire graph.

For this reason the bandpass LGFT functions, Hk(λ), k = 0, 1, . . . , K− 1, in the form
given by (28) or (33) should be realized using their approximations by polynomials whose
order is (M− 1). Although the approximation based on the Chebyshev polynomial is most
commonly used for this purpose [25,31], we will revisit alternative approaches [38] as well.

5.1. Chebyshev Polynomial

The transfer functions in the graph relations, denoted by Hk(λ), are defined at discrete
set of eigenvalues λ = λp. The polynomial approximation is obtained by using a function
that is continuous. Its argument is within the range 0 ≤ λ ≤ λmax. Then the optimal
choice for the polynomial approximation type are the so-called “min–max” Chebyshev
polynomials. They have the property that the maximal possible deviation from the desired
function is minimal. This property is of crucial importance since we approximate the
transfer functions in continuous λ, which will be used as transfer functions at a discrete set
of eigenvalues λp of the LGFT.

The Chebyshev polynomials are defined by

T0(z) = 1, T1(z) = z, . . . , Tm(z) = 2zTm−1(z)− Tm−1(z),

for m ≥ 2 and −1 ≤ z ≤ 1.
The mapping T̄m(λ) = Tm(2λ/λmax − 1) is introduced to transform the argument

from 0 ≤ λ ≤ λmax to−1 to 1. Then, the Chebyshev polynomials of the finite (M− 1)-order
can be written as follows

P̄k,M−1(λ) =
ck,0

2
+

M−1

∑
m=1

ck,mT̄m(λ), (40)

where the polynomial coefficients are calculated using the Chebyshev polynomial inversion
property as

ck,m =
2
π

∫ 1

−1
Hk((z + 1)λmax/2)Tm(z)

dz√
1− z2

.
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Based on the previous definitions, the vertex-domain implementation (39) of the
spectral LGFT form, can be now written as follows

sk = P̄k,M−1(L)x, k = 0, 1, 2, . . . , K− 1,

with

P̄k,M−1(L) =
ck,0

2
+

M−1

∑
m=1

ck,mT̄m(L), (41)

= h0,kI + h1,kL + h2,kL2 + · · ·+ h(M−1),kLM−1.

In the calculation of the polynomial form of the transfer functions in (41), the (M− 1)—
neighborhood is only used to obtain the LGFT for every vertex, n. This form does not
employ the eigendecomposition analysis over the whole graph, in any way. Therefore,
the computational complexity for large graphs is feasible.

Example 12. The Chebyshev polynomial approximation approach will be illustrated on a set of
the transfer functions, Hk(λ), defined in (28) and (29). For K = 15, these transfer function are
shown in Figure 9a. The transfer functions Hk(λ) satisfy OLA condition, ∑K−1

k=0 Hk(λ) = 1.
We used the Chebyshev polynomial, P̄k,M−1, k = 0, 1, . . . , K− 1, given by (40), to approximate each
individual transfer function, Hk(λ). Two polynomial orders are considered for the approximation,
M = 20, M = 50. The resulting Chebyshev polynomial approximations of the transfer functions
shown in Figure 9a are given in Figure 9d when the polynomial order was M = 20. In order to
show the compliance of the obtained approximation with the imposed OLA condition, the value
of ∑K−1

k=0 P̄k,M−1(λ) is presented in the figure. This summation value is depicted by the dotted
line in Figure 9d. As it can be seen, these values are close to unity. This means that the signal
reconstruction from the LGFT calculated using the presented polynomial approximation will be
stable and accurate.

The Chebyshev polynomial approximations of Hk(λ), calculated in the way presented here, are
applied to obtain the vertex–frequency analysis the signal from Example 1, using the LGFT. Time–
frequency representations of the harmonic signal from Example 1 are shown for both polynomial
orders, for M = 20 in Figure 10e and for M = 50 in Figure 10f. As it can be seen from
Figure 10d, the representations with a lower order polynomial approximation, when M = 20, is less
concentrated than representation in Figure 10e obtained for M = 50. However, using higher
orders, (M− 1), of the polynomial approximation increases calculation complexity, since wider
neighborhoods are required in the LGFT calculation. The experiment is repeated for the graph
signal from Example 1. The two considered sets of Chebyshev polynomial-based approximations
of bandpass transfer functions Hk(λ), k = 0, 1, . . . , K − 1, from Figure 9a are now used in the
calculation of vertex–frequency representations from Figure 11e,f, for M = 20 and M = 40,
respectively.

Example 13. In order to present the Chebyshev polynomial approximation in more detail, and give
the exact values of the approximation coefficients we further reduced the approximation order to
(M− 1) = 5. Then we used this order to calculate the approximations of the bandpass functions,
Hk(λ), for every k in the case of the raised cosine form, given in (28), with K = 10 bands.
The resulting approximation coefficients, hi,k, which are used in the vertex-domain implementation,
defined by (39), are shown in Table 1.
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Table 1. Coefficients, hp,k, p = 0, 1, . . . , M− 1, k = 0, 1, . . . , K− 1, for the polynomial calculation of
the LGFT, sk, of a signal x , in various spectral bands, k, for (M− 1) = 5 and K = 10.

sk = (h0,kI + h1,kL + h2,kL2 + h3,kL3 + h4,kL4 + h5,kL5)x

k h0,k h1,k h2,k h3,k h4,k h5,k

0 1.079 −1.867 1.101 −0.2885 0.03458 −0.001548
1 −0.053 1.983 −1.798 0.5744 −0.07722 0.003723
2 −0.134 0.763 −0.310 0.0222 0.00422 −0.000460
3 0.050 −0.608 0.900 −0.3551 0.05348 −0.002762
4 0.096 −0.726 0.768 −0.2475 0.03172 −0.001424
5 0.016 −0.013 −0.128 0.1047 −0.02231 0.001424
6 −0.073 0.616 −0.779 0.3228 −0.05135 0.002762
7 −0.051 0.351 −0.356 0.1146 −0.01323 0.000460
8 0.084 −0.687 0.871 −0.3751 0.06409 −0.003723
9 −0.021 0.183 −0.251 0.1172 −0.02196 0.001419

5.2. Least Squares Approximation

Bandpass transfer functions Hk(λ), used in the calculation of vertex–frequency (time–
frequency) representations, can be approximated using polynomial

PLS
k,M−1(λ) = ᾱ0,k + ᾱ1,kλ + · · ·+ ᾱM−1,kλM−1,

such that squared error ∫ λmax

0
|Hk(λ)− PLS

k,M−1(λ)|
2dλ

is minimized. This approximation will be referred to as Least Squares (LS) approximation. As
in the case of Chebyshev approximation, the interval 0 ≤ λ ≤ λmax is normalized to [−1, 1],
to ensure the standard calculation procedure. This is achieved using the substitution
z = (2λ− λmax)/λmax. Upon introducing the following variables

sm =
∫ 1

−1
zmdz , m = 0, 1, . . . , 2M− 2,

and

bm =
∫ 1

−1
zmHk((z + 1)λmax/2)dz,

m = 0, 1, . . . , M− 1, we obtain
s0 s1 . . . sM−1
s1 s2 . . . sM
...

... . . .
...

sM−1 sM . . . s2M−2




α0,k
α1,k

...
αM−1,k

 =


b0
b1
...

bM−1

.

The matrix form of the previous relation is Sa = b. When this linear system
of equations is solved, the approximation coefficients α0,k, α1,k, . . . , αM−1,k are obtained.
With λ = 0.5(z + 1)λmax we further have

M−1

∑
m=0

αm,kzm =
M−1

∑
m=0

ᾱi,kλm.

The approximation is then

PLS
k,M−1(L) = ᾱ0,kI + ᾱ1,kL + ᾱ2,kL2 + · · ·+ ᾱ(M−1),kLM−1. (42)
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The vertex-domain implementation (39) of the spectral LGFT form, based on this
approximation is performed according to

sk = P̄LS
k,M−1(L)x, for every k = 0, 1, . . . , K− 1.

5.3. Legendre Polynomial

The least squares approximation using Legendre polynomials assumes minimization of∫ λmax

0
|Hk(λ)− PLeg

k,M−1(λ)|
2dλ,

where
PLeg

k,M−1(λ) = β̄0,kφ0(λ) + β̄1,kφ1(λ) + · · ·+ β̄M−1,kφM−1(λ).

Polynomials
φ0(z) = 1, φ1(z) = z, φ2(z) = z2 − 1/3, . . .

are referred to as Legendre polynomials. These polynomials satisfy the so-called Bonnet’s
recursive relation

(m + 1)φm+1(z) = (2m + 1)zφm(z)−mφm−1(z). (43)

This case also assumes the normalization and shift of interval 0 ≤ λ ≤ λmax, to achieve
the mapping to [−1, 1]. This is performed with z = (2λ− λmax)/λmax to obtain

φ̄m(λ) = φm(2λ/λmax − 1).

For each m = 0, 1, . . . , M− 1 coefficients of the form

Cm =
∫ 1

−1
φ̄2

m(z)dz,

are calculated, and are further used to obtain the polynomial coefficients of the form

βm =
1

Cm

∫ 1

−1
Hk((z + 1)λmax/2)φ̄m(z)dz.

As with λ = 0.5(z + 1)λmax, relation

M−1

∑
m=0

βm,kφm(z) =
M−1

∑
m=0

β̄i,kλm,

holds, in analogy with previous cases, we obtain the following approximation

PLeg
k,M−1(L) = β̄0,kI + β̄1,kL + β̄2,kL2 + · · ·+ β̄(M−1),kLM−1, (44)

serving as a basis for the implementation of vertex–frequency analysis using the spectral
LGFT form in (39) according to

sk = P̄Leg
k,M−1(L)x, for every k = 0, 1, . . . , K− 1.

Example 14. The Legendre polynomial approximation will be illustrated on the transfer functions,
Hk(λ), defined by (28) and (29) for every k = 0, 1, . . . , K− 1 with K = 15. Recall that functions
Hk(λ) satisfy ∑K−1

k=0 Hk(λ) = 1. In this example, we consider approximations of these functions
using LS approximation (42), as well as the approximations based on Legendre polynomial (44).
For convenience, we also consider the approximation based on Chebyshev polynomial.

To illustrate how the polynomial order influences the convergence of the approximations, we con-
sider three orders of polynomials: M = 12, M = 20, and M = 40. Shifted spectral transfer functions
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Hk(λ), k = 0, 1, . . . , K− 1, which are being approximated, are shown in Figures 14a, 15a, and 16a.
The approximations based on the Chebyshev polynomial are shown in Figures 14b, 15b, and 16b, for the
considered polynomial orders. The approximations using the Legendre polynomial are shown in Figures
14c, 15c, and 16c, while the LS approximations are shown in Figures 14d, 15d and 16d, also for the
three considered polynomial orders. It can be seen that even with M = 12, the Chebyshev and LS based
approximations are sufficiently narrow to enable clear distinction between the various spectral bands.
The approximations using Legendre polynomials are shown to be less convenient for this purpose.

The fact that the order of polynomials as low as M = 12 can be used in the calculation of
time–frequency representations and vertex–frequency representations is indicated in Figure 17.
Polynomial approximations from Figure 14b–d are used in the calculation of time–frequency repre-
sentations for the harmonic signal from Example 1. As shown in Figure 17a,c,e, signal components
are clearly distinguishable in representations obtained based on approximated band functions.
The experiment was repeated for the graph signal from Example 1, and the obtained representations
are presented in Figure 17b,d,f, for the spectral bandpass functions approximated using the consid-
ered polynomials: Chebyshev, Legendre, and LS. We can conclude that when a higher polynomial
order M is used in the approximation, it increases the LGFT calculation complexity since it uses a
wider neighborhood of the considered vertex.
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Figure 14. Spectral bandpass transfer functions used for calculation of the LGFT and their polynomial
approximations. (a) Spectral functions of the Hann form with K = 15. (b) Approximation of spectral
transfer functions based on Chebyshev polynomial with M = 12. (c) Legendre-polynomial-based
approximations of spectral transfer functions with M = 12. (d) Least squares approximation of
spectral transfer functions with M = 12. For convenience, function H8(λ) is designated with a thick
black line on each panel.
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Figure 15. Spectral bandpass transfer functions used for calculation of the LGFT and their polynomial
approximations. (a) Spectral functions of the Hann form with K = 15. (b) Approximation of spectral
transfer functions based on Chebyshev polynomial with M = 20. (c) Legendre-polynomial-based
approximations of spectral transfer functions with M = 20. (d) Least squares approximation of
spectral transfer functions with M = 20. For convenience, function H8(λ) is designated with a thick
black line on each panel.
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Figure 16. Cont.
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Figure 16. Spectral bandpass transfer functions used for calculation of the LGFT and their polynomial
approximations. (a) Spectral functions of the Hann form with K = 15. (b) Approximation of spectral
transfer functions based on Chebyshev polynomial with M = 40. (c) Legendre-polynomial-based
approximations of spectral transfer functions with M = 40. (d) Least squares approximation of
spectral transfer functions with M = 40. For convenience, function H8(λ) is designated with a thick
black line on each panel.

20 40 60 80 100

2

4

6

8

10

12

14

16

(a)
20 40 60 80 100

2

4

6

8

10

12

14

16

(b)

20 40 60 80 100

2

4

6

8

10

12

14

16

(c)
20 40 60 80 100

2

4

6

8

10

12

14

16

(d)

Figure 17. Cont.
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Figure 17. (a) Time–frequency analysis of the harmonic signal from Example 1, shown in
Figure 3 (top), using the polynomial approximations of transfer functions from Figure 14b. (b)
Vertex–frequency analysis of the general graph signal from Example 1, shown in Figure 3 (bottom),
using the transfer functions from Figure 14b. (c) Time–frequency analysis of the harmonic complex
signal from Example 1, using the transfer functions from Figure 14c. (d) Vertex–frequency analysis
of the general graph signal from Example 1, using the transfer functions from Figure 14c. (e) Time–
frequency analysis of the harmonic complex signal from Example 1, using the transfer functions
from Figure 14d. (f) Vertex–frequency analysis of the general graph signal from Example 1, using the
transfer functions from Figure 14d. A complex signal is formed by adding two corresponding sine
and cosine components.

6. Inversion of the LGFT

Two approaches to the inversion of the classical STFT are used. One is based on the
summation of the STFT values (overlap-and-add approach) and the other uses the weighted
STFT values for the reconstruction (weighted overlap-and-add approach). These two
approaches will be used in the vertex–frequency analysis as well.

6.1. Inversion by Summation (OLA Method)

For the LGFT, defined by (27) or in a polynomial form by (39), as

sk = Hk(L)x, or sk =
M−1

∑
p=0

hp,kLpx, (45)

the signal can be reconstructed by a summation over all spectral shifts

K−1

∑
k=0

sk =
K−1

∑
k=0

( M−1

∑
p=0

hp,kLpx
)
=

K−1

∑
k=0

Hk(L)x = x. (46)

This relation holds when the OLA condition ∑K−1
k=0 Hk(L) = I holds.

The spectral-domain form of this condition is given by

K−1

∑
k=0

Hk(Λ) = I

since we may write ∑K−1
k=0 Hk(L) = U ∑K−1

k=0 Hk(Λ)UT = I and the fact that UTU = I holds
for a symmetric matrix L. This condition used when the transfer functions in Figure 5a
are defined.

The element-wise form of the inversion relation (46) is

x(n) =
K−1

∑
k=0

S(n, k). (47)
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6.2. Kernel-Based LGFT Inversion (WOLA Method—Frames)

Another common approach to the inversion in classical time–frequency analysis and
wavelet transforms is based on the Gabor (frames) expansions [12]. When applied to the
vertex–frequency analysis, it means that the signal is recovered from the LGFT, S(m, k),
S(m, k), by projected back the LGFT values to the vertex–frequency kernels,Hm,k(n). It can
be considered as the WOLA reconstruction.

If the LGFT calculated by employing the spectral shifted transfer functions, defined
by (17) and (18), the Gabor framework based inversion is obtained as

x(n) =
N

∑
m=1

K−1

∑
k=0

S(m, k)Hm,k(n), (48)

if the following condition
K−1

∑
k=0

H2
k (λp) = 1, (49)

is satisfied for all λp, p = 1, 2, . . . , N.
The formula for the signal reconstruction (inversion formula) in (48) follows, when

the condition in (49) is satisfied. This conclusion is obtained from the analysis

N

∑
m=1

K−1

∑
k=0

S(m, k)Hm,k(n) =
N

∑
m=1

K−1

∑
k=0

N

∑
p=1

X(p)Hk(λp)up(m)
N

∑
l=1

Hk(λl)ul(m)ul(n).

Having in mind that the eigenvalues are orthonormal, ∑N
m=1 up(m)ul(m) = δ(p− l),

we obtain the graph signal, x(n), from

K−1

∑
k=0

N

∑
p=1

X(p)Hk(λp)Hk(λp)up(n) = x(n). (50)

The condition is that the transfer functions, Hk(λp), satisfy the WOLA condition in
(49) for every λp.

The inversion formula for the spectral form of the wavelet transform is just a special
case of the varying LGFT analysis. It follows from (48), with the WOLA condition given by
(49), taking into account the wavelet transform notation of the transfer functions

G2(λp) +
K−1

∑
i=1

H2(siλp) = 1, (51)

The set of discrete scales, denoted by s ∈ {s1, s2, . . . , sK−1}, is used for the wavelet
transform calculation. The corresponding spectral transfer functions are H(siλp),
i = 1, 2, . . . , K − 1. The father wavelet (low-pass scale function) is denoted by G(λp).
It plays the role of the low-pass function in the LGFT, H0(λp).

Vertex-Varying Filtering. For the vertex-varying filtering of the graph signals using the
vertex–frequency representation we can use a support function B(m, k) in the vertex–
frequency domain. Then, the signal that is filtered in the vertex–frequency using the LGFT
is obtained as S f (m, k) = S(m, k)B(m, k).

The signal that is filtered by the support function B(m, k) and denoted by x f (n),
is obtained using the inversion of S f (m, k). In the inversion we can use either OLA or
WOLA inversion method depending on the condition satisfied by the transfer functions.

The simplest way of the filtering support function, B(m, k), follows by hard-thresh-
olding the noisy values of the calculated vertex–frequency representation, S(m, k).
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7. Support Uncertainty Principle in the LGFT

In the classical time–frequency analysis, the window function is used to localize signal
in the joint time–frequency domain. As it is known, the uncertainty principle prevents an
ideal simultaneous localization in the time and the frequency domains.

The uncertainty principle is defined in various forms. For a survey see [39–42]. Concen-
tration measures, reviewed in [37], are closely related to all forms of uncertainty principle.
The product of the effective signal widths in the time and the frequency domain is the
basis for the common uncertainty principle form used in the time–frequency signal analy-
sis [13,43]. In quantum mechanics, this form is also known as the Robertson–Schrödinger
inequality. In general signal theory, the most commonly used form is the support uncer-
tainty principle, closely related to the sparsity support measure [37,42]. In the classical
signal analysis, the support uncertainty principle relates the discrete signal x, and its DFT,
X, as follows

1
4

(
‖x‖0 + ‖X‖0

)2
≥ ‖x‖0‖X‖0 ≥ N. (52)

In other words, the product of the number of nonzero signal values, ‖x‖0, and the
number of its nonzero DFT coefficients, ‖X‖0, is greater or equal than the total number
of signal samples N. This form of uncertainty principle will be generalized to the LGFT.
The LGFT form shall produce the classical support uncertainty principle as a special case.

The support uncertainty principle in the LGFT can be derived in the same way as
in the case of the graph Fourier transform. A simple derivation procedure, as in [44,45],
will be followed. If a function

Fp(n, k) = X(k)Hp(λk)S(n, p)uk(n), (53)

is formed, then its sum over indices n and k,

∑
n

∑
k

Fp(n, k) = ∑
n

∑
k

X(k)Hp(λk)S(n, p)uk(n) = ∑
n

S2(n, p) = ∑
k

X2(k)H2
p(λk) = Ep, (54)

is equal to the energy of the LGFT, S(n, p), for the given frequency band indexed by p.
Assume next that the number of nonzero values of S(n, p), for a given p, is equal to ||sp||0,
while the number of nonzero values of the spectral localized signal X(k)Hp(λk) is ||XHp||0.
Using the Schwartz inequality

E2
p =

(
∑
n

∑
k

X(k)Hp(λk)S(n, p)uk(n)
)2
≤∑

n
∑
k

(
X(k)Hp(λk)(S(n, p)

)2
∑
n

∑
k

u2
k(n), (55)

we obtain
1 ≤∑

n
∑
k

u2
k(n) ≤ ||sp||0 ||XHp||0 µ2, (56)

since ∑n ∑k

(
X(k)Hp(λk)(S(n, p)

)2
= ∑k

(
X(k)Hp(λk)

)2
∑n S2(n, p) = E2

p, and

µ = max
n,k
{|uk(n)|},

while the summation in ∑n ∑k u2
k(n) is performed over nonzero values of X(k)Hp(λk)S(n, p),

meaning that ∑n ∑k u2
k(n) ≤ ||sp||0 ||XHp||0 µ2.

Therefore, the support uncertainty principle assumes the following form

1
4

(
||sp||0 + ||XHp||0

)2
≥ ||sp||0 ||XHp||0 ≥

1
µ2 . (57)

The first inequality is written based on the general property that the arithmetic mean
is greater than geometric mean of positive numbers.

For the standard DFT, with µ = |uk(n)| = 1/
√

N and Hk(λp) = 1, when S(n, p) =
x(n), we easily obtain the classical uncertainty principle (52).
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Having in mind that Hp(λk) is band-limited to Qp nonzero samples, then

||XHp||0 ≤ Qp,

meaning that the support of the LGFT satisfies

||sp||0 ≥
1

Qpµ2 . (58)

The smallest possible number of nonzero samples in the LGFT is defined by

||sp||0 ≥
1

Qµ2 , (59)

where Q = maxp{Qp}.
For example, if the classical Fourier analysis is considered then the maximal absolute

eigenvector value is µ = maxn,k{|uk(n)|} = maxn,k{| exp(j2πnk/N)/
√

N|} =
√

N and

||sp||0 ≥ N/Q.

If we select just one spectral frequency by a bandpass filter, with Q = 1, then the
duration of the S(n, p) must be N. If half of the spectral band is selected by the bandpass
function, Q = N/2, then ||sp||0 ≥ 2. Finally, if all spectral components are used, then a
delta pulse is possible in the time domain, that is, for Q = N, we can have ||sp||0 ≥ 1.

8. Analysis Based on Splitting Large Signals

The graph analysis suggested a polynomial approximation of the transfer functions
and the implementation of vertex–frequency analysis using powers of the Laplacian applied
to signal. This means that the neighborhood of the considered sample, defined by the power
of the Laplacian, is used. In classical signal analysis, this problem was approached by
windowing a large signal and then by splitting the analysis into smaller nonoverlapping or
overlapping time segments. This idea will be now generalized to graph signals, which may
then be used to define more general forms of signal splitting in the classical analysis.

Assume that the signal, x(n), and its domain of N vertices (with even N), is split into
two nonoverlapping segments (subsets) with N/2 vertices in each subdomain. Without
loss of generality assume that the vertex indices for the first half of the signal samples are
from 1 to N/2 and that the vertices for the second half of the signal samples are indexed
with remaining values, N/2 + 1 to N. Then we can write

X0 = U−1[x(1), x(2), . . . , x(N/2), 0, 0, . . . , 0]T = U−1x0,

X1 = U−1[0, 0, . . . , 0, x(N/2 + 1), x(N/2 + 2), . . . , x(N)]T = U−1x1,

X = X0 + X1.

For undirected graphs U−1 = UT holds. From the inverse GFT, x0 = UX0 and
x1 = UX1, having in mind the positions of the zero values in x0 and x1, we obtain

0 = ULoX0,

0 = UUpX1,

where ULo and UUp are the lower and upper parts of the matrix U. They consist of the
rows of U corresponding to the zero-value positions of the signal x0 and x1, respectively.
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Splitting now the transform vector X0 in its even-indexed part, (X0)Even, and odd-indexed
part, (X0)Odd, and doing the same for the transform vector X1, we obtain

0 = ULo,Even(X0)Even + ULo,Odd(X0)Odd,

0 = UUp,Even(X1)Even + UUp,Odd(X1)Odd. (60)

This means that there is no need to calculate the full GFT. It is sufficient to calculate
the GFT of order N/2, and its values (X0)Even and (X1)Even or (X0)Odd and (X1)Odd. The re-
maining parts of the transform vectors could be obtained from (60). This can reduce the
problem dimensionality.

The algorithm steps for this approach to the GFT calculation are as follows:

• Calculate even-indexed elements of X0 and X1, corresponding to two halves of the
signal samples, as

(X0)Even = (U−1)Up,Even[x(1), x(2), . . . , x(N/2)]T = (U−1)Up,EvenxUp,

(X1)Even = (U−1)Lo,Even[x(N/2 + 1), x(N/2 + 2), . . . , x(N)]T = (U−1)Lo,EvenxLo.

• Find the odd-indexed elements of the GFT using (60) as

(X0)Odd = (ULo,Odd)
−1ULo,Even(X0)Even,

(X1)Odd = (UUp,Odd)
−1UUp,Even(X1)Even.

• Reconstruct the GFT elements of the whole signal,

(X)Even = (X0)Even + (X1)Even

(X)Odd = (X0)Odd + (X1)Odd.

Notice that all matrices used in this relation are of size N/2× N/2, while all vectors
are of size N/2× 1.

This approach can be applied to different splitting schemes (for example, we can
split the signal into even and odd indexed samples, and then split the transform elements
into upper and lower part). The same procedure can be used for splitting the signal into
not equal sets of samples. The case with the overlapping windowed signal can easily be
split into nonoverlapping problems. For example, if the window in the classical domain
overlaps for half of the window width, then the problem can be separated into two sets of
nonoverlapping windows since every other window does not overlap [46–51].

9. Conclusions

Time–frequency analysis is a basis for extending the classical concepts to the vertex-
varying spectral analysis of signals on graphs. Attention has been paid to linear signal
transformations as the most important forms in classical signal analysis and graph signal
processing. The spectral domain of these representations has been considered in detail
since it provides an opportunity for a direct generalization of the well-developed time–
frequency approaches to vertex–frequency analysis. Various polynomial forms are used
in the implementation since they can be computationally very efficient in the case of very
large graphs. The polynomial forms are developed in detail in graph signal processing, and
can then be used in classical time–frequency analysis, with their simplicity being attractive
for the implementation in the case of large time-domain signals. Reconstruction of the
graph signals from the vertex–frequency representation has been reviewed, with some
practical notes on the filtering, optimal parameter selection, uncertainty principle, and
schemes for large signal division into smaller parts. All results are illustrated by numerous
numerical examples.
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4. Ortega, A.; Frossard, P.; Kovačević, J.; Moura, J.M.; Vandergheynst, P. Graph signal processing: Overview, challenges, and appli-

cations. Proc. IEEE 2018, 106, 808–828. [CrossRef]
5. Djuric, P.; Richard, C. (Eds.) Cooperative and Graph Signal Processing: Principles and Applications; Academic Press: Cambridge, MA,

USA, 2018.
6. Hamon, R.; Borgnat, P.; Flandrin, P.; Robardet, C. Extraction of temporal network structures from graph-based signals. IEEE Trans.

Signal Inf. Process. Netw. 2016, 2, 215–226. [CrossRef]
7. Marques, A.; Ribeiro, A.; Segarra, S. Graph Signal Processing: Fundamentals and Applications to Diffusion Processes. In Pro-

ceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), New Orleans, LA, USA,
5–9 March 2017.

8. Quinn, C.J.; Kiyavash, N.; Coleman, T.P. Directed information graphs. IEEE Trans. Inf. Theory 2015, 61, 6887–6909. [CrossRef]
9. Raginsky, M.; Jafarpour, S.; Harmany, Z.T.; Marcia, R.F.; Willett, R.M.; Calderbank, R. Performance bounds for expander-based

compressed sensing in Poisson noise. IEEE Trans. Signal Process. 2011, 59, 4139–4153. [CrossRef]
10. Hamon, R.; Borgnat, P.; Flandrin, P.; Robardet, C. Transformation from Graphs to Signals and Back. In Vertex-Frequency Analysis of

Graph Signals; Springer: Berlin/Heidelberg, Germany, 2019; pp. 111–139.
11. Sandryhaila, A.; Moura, J.M. Big data analysis with signal processing on graphs: Representation and processing of massive data

sets with irregular structure. IEEE Signal Process. Mag. 2014, 31, 80–90. [CrossRef]
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