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ABSTRACT 20 

Rib fracture is a common disease that requires prompt treatment. This study 21 
focuses on developing a rib fracture diagnosis deep learning method using contralateral, 22 
contextual, and edge enhanced modules and evaluating its detection performance. A 23 
novel rib fracture diagnosis method was designed, named CCE-Net. To evaluate the 24 
performance of this method, 1639 digital radiography (DR) images were enrolled. 25 
Fracture features were extracted for three modules: contralateral, contextual, and edge 26 
enhanced modules. These modules can be used to identify fracture features in rib DR 27 
images, imitating the experience of broad-certificated radiologists. The contralateral 28 
module assists in diagnosing rib fractures by comparing the difference between the 29 
detected target region and the contralateral region. The contextual module helps to aid 30 
rib fracture detection by extracting contextual features. The edge enhanced module 31 
improves the accuracy of fracture detection by enhancing the edge information of the 32 
rib bone. The head of this two-stage detection network uses the multi-path fusion 33 
mechanism as the main architecture to integrate and utilize the above modules. The 34 
qualitative results show that with the ground truth of rib fracture as the evaluation 35 
standard, CCE-Net can achieve a better visual effect of fracture detection than other 36 
methods. The quantitative results show that CCE-Net can achieve the best performance 37 
in various detection indicators include AP50 0.911, AP75 0.794, AP25 0.913, and 38 
Recall 0.934. Experimental results show that CCE-Net can acquire the excellent ability 39 
of rib fracture diagnosis. We invasion that this approach will be applied to clinical study. 40 

41 
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1. Introduction 45 

Rib fractures are the most common injury in blunt chest trauma [1–4]. It can cause 46 
chest pain and restrict physical mobility [5-11]. People over 45 years old with more 47 
than four rib fractures are considered dangerous [12,13]. Rib fractures need to be 48 
diagnosed and treated as soon as possible [14,15,16]. There are many reasons why it is 49 
necessary to diagnosis rib fractures: it will easily cause respiratory complications such 50 
as posttraumatic pneumonia if the diagnosis of rib fractures is not timely [4,17,18]; they 51 
are indicators of trauma-related diseases that require immediate treatment, such as 52 
pneumothorax and their onset can be delayed for several days [19]; the diagnosis of rib 53 
fractures can be used as the basis for further comprehensive treatment strategies [20,21]. 54 
DR is usually the preferred method of rib fracture detection [22]. Due to the different 55 
shapes of rib fractures, the rate of missed diagnosis and misdiagnosis is relatively high 56 
[23,24]. Rib fractures can become a life-threatening disease unless detected and treated 57 
appropriately, especially in elderly patients [25,26,27]. With the rapid development of 58 
artificial intelligence, it is worth introducing deep learning technology to improve rib 59 
fracture diagnosis and recognition accuracy as much as possible. 60 

Previous work mainly focused on rib fracture detection in CT images. Weikert et 61 
al. [28] proposed a deep learning-based prototype algorithm detecting rib fractures on 62 
trauma CT on a pre-examination level. Zhou et al. [29] built a CNN model combining 63 
CT images and clinical information to detect and classify rib fractures automatically. 64 
Urbaneja et al. [30] proposed that CT with unfolded cylindrical projection can be used 65 
for rib fracture detection and characterization. Jin et al. [31] used a 3D-UNet model to 66 
solve the segmentation problem of rib fractures. Meng et al. [32] helped radiologists 67 
achieve high performance in diagnosing and classifying rib fractures on CT images with 68 
the assistance of deep learning algorithms. Although the above-mentioned CT-based 69 
methods have achieved good performance, there are few excellent methods based on 70 
DR. Compared with CT, DR has a faster imaging speed and a smaller radiation dose. 71 
DR is the first choice for the radiologist to diagnose rib fractures. Lindsey et al. [33] 72 
train a deep learning model to detect fractures on radiographs with a diagnostic 73 
accuracy similar to senior subspecialized orthopedic surgeons. Yahalomi et al. [34] train 74 
a Faster R-CNN, a machine vision neural network for object detection, to identify and 75 
locate distal radius fractures in anteroposterior X-ray images. Thian et al. [35] 76 
demonstrate the ability of an object detection CNN to detect and localize radius and 77 
ulna fractures on wrist radiographs with high sensitivity and specificity. Kim et al. [36] 78 
identify the extent to which transfer learning from deep convolutional neural networks 79 
(CNNs), pre-trained on non-medical images, can be used for automated fracture 80 
detection on plain radiographs. Kitamura et al. [37] use a convolutional neural network 81 
ensemble implemented with a small sample, de novo training, and multiview 82 
incorporation to detect ankle fracture. Although there are many deep learning-based 83 
fracture detection studies on DR, there are scant clinically reliable rib fracture detection 84 
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algorithms. Due to low texture contrast, large differences in patient anatomy, and 85 
overlapping organs, it is very challenging to detect and locate rib fractures in DR images 86 
automatically. 87 

This paper proposes a contralateral, contextual, and edge enhanced network (CCE-88 
Net) address the above challenges of detecting rib fractures. CCE-Net mainly adopts a 89 
region-based two-stage detector. It combines three novel feature extraction streams: the 90 
contralateral module, contextual module, and edge enhancement module, so that 91 
accurate feature extraction. Since the left and right parts of the human chest ribs have 92 
many similar skeleton structures, radiologists often use the left-right comparison 93 
method to help them diagnose rib fractures. To extract the similarity information of the 94 
contralateral ribs, the spine line is used as the axis of symmetry to obtain a symmetrical 95 
rib patch. The contralateral patch is used as one of the neural network inputs. A fusion 96 
module is designed to integrate the features of the disease proposal and its contralateral 97 
reference patch. The above experience also applies to the upper and lower ribs, which 98 
have structural similarities. The contextual module is integrated into the pipeline. The 99 
flatness and smoothness of the bone edges are an important basis for fracture judgment 100 
when radiologists diagnose rib fractures. To capture bone edge information, the edges 101 
containing the key texture structure of the ribs are extracted. Specifically, the edge 102 
information reflecting the bone texture structure is integrated as one of the neural 103 
network inputs. Therefore, the above methods can help CCE-Net obtain rich 104 
characteristic information and excellent performance. The contributions of the study 105 
can be listed as follows. 106 

1. This study aimed to develop a novel deep learning-based model for rib fractures 107 
automatically detection. The performance of our model is compared with other models 108 
in rib fractures detection. 109 

2. A two-stage detection method is creatively proposed that can effectively 110 
integrate multiple feature extraction modules of the contralateral, contextual, edge 111 
enhanced, which makes full use of the unique feature information of the rib image. 112 
These modules are similar to the experience of radiologists in diagnosing rib fractures. 113 

3. A weight distribution fusion method aims to fuse different image detail features 114 
and texture structure features of rib fractures at the decision level. It helps obtain a 115 
complete feature representation and enables the model to be trained end-to-end. 116 
 117 

2. Material and Methods 118 

2.1. Network architecture overview 119 
This paper aims to detect rib fractures in DR images automatically. The flow chart 120 

for these steps is shown in Fig.1. The radiologists often focus on the differences in 121 
different regions and the smoothness of the bone edge as the diagnosis basis of rib 122 
fractures. Based on these essentials, the CCE-Net is proposed to exploit contralateral, 123 
contextual, and edge texture information to enhance the feature representations of rib 124 
fractures. The network architecture of CCE-Net is depicted in Fig.2. The contralateral 125 
and contextual patches are extracted according to the spine line segmentation algorithm. 126 
The edge images are acquired based on the edge extraction algorithm. These three 127 
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modules will be used as the neural network inputs to help the two-stage detector achieve 128 
better feature representation. The details are illustrated below. 129 
 130 

 131 
Fig.1 The workflow of this study. Image preprocessing can extract image patches and 132 
the spine line from original images. Three novel modules (contralateral, contextual, 133 

and edge enhanced) can obtain more features of rib fractures. The feature fusion of the 134 
three modules can assist the basic detection network in achieving performance 135 

improvement. It should be noted that the DR image with the red outline on the left is 136 
used as the input of this method, and the fusion result of the green outline on the right 137 

is used as the output of this method. 138 
 139 
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 140 

Fig.2. The network architecture of CCE-Net. Our proposed method is based on the 141 
two-stage network. It extracts valid information on rib fractures, integrating four 142 

branches marked in orange, green, yellow and blue: target, contralateral, contextual, 143 
and edge. Four branches perform the same feature extraction on the backbone 144 

network. The results of four branches can be effectively fused in the neck stage to 145 
provide more reliable feature information in the subsequent stages. 146 

 147 
2.2. Contralateral module 148 
 The contrast of the contralateral patch is useful for radiologists to reference. 149 
Especially when fractures are contained in images, the contralateral information helps 150 
differentiate the abnormal and the normal ribs and better highlights the difference of 151 
fracture regions. Considering that the ribs of the human body are symmetrical, and the 152 
spine is situated in the relatively middle position of the chest. The symmetrical central 153 
axis of the ribs on both sides is the same as the line of the human spine. We first roughly 154 
segment the spine line and extract the contralateral patch based on the left-right 155 
symmetry of the ribs.  156 
 157 
2.2.1 Spine line roughly extraction 158 

Examining symmetrical regions on both sides of the spine can help radiologists 159 
determine rib fractures. The human spine is a skeletal organ usually located in the center 160 
and has a regular shape in the DR image. Therefore, the spine line is only needed to 161 
roughly segment to examine the contralateral patch of the rib.  162 

Specifically, the spine line can be roughly segmented by a CNN model. The UNet 163 
[38] is selected as the spine line segmentation model. We label the spine region on the 164 
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DR data set and use this data set to train the model. Because the symmetrical central 165 
axis of the ribs on both sides is not a precise line, there is no need for high segmentation 166 
accuracy requirements for the spine segmentation model. 167 

The minimum circumscribed quadrilateral enclosing the spine mask can be obtained. 168 
The spine line bridged by the centers of two short edges is regarded as the symmetric 169 
axis. The spine line can be expressed as 𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 + 𝐶𝐶 = 0. The target patch is denoted 170 
as 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝐴𝐴𝑡𝑡,𝐵𝐵𝑡𝑡), and the contralateral patch can be denoted as 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡(𝐴𝐴𝑏𝑏,𝐵𝐵𝑏𝑏). T The 171 

following formula can express the contralateral patch:  172 

𝐴𝐴𝑏𝑏 =
𝐴𝐴𝑡𝑡 − (2𝐴𝐴 ∗ (𝐴𝐴𝐴𝐴𝑡𝑡 + 𝐵𝐵𝐵𝐵𝑡𝑡 + 𝐶𝐶))

𝐴𝐴2 + 𝐵𝐵2
 

𝐵𝐵𝑏𝑏 =
𝐵𝐵𝑡𝑡 − (2𝐵𝐵 ∗ (𝐴𝐴𝐴𝐴𝑡𝑡 + 𝐵𝐵𝐵𝐵𝑡𝑡 + 𝐶𝐶))

𝐴𝐴2 + 𝐵𝐵2
 

Eq (1) 

After the central axis of symmetry is determined, the region symmetrical with the 173 
target region according to the spine symmetry axis can be determined as the 174 
contralateral patch.  175 

 176 
2.2.2. Contralateral images fusion 177 

After obtaining the contralateral patch, the characteristics of the highly similar 178 
structure on both sides of the human ribs are used to pair each target patch with its 179 
contralateral patch. An attention mechanism uses the difference between the target and 180 
contralateral patch in high-level semantic features to guide the potential location of the 181 
fracture. The contrast-induced attention [39] is used to fuse features of each target patch 182 
and its contralateral patch.  183 

The feature fusion process of the target area and the opposite patch feature is shown 184 
in Fig.3. We define the target patch as 𝑂𝑂, and the contralateral patch obtained as 𝑂𝑂′. 185 
They perform the same convolution operation as 𝐹𝐹  in the backbone network. The 186 
feature maps are effectively fused to realize the contralateral information extraction. 187 
The fusion operation adopts a pixel-by-pixel method. The subtraction operation 188 
between 𝐹𝐹(𝑂𝑂) and 𝐹𝐹(𝑂𝑂′) helps provide contrast information and suppress the response 189 
of attributes unrelated to fracture recognition and location. On the other hand, adding 190 
the above subtraction results from the target patch is helpful to identify the same 191 
structural information of the ribs with larger responses in the patches on both sides. The 192 
attention module 𝑀𝑀  encodes 𝐹𝐹(𝑂𝑂)  and 𝐹𝐹(𝑂𝑂′)  into the attention maps. The attention 193 
maps are multiplied pixel by pixel to weight the original target feature map to obtain 𝑓𝑓. 194 
The operation is shown below. 195 

𝑓𝑓 = 𝑀𝑀�𝐹𝐹(𝑂𝑂) + 𝜆𝜆�𝐹𝐹(𝑂𝑂) − 𝐹𝐹(𝑂𝑂′)�� ∗ 𝐹𝐹(𝑂𝑂) Eq (2) 
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 196 
Fig.3. An overview of the fusion flow. It aims to fuse the effective information of 197 

each part to extract the results. The addition and subtraction of the contralateral patch 198 
and the target patch are effectively fused with the target patch by using the attention 199 

module. 200 
 201 
2.3. Contextual module 202 
 Focusing on multiple adjacent ribs can make the detection more accurate. The 203 
normal rib is similar in shape and signal intensity to its adjacent normal rib. By checking 204 
on the contextual information of the diagnosed region, the radiologists can intuitively 205 
obtain the changes in the appearance of bones due to fractures. A contextual module 206 
that takes adjacent contextual ribs as input is designed to imitate a radiologist.  207 
 208 
2.3.1. Contextual images extraction 209 
 The longitudinal position of each diagnosed rib region needs to be judged 210 
according to the rough segmentation result of the spine. Since there are no more than 211 
12 human ribs on each side [40], one of the adjacent upper and lower rib regions should 212 
be selected as the input of the context module. If the longitudinal position belongs to 213 
the upper region of the spine, the adjacent rib region on the lower side is taken as the 214 
input of the context module; otherwise, the adjacent rib region on the upper side is taken 215 
as the input of the context module. After the patch direction selection decision is 216 
determined, the diagnosed rib patch can be moved along the extension direction of the 217 
spine's central axis by half of the boundary length to obtain the context patch. It should 218 
be noted that the boundary length refers to the width of the patch, and this study uses 219 
640 pixels as the patch width. Due to the short distance between the adjacent ribs of the 220 
human body, half the distance of the moving patch boundary can sufficiently cover the 221 
adjacent ribs.  222 
 223 
2.3.2. Contextual images fusion 224 
 The contextual module is designed to take two adjacent ribs as input patches, 225 
including the current diagnosis rib and its adjacent rib. A two-branch structure is used 226 
to compare adjacent ribs to identify fractures. This structure uses the same fusion 227 
method as in Equation 2 in the previous section. We denote the two patches of the 228 
current diagnosis rib and its adjacent rib as 𝑅𝑅𝑐𝑐 and 𝑅𝑅𝑡𝑡, respectively. These two branches 229 
have the same feature extraction network as 𝐹𝐹 . The resulting feature map uses the 230 
attention mechanism for feature layer fusion and then is input to the rest of the 231 
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convolution of the overall network. The final fusion feature maps 𝑀𝑀𝑓𝑓 can be expressed 232 

as: 233 
𝑀𝑀𝑓𝑓 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐹𝐹(𝑅𝑅𝑐𝑐) + 𝜆𝜆(𝐹𝐹(𝑅𝑅𝑐𝑐) − 𝐹𝐹(𝑅𝑅𝑡𝑡))) Eq (3) 

 234 
2.4. Edge enhanced module 235 

To capture the edge information of the ribs in the image, we extract the edges 236 
containing key texture information for visual recognition and integrate the edge map 237 
with the neural network model to improve fracture detection. Rib fractures are highly 238 
correlated with the appearance of the bone edges of the ribs. For example, a fractured 239 
rib will show abnormal curvature of the skeletal cortex. Based on the above experience, 240 
we believe that purely enforcing the widening of the receptive field is not sufficient for 241 
rib fracture detection, and the introduction of more comprehensive edge information 242 
can improve the detection effect. Since the edges reflect local intensity changes and 243 
display the boundary information of ribs in the image, maintaining the edges can 244 
preserve the structure of the image content and the texture details. 245 

 246 
2.4.1. Edge enhanced images extraction 247 

The edge information is added to the neural network to enforce the feature map's 248 
integration with the original image's edge information. The Sobel operator can calculate 249 
the edge map due to its simplicity. Sobel filters 𝑆𝑆  are used to convolve the original 250 
image 𝐼𝐼𝑐𝑐 to generate the edge map. Then, the edge information map is integrated into 251 
the input image 𝐼𝐼 by addition pixel by pixel as the following equation: 252 

𝐼𝐼𝑡𝑡 = 𝜆𝜆𝑡𝑡𝑆𝑆(𝐼𝐼𝑐𝑐)⨁𝐼𝐼 Eq (4) 
Where 𝜆𝜆𝑡𝑡 means the scale factor of edge information, and ⨁ means the operation of 253 
addition pixel by pixel.  254 
 By adding the scale factor calculated by the Sobel operator to the input image, the 255 
neural network can integrate the information of texture structure and edge intensity to 256 
pay more attention to the rib edge information and reduce the sensitivity to noise. The 257 
Sobel filter assigns higher weights to the edge region of the original image and lower 258 
weights to other regions, which directly enhances the use of image edges by the neural 259 
network. 260 
 261 
2.5. Fusion architecture 262 
 As shown in Fig.2, all three parts are integrated into the whole framework. Our 263 
work aims to integrate each region proposal feature 𝑓𝑓 of contralateral, contextual and 264 
edge enhanced modules into the final output 𝑂𝑂 . Integrate by simply connecting 265 
operation to make the contribution of each stream equal, which may ignore the high-266 
value features from a module. Feature fusion methods may enhance some feature 267 
modules and suppress some feature modules. If we simply combine each feature 268 
extraction module mechanically, it is easy to lose the features that should be enhanced. 269 
Therefore, we need to design a fusion method that conforms to the characteristics of 270 
deep learning. This study needs to select appropriate scale features for different feature 271 
extraction modules. The effective fusion of features is achieved by introducing self-272 
learning to select appropriate scales. We link the results of the three modules by 273 
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assigning different weight factors to the feature extraction module through the weight 274 
distribution module. A weight distribution module is introduced as 𝑊𝑊 that can perform 275 
backward propagation and adaptively determine the weights of different modules. The 276 
weight distribution module is inspired by the attention mechanism and consists of 277 
multiple convolutional and pooling layers. The specific process can be expressed as the 278 
following Equation 5: 279 

𝑊𝑊 = 𝑤𝑤1𝑓𝑓1 + 𝑤𝑤2𝑓𝑓2 + 𝑤𝑤3𝑓𝑓3 Eq (5) 
Where 𝑓𝑓1, 𝑓𝑓2 and 𝑓𝑓3 mean the feature maps result of contralateral, contextual and edge 280 
enhanced modules, 𝑤𝑤1, 𝑤𝑤2 and 𝑤𝑤3 mean the attention mechanism operation.  281 
 The final output feature maps of CCE-Net can be expressed as O: 282 

𝑂𝑂 = 𝜆𝜆𝑊𝑊 + (1 − 𝜆𝜆)𝑓𝑓𝑐𝑐𝑡𝑡𝑜𝑜 Eq (6) 
Where 𝑓𝑓𝑐𝑐𝑡𝑡𝑜𝑜  means the feature maps of original rib patch, 𝜆𝜆  means the parameter 283 
weighting the importance of these three modules. 284 
 285 
2.6. Loss function 286 

The detection network architecture that combines the above three modules has been 287 
established. The loss function can calculate the error between actual values and 288 
predicted values. Cross entropy loss is chosen as the objection function and is given by 289 
Eq (7): 290 

𝑙𝑙𝐴𝐴𝑙𝑙𝑙𝑙 =  −
1
𝑁𝑁
�(𝐵𝐵 × log(𝐵𝐵�𝑚𝑚) + (1 − 𝐵𝐵) × log(1 − 𝐵𝐵�𝑚𝑚)) Eq (7) 

where y is the label and 𝐵𝐵𝑚𝑚 is the predicted output vector. 291 
 292 

3. Experimentals and Results 293 

3.1. Dataset 294 
A private dataset named Rib-NJFH is collected to train and validate our proposed 295 

method. Due to the protection of patient privacy, please forgive us that the dataset used 296 
in this study cannot be publicly available. The dataset contains 1639 DR images from 297 
Nanjing First Hospital, among which there are 2703 rib fractures. We use 1311 images 298 
for training, 164 images for validating, and 164 images for testing. All images are 299 
annotated and examined by experienced radiologists. 300 
 301 
3.2. Evaluation metrics 302 

The bounding box AP [41] and recall are calculated to evaluate the performance of 303 
the model. Considering rib fractures as a general target, AP50 is used as the main 304 
evaluation index. AP25 and AP75 are used as references. We believe that AP75 better 305 
reflects the accurate positioning performance of the fracture region due to its strict 306 
evaluation criteria, AP25 has relatively loose evaluation criteria to determine whether 307 
the test results are misjudged and thus better reflects the recognition performance of rib 308 
abnormalities, AP50 is a comprehensive performance index for fracture recognition and 309 
regional positioning [42, 43].  310 

𝐴𝐴𝑃𝑃 =  � 𝑃𝑃(𝑟𝑟)𝑑𝑑𝑟𝑟
1

0
 Eq (9) 

                                         311 
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The PR curve with the corresponding AUCs was calculated for validation datasets 312 
to evaluate the performance of the model. The Recall is defined by Eq (10): 313 

𝑅𝑅𝐴𝐴𝑅𝑅𝑅𝑅𝑙𝑙𝑙𝑙 =  
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑁𝑁
 Eq (10) 

Where TP and FN are the numbers of positive samples correctly classified and 314 
incorrectly classified, TN and FP are the numbers of negative simples correctly 315 
classified and incorrectly classified.  316 
 317 
3.3. Implementation details 318 
 The segmentation of the spine's central axis is needed to use in the contralateral 319 
module and the contextual module for our experiment. Specifically, the spine regions 320 
of the training set are labeled. An example of spine labeling is shown in Fig.4. The 321 
segmentation algorithm is used to complete the segmentation of the spine region in the 322 
image preprocessing part. After the segmentation results are obtained, image 323 
morphology is used to extract the central axis from the spine mask to obtain the 324 
contralateral patch. 325 
 326 

 327 

Fig.4. The spine line obtention. A red box marks the spine segmentation result. The 328 
spine line is used as the position basis of the image extraction of the contralateral 329 

module and the contextual module. 330 
 331 

 The data set is divided into the training set, the validation set and the test set at 332 
8:1:1. The image patches randomly cropped from DR images are resized to 640×640 333 
pixels. Rotation, horizontal and vertical flipping are used for data augmentation. All 334 
experiments are implemented using Pytorch on 2 NVIDIA 1080Ti GPUs. ResNet-50 is 335 
used as the backbone of the proposed method. We train our model for 50 epochs and 336 
test it every five times. For all training, the optimizer is stochastic gradient descent 337 
(SGD) with a weight decay of 0.001 and momentum of 0.9 to optimize all models and 338 
the batch-size is 2 on each GPU. The learning rate starts at 0.01 and reduces by a factor 339 
of 10 after 30 and 40 epochs. 340 
 341 
3.4. Models comparison 342 
 According to the characteristics of our dataset and detection task, we compare with 343 
methods that include Faster RCNN [44], Libra RCNN [45], Dynamic RCNN [46], 344 
Cascade RCNN [47] and YOLO v4 [48]. 345 
 346 
3.4.1. Quantitative Results  347 
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To validate the performance of CCE-Net, five mainstream algorithms are selected 348 
to implement the comparison experiments. For rib DR images, the performance metrics 349 
in the training sets can be achieved with the accuracy of 99.648 and the loss of 0.027. 350 
The validation set can achieve AP50 and Recall of 0.910 and 0.938. In the test sets, the 351 
model's detection performance yielded the AP50 of 0.911, and the Recall is 0.934, as 352 
shown in Table 1.   353 
 354 

Table 1 The quantitative comparisons performance of our method. 355 
Method AP50 AP75 AP25 Recall AUC 

Faster RCNN 0.787 0.349 0.878 0.875 0.816 
Libra RCNN 0.825 0.326 0.862 0.886 0.847 

Dynamic RCNN 0.887 0.516 0.904 0.903 0.901 
Cascade RCNN 0.910 0.781 0.911 0.929 0.933 

YOLO v4 0.813 0.689 0.816 0.881 0.840 
CCE-Net 0.911 0.794 0.913 0.934 0.941 

 356 
The five comparison models, including ‘Faster RCNN with ResNet-50’, ‘Libra 357 

RCNN’, ‘Dynamic RCNN’, ‘Cascade RCNN with ResNeXt-101’ and ‘YOLO v4’, are 358 
re-implemented using our dataset. We are committed to merging our proposed module 359 
into a two-stage network of Faster RCNN with ResNet-50 as introduced in Section 360 
3.  The performance of our method compared with different methods is presented in 361 
Table 1. The experimental results in Table 1 show that our method achieves the best 362 
performance in all evaluation metrics.  Our method equipped with ‘Faster RCNN’ 363 
achieves 15.76% AP50, 127.5% AP75 and 3.99% AP75 higher than the results of the 364 
original ‘Faster RCNN’ respectively, the Recall increase by 6.74%, which shows the 365 
advantages of the network in the rib fracture detection ability. In addition, due to the 366 
ResNet-50 backbone network, our method can achieve fast detection speed while 367 
ensuring detection accuracy. 368 

For all indicators, our method can achieve better results than other methods. The 369 
improvement of AP50 brought by our method is 10.42% (from 0.825 to 0.911), 2.71% 370 
(from 0.887 to 0.911) and 1.1% (from 0.91 to 0.911) when using ‘Libra RCNN’, 371 
‘Dynamic RCNN’ and ‘Cascade RCNN with ResNeXt-101’ to produce rib fracture 372 
proposals. Compared with ‘YOLO v4’, which is the one-stage model and achieved 373 
outstanding detection performance, the one-stage model with ‘YOLO v4’ achieves 374 
0.813 AP50 and 0.881 Recall. Our method is 0.098 and 0.053 higher than the 'YOLO 375 
v4' results, respectively.   376 

 377 
3.4.2. Qualitative Results 378 

Visualization images are used to show the difference between the proposed method 379 
and other methods. The results of CCE-Net and other methods are shown in Fig.5. The 380 
second column is the result of the proposed method. CCE-Net can effectively detect 381 
fracture targets. The third to seventh columns are the results of comparison methods. 382 
There are missed detections and false detections in the results of comparison methods.  383 

To illustrate the effectiveness of information extraction, feature maps of three 384 
different layers are visualized. The visualization includes the result and the feature maps 385 
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with sizes of 64, 32, 16 pixels. The feature maps of different sizes are enlarged to the 386 
same size and displayed by superimposing the original image. As shown in Fig.6, the 387 
proposed method can focus on more reasonable regions. Overall, the correctness of the 388 
proposed method is the best because it focuses on more reasonable image features. 389 

The PR curves of different methods on the validation data can be shown in Fig.7. 390 
For the results of CCE-Net with rib fractures detection, the method obtains good 391 
performance.  392 

 393 
Origin 
image CCE-Net Faster 

RCNN 
Libra 

RCNN 
Dynamic 
RCNN 

Cascade 
RCNN 

YOLO v4 

       

       

       
(a) (b) (c) (d) (e) (f) (g) 

Fig.5. The results demonstrate that the CCE-Net with three modules has better 394 
detection Precision and Recall performance. Blue, green, and red boxes stand for the 395 
patch position, ground truth, and results, respectively. (a) represent origin images. (b), 396 
(c), (d), (e), (f), and (g) represent results obtained via CCE-Net, Faster RCNN, Libra 397 

RCNN, Dynamic RCNN, Cascade RCNN, and YOLO v4, respectively. 398 
   399 

  
(a) (b) 

  
(c) (d) 
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Fig.6. The visualization images show that the CCE-Net can pay more attention to the 400 
rib fracture region as the decline in feature maps size. Feature maps are superimposed 401 
displayed on the original image through uniform scaling. (a) represent the result. (b), 402 
(c), and (d) represent the feature map of different sizes of 64*64, 32*32, and 16*16, 403 

respectively. 404 
 405 

 406 
Fig.7. The PR curves show that the CCE-Net has the best performance compared 407 

with other methods.  408 
 409 
3.5. Ablation study 410 

To validate the effectiveness of each module, an ablation study is conducted on the 411 
proposed model. We use the same training, validation, and test sets in all experiments. 412 
The ‘Faster RCNN with ResNet-50’ is used as the baseline model. The contralateral, 413 
contextual, and edge enhanced modules are removed from CCE-Net. The results of 414 
ablation are shown in Table 2 and Fig.8. The PR curves of the ablation experiment can 415 
be seen in Fig.9, which demonstrates the enhancement of our method.  416 

 417 
3.5.1. The effect of contralateral module  418 
 Compared with CCE-Net, if we remove the contralateral module, the performance 419 
is decreased by 1.9% and 0.76% on AP50 and Recall, respectively. The decline on AP50 420 
validates the effectiveness of the contralateral module on overlapping positions.  421 
 422 
3.5.2. The effect of contextual module 423 
 Removing the contextual module decreases performance by 1.67% and 2.52% on 424 
AP50 and Recall, respectively, compared with CCE-Net. It indicates that the contextual 425 
module enhances feature representation more for regions of structure repetition. When 426 
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adding the contextual module, partial fracture judgment is corrected based on the upper 427 
and lower adjacent ribs.  428 
 429 
3.5.3. The effect of edge enhanced image module 430 
 Compared with the contralateral module and contextual module, adding the edge 431 
enhanced module can boost the performance by 7.05% and 7.6% on AP50 and Recall, 432 
respectively. The edge enhanced module is encoded by edge information and texture 433 
information. This encoding mechanism affects the rib fracture localization, making the 434 
proposed method obtain more edge information gains. 435 
 436 
Table 2 The ablation study of our method. 437 

 Contralateral 
module 

Contextual 
module 

Edge 
enhanced 
module 

AP50 Recall AUC 

CCE-Net * * * 0.911 0.934 0.941 
 remove * * 0.894 0.927 0.933 
 * remove * 0.896 0.911 0.938 
 * * remove 0.851 0.868 0.909 

 438 

    
(a) (b) (c) 

    
(d) (e) (f) 

   
(g) (h) (i) 

Fig.8. These comparison cases show that the contralateral, contextual, and edge 439 
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enhanced module can improve detection capabilities at overlapping positions, 440 
structure repetition regions, and complex edge locations, respectively. (a), (b), and (c) 441 
represent different origin images. (d), (e), and (f) represent CCE-Net. (g), (h), and (i) 442 
represent the results of removing the contralateral module, contextual module, and 443 

edge enhanced module, respectively. 444 
 445 

 446 
Fig.9. The PR curves show the comparison of the ablation study. 447 

 448 

4. Discussion 449 

This study proposes a novel network architecture for image detection of rib 450 
fractures. Three modules are integrated into the Faster RCNN [44] framework. The 451 
contralateral module is used to obtain contralateral information of the same structure 452 
on both sides of the spine. The contextual module is added to extract image features of 453 
the upper and lower positions of the ribs. The edge enhanced module can stress rib 454 
image edges and obtain the target details more effectively. Experimental results show 455 
that combining these three modules improves the rib fracture detection performance in 456 
evaluation indicators. Compared to the performance of the Faster RCNN, AP50 is 457 
observed to increase by 15.76% from 0.787 to 0.911 and Recall increases by 6.74% 458 
from 0.875 to 0.934. Even compared with many mainstream detection algorithms, 459 
including Faster RCNN [44], Libra RCNN [45], Dynamic RCNN [46], Cascade RCNN 460 
[47] and YOLO v4 [48] in our experiment, the proposed method exhibits a certain 461 
performance improvement in detection effect and fewer training parameters. The 462 
ablation experiments are also conducted on CCE-Net by removing different modules. 463 
The methods after removing different modules have a certain degree attenuation of the 464 
detection effect in different scenarios. It is verified that the proposed method can detect 465 
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various rib fracture features more effectively and comprehensively. 466 
Rib image data are more conducive to detecting fractures when combined with the 467 

visual features of contralateral, contextual and edge images. One elaborate fusion way 468 
to accomplish the features fusion process is to fuse image features from three modules 469 
at different network stages.  The feature fusion process at the neck of basic two-stage 470 
network architecture is designed for the contralateral and contextual modules. They 471 
have different original images requiring feature extraction at the backbone stage. The 472 
edge image is added to the rib image straightforwardly before feature extraction for the 473 
edge enhanced module. In the feature fusion process details, we innovatively used a 474 
mixture of numerical operations and attention mechanisms to achieve a better feature 475 
fusion strategy. Besides, the different information contained in the three modules is 476 
needed to combine to make the final decision. The reasonable weight control of each 477 
feature channel is designed at the neck stage of the network, expecting that the proposed 478 
method can simulate the clinical diagnosis ideas of radiologists.   479 
  Although the proposed network architecture has good detection capabilities in rib 480 
fracture images, the detection results still have several limitations due to the complexity 481 
of medical data. Some failure cases are shown in Fig.10. The limitations of our method 482 
are as follows: (1) For some DR images, due to the curvature of the spine, the accurate 483 
extraction of curved spine lines still needs to solve; (2) Whether the texture and 484 
structural similarity of rib images can be better integrated is also an interesting research 485 
topic. To settle these issues, it deserves further study to design a more efficient module 486 
to explore the contralateral contextual information and enhance the extraction of 487 
information. 488 
 489 

  
(a) (b) 

Fig.10. These failure cases demonstrate that our proposed method is still worth 490 
improving. (a) The origin image, (b) CCE-Net. 491 

 492 

5. Conclusion 493 

 This study proposed a CCE-Net based on contralateral, contextual, and edge 494 
enhanced modules to detect rib fracture. A rib fracture is a kind of small target object, 495 
which is difficult to detect integrally. Following the valuable experience of radiologists 496 
in diagnosis, new modules were added to the design of the detection network. CCE-Net 497 
unified contralateral, contextual and edge information together. Compared with the 498 
traditional detection network, CCE-Net can capture more effective information. We 499 
established the rib fracture database with 1639 DR rib images to train the CCE-Net 500 
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model. A total of 2703 rib fractures were in our database labeled by experienced 501 
radiologists. Based on experiments, compared with other methods, its performance can 502 
improve the medical image detection ability of rib fracture targets. The detection 503 
performance of the CCE-Net was significantly improved than the current methods. 504 
CCE-Net attained AP50 0.911, AP75 0.794, AP25 0.913, and Recall 0.934. It can 505 
reduce workload for radiologists and assist radiologists in rib fracture diagnosis. 506 
 507 
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