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This letter proposes a general regularization framework for inference over multitask networks. The optimization approach relies on minimizing a global cost consisting of the aggregate sum of individual costs regularized by a term that allows to incorporate global information about the graph structure and the individual parameter vectors into the solution of the inference problem. An adaptive strategy, which responds to streaming data and employs stochastic approximations in place of actual gradient vectors, is devised and studied. Methods allowing the distributed implementation of the regularization step are also discussed. The work shows how to blend real-time adaptation with graph filtering and a generalized regularization framework to result in a graph diffusion strategy for distributed learning over multitask networks.

I. INTRODUCTION

Learning over networks allows a collection of interconnected agents to perform parameter estimation tasks from streaming data by relying on local computations and communications with immediate neighbors [START_REF] Sayed | Adaptation, learning, and optimization over networks[END_REF]- [START_REF] Chouvardas | Adaptive robust distributed learning in diffusion sensor networks[END_REF]. In recent years, there has also been interest in learning algorithms that operate over multitask networks, where agents need to estimate and track multiple objectives simultaneously [START_REF] Mota | Distributed optimization with local domains: Applications in MPC and network flows[END_REF]- [START_REF] Nassif | Distributed inference over multitask graphs under smoothness[END_REF]. Although agents may generally have distinct though related tasks to perform, they may still be able to capitalize on inductive transfer between them to improve their estimation accuracy. Regularization is one of the most fundamental techniques that allows to incorporate prior information about how tasks are related to each other into the formulation and solution of the inference problem [START_REF] Hallac | Network LASSO: Clustering and optimization in large graphs[END_REF]- [START_REF] Chen | Graphstructured multi-task regression and an efficient optimization method for general fused Lasso[END_REF].

This work introduces a family of regularization operators for multitask learning over networks. We consider multitask estimation problems where each agent in the network seeks to minimize an individual cost expressed as the expectation of some loss function while enforcing graph constraints, which may include consensus [START_REF] Sayed | Adaptation, learning, and optimization over networks[END_REF], [START_REF] Sayed | Diffusion strategies for adaptation and learning over networks: An examination of distributed strategies and network behavior[END_REF] and smoothness [START_REF] Chen | Multitask diffusion adaptation over networks[END_REF], [START_REF] Nassif | Distributed inference over multitask graphs under smoothness[END_REF] as special cases. We formulate the problem as the minimization of the aggregate sum of individual costs regularized by a term that allows to incorporate information about the structure of the tasks in the graph spectral domain into the solution of the inference problem. An adaptive strategy is devised that responds to streaming data and employs stochastic approximations in place of actual gradient vectors, which are generally unavailable. We establish, under conditions on the step-size learning parameter µ, that the strategy converges in The work of A. H. Sayed was supported in part by NSF grant CCF-1524250. R. Nassif, S. Vlaski, and A. H. Sayed are with Institute of Electrical Engineering, EPFL, Switzerland (e-mail: {roula.nassif, stefan.vlaski, ali.sayed}@epfl.ch). C. Richard is with Université de Nice Sophia-Antipolis, France (e-mail: cedric.richard@unice.fr).

the mean-square-error sense within O(µ) from the solution of the regularized problem. While most existing multitask strategies assume network proximity constraints and formulate convex optimization problems with appropriate co-regularizers between neighboring agents [START_REF] Koppel | Proximity without consensus in online multi-agent optimization[END_REF]- [START_REF] Nassif | Distributed inference over multitask graphs under smoothness[END_REF], the current regularization framework is concerned with the spectral properties of the graph signal to be estimated. This distinctive feature favors solutions that cannot be directly implemented in a distributed manner. Based on the concept of graph filters [START_REF] Shuman | The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains[END_REF]- [START_REF] Loukas | Distributed autoregressive moving average graph filters[END_REF], methods allowing the distributed implementation of the regularization step are also provided. In this way, the main novelty in this work is to show how to blend three concepts: real-time adaptation, graph filtering, and generalized regularization, in order to obtain an effective graph diffusion strategy for distributed learning over multitask networks.

II. PROBLEM FORMULATION Consider a connected network of N nodes. Let w k ∈ R M denote some parameter vector at node k and let W = col{w 1 , . . . , w N } denote the collection of parameter vectors from across the network. We associate with each agent k a risk function J k (w k ) : R M → R assumed to be strongly convex. In most learning and adaptation problems, the risk function is expressed as the expectation of a loss function Q k (•) and is written as J k (w k ) = EQ k (w k ; x k ), where x k denotes the random data. The expectation is computed over the distribution of the data (note that, in our notation, we use boldface letters for random quantities and normal letters for deterministic quantities). We denote the unique minimizer of J k (w k ) by w o k . In many situations, there is available some information about W o = col{w o 1 , . . . , w o N }, such as knowing that W o is smooth with respect to the underlying graph [START_REF] Nassif | Distributed inference over multitask graphs under smoothness[END_REF]. One way to exploit this information is to employ regularization to favor solutions with the desired properties. We consider in this work multitask learning problems of the form:

W o η = arg min W J glob (W) = N k=1 J k (w k ) + η 2 W RW, (1) 
where R ∈ R M N ×M N is a positive semi-definite regularization matrix. The tuning parameter η ≥ 0 controls the tradeoff between the two components of the objective function. In practice, and as we shall see in the sequel, the selection of the regularizer R must account for prior information on the structure of W o in the graph spectral domain [START_REF] Kondor | Diffusion kernels on graphs and other discrete structures[END_REF]- [START_REF] Zhou | Regularization on discrete spaces[END_REF].

A. Theoretical motivation for the optimization framework For motivational purposes, we provide in the following a probabilistic interpretation for problem [START_REF] Sayed | Adaptation, learning, and optimization over networks[END_REF]. Let us consider for example MSE networks [START_REF] Sayed | Adaptation, learning, and optimization over networks[END_REF] where each agent k, at every instant i, has access to a measurement d k (i) and a regression vector u k,i , assumed to be related via the linear model:

d k (i) = u k,i w o k + v k (i), k = 1, . . . , N, (2) 
for some unknown M × 1 vector w o k with v k (i) denoting a measurement noise. For these networks, the risk functions take the form of mean-square-errors (MSE):

J k (w k ) = 1 2 E|d k (i) -u k,i w k | 2 , k = 1, . . . , N. (3) 
The processes {d k (i), u k,i , v k (i)} are assumed to represent zero-mean jointly wide-sense stationary random processes satisfying: i) Eu k,i u ,j = R u,k δ k, δ i,j where R u,k > 0 and the Kronecker delta

δ m,n = 1 if m = n and zero otherwise; ii) Ev k (i)v (j) = σ 2 v,k δ k, δ i,j ;
iii) the regression and noise processes {u ,j , v k (i)} are independent of each other.

Lemma 1. If the network vector is degenerate Gaussian multivariate distributed W ∼ N (0, R † ) and if the noise process is Gaussian v k (i) ∼ N (0, σ 2 v,k
) independent over space and time and identically distributed, then problem (1) is a MAP estimator for W conditioned on {d k (i), u k,i }.

Proof. The proof is similar to Lemma 1 in [START_REF] Nassif | Distributed inference over multitask graphs under smoothness[END_REF] with the matrix L in [START_REF] Nassif | Distributed inference over multitask graphs under smoothness[END_REF] replaced by the matrix R.

When σ 2 v,k = σ 2 v ∀k, the optimal choice of η is σ 2 v .

B. Regularization via the Graph Laplacian

Let us assume that the graph is endowed with a symmetric weighted adjacency N ×N block matrix A. If there is an edge connecting nodes k and , then the

(k, )-th M × M positive semi-definite block [A] k = A k = A k
reflects the relation between k and ; otherwise, A k = 01 . By analogy to the scalar setting [START_REF] Nassif | Distributed inference over multitask graphs under smoothness[END_REF], we introduce the graph Laplacian, which is a differential operator defined as L = D-A, where the degree matrix D is an N × N block diagonal matrix with k-th block entry D kk = N =1 A k . Let N k denote the set of neighbors of k, i.e., the set of nodes connected to agent k by an edge.

Since W LW = 1 2 N k=1 ∈N k w k -w 2
A k ≥ 0 ∀W, the matrix L is symmetric positive semi-definite and possesses a complete set of orthonormal eigenvectors. We denote them by {v 1 , . . . , v M N }. For convenience, we order the set of real, nonnegative eigenvalues of L as 0 = λ 1 ≤ λ 2 ≤ . . . ≤ λ M N = λ max . Thus, the Laplacian can be decomposed as

L = VΛV with Λ = diag{λ 1 , . . . , λ M N } and V = [v 1 , . . . , v M N ].
A class of regularization functionals on graphs, which is built upon the notion of graph smoothness, can be defined as [START_REF] Smola | Kernels and regularization on graphs[END_REF]:

S(W) = W, r(L)W = W r(L)W, (4) 
where r(•) is some well-defined non-negative function on the spectrum σ(L) = {λ 1 , . . . , λ M N } and r(L) is the corresponding matrix function defined as [START_REF] Higham | Functions of Matrices: Theory and Computation[END_REF]:

r(L) = Vr(Λ)V = M N m=1 r(λ m )v m v m . (5) 
Construction (4) uses the Laplacian as a means to design regularization operators. Requiring positive semi-definite R Laplacian with p ≥ 1 [START_REF] Shuman | Distributed signal processing via Chebyshev polynomial approximation[END_REF], [START_REF] Smola | Kernels and regularization on graphs[END_REF] λ p Diffusion process [START_REF] Kondor | Diffusion kernels on graphs and other discrete structures[END_REF], [START_REF] Smola | Kernels and regularization on graphs[END_REF] e σ 2 λ/2 p-step random walk (p ≥ 1, a > λmax) [START_REF] Smola | Kernels and regularization on graphs[END_REF] 1/(a -λ) p |B|-bandlimited [START_REF] Romero | Kernel-based reconstruction of graph signals[END_REF], [START_REF] Narang | Localized iterative methods for interpolation in graph structured data[END_REF] r(λm) = 0, if λm ∈ B β, otherwise in (1) imposes the constraint r(λ) ≥ 0 for all λ ∈ σ(L).

Replacing ( 5) into (4), we obtain:

S(W) = W r(Λ)W = M N m=1 r(λ m )|w m | 2 , (6) 
where

W = V W = col{w m } M N m=1
, and w m = v m W. The regularization S(W) in ( 6) promotes a particular structure in the graph spectral domain. It strongly penalizes |w m | 2 for which the corresponding r(λ m ) is large. Thus, one prefers r(λ m ) to be large for those |w m | 2 that are small and vice versa. The function r(λ) is commonly chosen to be monotonically increasing in λ [START_REF] Smola | Kernels and regularization on graphs[END_REF]. Table I lists some examples of typical choices for r(λ) [START_REF] Smola | Kernels and regularization on graphs[END_REF].

III. ADAPTIVE SOLUTION A. Adaptive solution

Our objective is to devise and study a strategy that solves problem [START_REF] Sayed | Adaptation, learning, and optimization over networks[END_REF] where

each agent k is interested in estimating the k-th subvector w o k,η of W o η = col{w o 1,η , . . . , w o N,η }.
We are particularly interested in solving the problem in the stochastic setting when the distribution of the data x k in J k (w k ) = EQ k (w k ; x k ) is generally unknown. As such, approximate gradient vectors need to be employed. A common construction in stochastic approximation theory is to employ the following approximation at iteration i [1]:

∇ w k J k (w k ) = ∇ w k Q k (w k ; x k,i ), (7) 
where x k,i represents the data observed at iteration i. The difference between the true gradient and its approximation is called the gradient noise denoted by:

s k,i (w) = ∇ w k J k (w) -∇ w k J k (w). (8) 
In order to estimate W o η , we may start by employing a stochastic gradient descent update of the form:

W i = W i-1 -µ col ∇ w k J k (w k,i-1 ) N k=1 -µηRW i-1 , (9)
where µ > 0 is a small step-size parameter and W i = col{w 1,i , . . . , w N,i } is the estimate of W o η at time instant i. By introducing an auxiliary variables ψ k,i at each agent k, strategy (9) can be implemented in an incremental manner:

ψ k,i = w k,i-1 -µ ∇ w k J k (w k,i-1 ), k = 1, . . . , N, W i = ψ i -µηRψ i , (10) 
where ψ i = col{ψ 1,i , . . . , ψ N,i } and where we replaced RW i-1 by Rψ i since we expect ψ i to be an improved estimate compared to W i-1 . Let R k denote the (k, )-th block of R. In order to compute w k,i , agent k needs to evaluate from the second step in [START_REF] Bertrand | Distributed adaptive node-specific signal estimation in fully connected sensor networks -Part I: Sequential node updating[END_REF] the following expression:

w k,i = ψ k,i -µη N =1 R k ψ ,i . ( 11 
)
This calculation requires exchange of information between agent k and every agent (for which R k = 0), and some of these agents may not be in the direct neighborhood of k. Thus, although the first step in (10) can be performed locally at agent k, the second step may require non-local communications and is still non-distributed. In Section IV, we shall explain how strategy [START_REF] Bertrand | Distributed adaptive node-specific signal estimation in fully connected sensor networks -Part I: Sequential node updating[END_REF] can be implemented in a distributed manner.

B. Performance analysis

Since the iterates w k,i generated by [START_REF] Bertrand | Distributed adaptive node-specific signal estimation in fully connected sensor networks -Part I: Sequential node updating[END_REF] are random, we shall measure performance by examining the average squared distance between w k,i and w o k,η , lim i→∞ E w o k,η -w k,i 2 . We analyze [START_REF] Bertrand | Distributed adaptive node-specific signal estimation in fully connected sensor networks -Part I: Sequential node updating[END_REF] under the following assumptions on the risks {J k (•)} and on the gradient noise processes {s k,i (•)} defined in [START_REF] Chouvardas | Adaptive robust distributed learning in diffusion sensor networks[END_REF]. As explained in [START_REF] Sayed | Adaptation, learning, and optimization over networks[END_REF], these conditions are satisfied by many objective functions of interest in learning and adaptation such as quadratic and logistic risks. Besides, regularization is a common technique to ensure strong convexity. Assumption 1. The individual costs J k (w k ) are assumed to be twice differentiable and strongly convex such that:

0 < λ k,min I M ≤ ∇ 2 w k J k (w k ) ≤ λ k,max I M , (12) 
where λ k,min > 0 for k = 1, . . . , N . Assumption 2. The gradient noise process defined in (8) satisfies for any w ∈ F i-1 and for all k, = 1, . . . , N :

E[s k,i (w)|F i-1 ] = 0, (13) 
E[ s k,i (w) 2 |F i-1 ] ≤ β 2 k w 2 + σ 2 s,k , (14) 
for some β 2 k ≥ 0, σ 2 s,k ≥ 0, and where F i-1 denotes the filtration generated by the random processes {w ,j } for all = 1, . . . , N and j ≤ i -1.

Theorem 1. Under Assumptions 1 and 2, strategy (10) converges for sufficiently small step-sizes satisfying:

0 < µ < min 2 ηλ max (R) , min 1≤k≤N µ k , (15) 
where

µ k min 2λ k,min λ 2 k,min + 3β 2 k , 2λ k,max λ 2 k,max + 3β 2 k . (16) 
Specifically, it holds that for small µ

lim sup i→∞ E W o η -W i 2 = O(µ). (17) 
Proof. The argument is a simplification of the proofs presented in [START_REF] Chen | Distributed Pareto optimization via diffusion strategies[END_REF].

The first bound in [START_REF] Hallac | Network LASSO: Clustering and optimization in large graphs[END_REF] ensures stability of I M N -µηR and the second bound ensures mean-square-error stability of each agent. Theorem 1 states that the expected squared distance between w k,i and w o k,η is on the order of µ at steady-state. This implies that when µ is chosen to be sufficiently small, the expected error can be made arbitrarily small.

C. Illustrative example

To illustrate the benefit of our multitask learning framework, we consider an MSE network of N = 50 nodes and M = 5, generated randomly with the link matrix shown in Fig. 1 

(left). We set

A k = a k I M with a k = 1 max{|N k |,|N |} if ∈ N k and 0 otherwise. We generate W o according to W o = Ve -τ Λ V W o
= lim i→∞ 1 N E W o -W i 2 for η = γη o with η o ∈ [0,
100] and γ given in Fig. 2 (left). For each η, the results are averaged over 20 Monte-Carlo runs and over 500 samples after convergence. The results show that although the signal W o is generated by smoothing a signal W o by a diffusion kernel, setting R = L, which is a common choice for promoting smoothness [START_REF] Nassif | Distributed inference over multitask graphs under smoothness[END_REF], is not optimal in our setting and considering higher powers of Laplacian (such as L 4 ) allows us to obtain better performance compared to the non-cooperative setting (η = 0). This is due to the fact that, by increasing p in r(λ) = λ p , we penalize less w m for which λ m < 1 and we penalize more those for which λ m > 1. The bandlimited regularizer provides the best performance. As we shall see in Section IV, due to the discontinuity at λ c , this improvement may not be observed in a distributed implementation.

IV. DISTRIBUTED IMPLEMENTATION A. Regularization via Graph Laplacian polynomials

When the regularizer R can be written as a P -th degree polynomial of the Laplacian L, i.e., R = P p=0 β p L p , for some scalar constants {β p }, or equivalently, when r(λ) in ( 5) can be written as r(λ) = P p=0 β p λ p , algorithm [START_REF] Bertrand | Distributed adaptive node-specific signal estimation in fully connected sensor networks -Part I: Sequential node updating[END_REF] can be implemented in a decentralized fashion since the second step in [START_REF] Bertrand | Distributed adaptive node-specific signal estimation in fully connected sensor networks -Part I: Sequential node updating[END_REF] can be implemented in P communication steps according to:

ψ p i = β P -p ψ i + Lψ p-1 i , p = 1, . . . , P W i = ψ i -µηψ P i (18)
with ψ 0 i = β P ψ i . The P steps above involve product of ψ p-1 i by L and this product can be computed at each node by just exchanging information with neighbors. Particularly, the kth subvector of Lψ p-1 i can be computed locally at agent k according to

[Lψ p-1 i ] k = ∈N k L k ψ p-1 ,i
where L k is the (k, )-th block of L. Thus, replacing ( 18) into [START_REF] Bertrand | Distributed adaptive node-specific signal estimation in fully connected sensor networks -Part I: Sequential node updating[END_REF], we arrive at the graph diffusion strategy I. 

           ψ k,i = w k,i-1 -µ ∇ w k J k (w k,i-1 ), ψ 0 k,i = β P ψ k,i , ψ p k,i = β P -p ψ k,i + ∈N k L k ψ p-1
,i , p = 1, . . . , P,

w k,i = ψ k,i -µη ψ P k,i .

B. More general regularization form

For more general regularization forms, one would like to benefit from the sparsity of L (i.e., the graph). As long as we can approximate R by some low order polynomial in L, say R ≈ P p=0 β p L p , significant communication savings can be made and distributed implementations are possible. Problems of this type have already been considered in graph filters design [START_REF] Shuman | The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains[END_REF]- [START_REF] Sandryhaila | Discrete signal processing on graphs: Frequency analysis[END_REF]. A graph filter is an operator that acts upon a graph signal W by amplifying or attenuating its graph spectral content V W = col{w m } M N m=1 as: ΦW = VΦ(Λ)V W = M N m=1 Φ(λ m )w m v m . The spectral function Φ(λ) controls how much Φ amplifies the spectrum. When R = r(L) in ( 5), Rψ i in [START_REF] Bertrand | Distributed adaptive node-specific signal estimation in fully connected sensor networks -Part I: Sequential node updating[END_REF] reduces to:

Rψ i = r(L)ψ i = M N m=1 r(λ m )ψ m,i v m , (19) 
where ψ m,i = v m ψ i . By identification, we observe that r(L) is a graph filter that acts upon ψ i . Different methods for computing r(L)ψ i in a distributed setting exist in the literature. In the following, we shall briefly describe the Chebyshev polynomial approximation method [START_REF] Shuman | Distributed signal processing via Chebyshev polynomial approximation[END_REF] which allows to approximate r(L)ψ i by r(L)ψ i , where r(•) is a polynomial approximation of r(•) computed by truncating a shifted Chebyshev series expansion of r(•) on [0, λ max ]. Doing so circumvents the need to compute the full set of eigenvalues and eigenvectors of L. Accessible overview of other existing methods can be found in [START_REF] Shuman | Distributed signal processing via Chebyshev polynomial approximation[END_REF]Section V].

We approximate r(•) by the first P + 1 terms of its Chebyshev polynomial expansion according to [START_REF] Shuman | Distributed signal processing via Chebyshev polynomial approximation[END_REF], [START_REF] Rivlin | The Chebyshev Polynomials[END_REF]:

r(λ) ≈ r(λ) = 1 2 θ 0 + P p=1 θ p T p λ -α α , (20) 
for λ ∈ [0, λ max ], where α = λmax 2 , θ p are the Chebyshev coefficients given by θ p = 2 π π 0 cos(px)r(α(cos(x) + 1))dx, and {T p (•)} P p=0 are the polynomials that can be computed recursively according to T p (x) = 2xT p-1 (x) -T p-2 (x), for p ≥ 2, with T 0 (x) = 1 and T 1 (x) = x. Thus, the second step in [START_REF] Bertrand | Distributed adaptive node-specific signal estimation in fully connected sensor networks -Part I: Sequential node updating[END_REF] can be approximated by:

W i ≈ ψ i -µη 1 2 θ 0 ψ i + P p=1 θ p ψ p i , (21) 
where

ψ p i = T p 1 α (L -αI M N ) ψ i .
The vectors ψ p i can be computed recursively according to:

ψ p i = 2 α (L -αI M N )ψ p-1 i -ψ p-2 i , if p ≥ 2, (22) 
with ψ 0 i = ψ i and ψ 1 i = 1 α (L -αI M N )ψ i . Replacing [START_REF] Shuman | The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains[END_REF], and ( 22) into [START_REF] Bertrand | Distributed adaptive node-specific signal estimation in fully connected sensor networks -Part I: Sequential node updating[END_REF], we arrive at the graph diffusion strategy II.

Algorithm 2: Graph diffusion strategy II When r(λ) is some non-negative function, evaluate the coefficients α and θ p , and run at each agent k:

                   ψ k,i = w k,i-1 -µ ∇ w k J k (w k,i-1 ), ψ 0 k,i = ψ k,i , ψ 1 k,i = 1 α ∈N k L k ψ ,i -ψ k,i , ψ p k,i = 2 α ∈N k L k ψ p-1 ,i -2ψ p-1 k,i -ψ p-2 k,i , p = 2, . . . , P, w k,i = ψ k,i -µη 1 2 θ 0 ψ k,i + P p=1 θ p ψ p k,i .
This method allows the nodes in the network to perform the second step in [START_REF] Bertrand | Distributed adaptive node-specific signal estimation in fully connected sensor networks -Part I: Sequential node updating[END_REF] locally in P communication steps. Each node requires knowledge of {θ p } that may be computed locally from knowledge of r(•), and α = λmax 2 . Note that, instead of using the exact value of λ max , an upper bound λ max can be used, and in this case α is replaced by α = λmax 2 . When r(•) is continuous, the Chebyshev approximation r(•) converges to r(•) rapidly as P increases [START_REF] Shuman | Distributed signal processing via Chebyshev polynomial approximation[END_REF], [START_REF] Rivlin | The Chebyshev Polynomials[END_REF].

C. Simulation results

We consider the same setting as in Section III-C. When R = L p , we run Algorithm 1. For the three other choices of R, we run Algorithm 2 with λ max = 1.5, P = 8 in the diffusion case, P = 22 in the random walk case, and P = 30 in the bandlimited case. Figure 2 (right) reports the network MSD learning curves 1 N E W o -W i 2 . In each case, the value of η that gives the lower MSD (from the left plot in Fig. 2) is used. As it can be observed, when r(•) is continuous, the distributed implementation performs well compared to the centralized one. For the bandlimited case where r(•) is discontinuous on [0, λ max ], a performance degradation compared to the centralized implementation is observed for finite P . We note that, for λ < λ c , we use r(λ) = 0.07 instead of r(λ) = 0 in the distributed case in order to ensure a positive semi-definite approximation r(L), and thus reducing the effect of ripples resulting from the Chebyshev approximation.

V. CONCLUSION In this work, we proposed and studied an adaptive strategy that allows a multitask network to minimize a global cost consisting of the aggregate sum of individual costs regularized by a general regularization term enforcing a specific structure in the graph spectral domain. Approximation methods allowing the distributed implementation were also provided.
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 152 Fig. 1. Illustrative example. (Left) Link matrix. (Right) Graph spectral content of W o with w o m = v m W o .
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 1 right) illustrates the spectral content of W o given by V W o . It can be observed that the signal is mainly localized in [0, 0.8]. We assume that R u,k = σ 2 u,k I M . The variances σ 2 u,k and σ 2 v,k are generated from the uniform distributions U(1, 1.5) and U(0.15, 0.25), respectively. In Fig. 2 (left), we characterize the influence of the regularization on the performance of algorithm (10) relative to W o . We set µ = 5 × 10 -3 . We run (10) for 5 different choices of regularizer R: Laplacian (p = 1, R = L) [18], Laplacian (p = 4, R = L 4 ), diffusion process (σ 2 = 12, R = e 6L ), p-step random walk (p = 7, a = 1.8, R = (aI M N -L) -p ), and bandlimited (B = [0, λ c ], λ c = 0.8, β = 1.3). In each case, we report the steadystate MSD o

Algorithm 1 :

 1 Graph diffusion strategy I When r(λ) = P p=0 β p λ p , run at each agent k:

Note that, it is common in the literature to associate non-negative scalars a k with links[START_REF] Hallac | Network LASSO: Clustering and optimization in large graphs[END_REF]-[START_REF] Nassif | Distributed inference over multitask graphs under smoothness[END_REF]. In this work, we propose to associate non-negative block matrices instead, denoted by A k , since matrices are able to capture more thoroughly relationships between the components of the tasks (or vectors) at the agents. The scalar case can be recovered from the current framework by replacing A k by a k I M .