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Random system of lines in the Euclidean plane Ej

Giuseppe Caristi

Abstract. In this paper we consider a random variable arising from a,
problem of geometrical intersection between a fixed convex body K and
a system of random lines in Ej.

M.S.C. 2000: 60D05,52A22.
Key words: Geometric probability, stochastic geometry, random sets, random convex
sets, integral geometry.

1 Introduction

Let Ey be the Euclidean plane and let K be a convex non empty and bounded domain
of area Sk and with boundary 9K of length L. We consider a family F of random,
uniformly distributed n-lines {Gj, ..., G, } with n > 2. We assume that if G, Gy, € F,
then G, NGy, # & . It is possible that this points belongs to K or not. In this way
we have a random variable X, k). In this paper we give the following result

Theorem 1. The expression of the mean value E (X(H‘K)), the k-moments E (X{‘H‘K))

and the variance o* (X, k)) of the random variable X, i) can be calculated as fol-
lows

; k! S
B(Xeao) =ergr,  B(Xf) = [ 2 W] b
Ji+..+Ja=k 1ceeedye

where

and k is a posilive integer.

Other results about the computation of the variance are investigated in [2] and an
extension in the 3-dimensional Euclidean space of the same problem is studied in [6].
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2 Main Results

Let N be the set of natural numbers, n > 2 a fixed natural integer, {G, ..., G, } and
K as in introduction. We can state the following

Theorem 2. Let us consider the random variable X, ). Then

Sk

E (X(n!K)) = ():'.Tﬁ,
where o = @, L is the length of K and Sk is the area of the domain defined by
K.

Proof. Tt is easy to see that, denoting with L the length of K and dG the elementary
measure of the lines in the Euclidean plane Fs, we have

dG = L.

/{ enk£ @ }
Since G4, ..., G, are stochastically independent, we get

dGy A ... A dG, = L™,

f{cnx;&,@’ }

If we consider the lines G, ..., G, then the intersection points might belong to K or
not. Hence we obtain a random variable which we denote by X, k-
In order to compute the variance, we have the following integral

X(n,K)dGl ARG

]{GHK#@/}
We define the application ej; = 1 if Gy, NGy, € K (with h # k= 1,...,n) and zero

otherwise. Then
Ky ="3"" eilx
h.k=1

Further, let us consider

I Z:/ €ndGh A dGy.
{G,,,Gkru{;é,@/}

If (Gr N Ex) € K, then we have ¢, = 1. We denote with Ap the chord intercepted
by G on K (and its length).
‘We have

encdGp N dGy, =j dGy, | dGy,

{kaxys@’} ,/{Gmx;e@’}

4(1;..(:an¢,®’}

but it is well known that

{Ghm)\k#@/} dGp = A,
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ApdG = 15k

s

Moreover,

X(H‘K)dG]_ AN iy 08 dGn = j Ehdel AN AY dGn =
{an;é@’} h%;l
TS L™ 2+ ...+ wSg L2

Taking into account that the number of the different sets {G},, G} is (the binomial
coefficient)

/{Gmr(;é@’}

n(n—1)
SO

we have
X(n,K)dGl N AN dGn - Q’TI'SKL”_Z.

oot

By definition,

f{cmﬁég} R
E (X = ;
(X(n, k) f{cnx#@} dGi1 A ...\ dG,
and hence mathbfE (X?n.K)) = 0‘”%}' =
Now we compute
2 A ey Gy
f{cm}(;ﬁ,@’} X(R‘K)dG1

cni#Z

B (X)) = f{ ) ToTA e
We put

J:/ X2 indGy A oy dG,
{GHK#Q/} e

We can prove that
2

2
Xy =| D_enc ]
h,k=1

Xizn,x) = Z ik + 2 Z €hkEsn-
h,k=1 (h,k)#(s,n)

and then

With this observations we can compute the integral

Jz/{cmg} D hkt2 Y enkean | dG1A A dGn.

h,k=1 (h,k)#(s,n)
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Considering that

€2,.dGy A dG). = j dGy, | dGy,

{GmK;é@’} /{G,.mk#@’}

where Aj. is the chord intercepted by Gy on K, we obtain

fiowes

g — S 2l NS m S T oS A Z L D T2

Taking into account that the number of different sets {Gj, Gy} is v and that G, ...

are independent, we infer

n g L2

E(X2 ) L idSieall 4 'rrSKO.fg'

‘We obtain

Theorem 3. Let us consider the random variable X, ). Hence

0'2 (X(n.,K}) = ']TSK (1 = WSK) Clt2,

L2 L2

, G

where a = E(—n;—ll, L is the length of 0K and Sk is the area of the domain defined by

K.

Moreover, we note that

implies

3 Applications

1. As first case we consider in the plane a square  of side a. We can compute the

following values
E (X(nq) = %—g ~ 0, 1963450

k! T
k i G S T
E(X<”-Q)) = [ Z Jls...Ju!] 16°
Ji+...+Jda=k
and the variance is
T

X = 1g (1- %) o? % 0,15779a°.
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2. Taking in plane a rectangle R of sides a and b we have

amab
E (X(n,r) = 1@t

k! (3
E(X(ku,ﬁ,)) = [ 2 .11!...,10,!] 4(a +b)*’

T T =

and the variance

2 m n 2
B By = e P e
2 4(a+b)2( 4(a+b)2)

3. Let C be a circle of radius 6. We have

E(X‘c ):9.
mo)) =7

E (Xb.0)) = [ i %] 7

Ji+...+Ja=k
and the variance is
T

o* (X)) = 7

(1 & %) a? = 0, 1685502,

4. As last case we consider an equilateral triangle T' of side a, obtaining,

k a3 =
E (X(n,T)) e 0,3023a,
k! /3
E(Xk ) |: Z J 7
iy ! 1 )
( ) J1+...+jm:le-'..Ja_ 18

and for the variance the expression

o (X(n,1)) = i (1 g

ARV 2 z
13 13 )a 0, 2109

Remark 4. We observe that in ezamples 1, 3, 4 the functions are independent of the
dimension of the convezr body.
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