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Abstract. Communicating living systems detect and process a multiplicity of events with degeneracy, to con-
tinuously cope with environmental aleatoric incertitude. The concept of holon, communicating at various scales
of living organizations, is hereafter formalized through dynamical systems driven by the multiplicity of statis-
tical models. Then, the stimulus-response of elementary biological holons can be modeled by memoryless
Boolean automata with different signal processing methods, in presence of noise and stochastic interference.
Detection of a specified signal, to update the automaton state, can be performed via multiple families of up-
date functions, with differentiated balances between sensitivity and specificity in presence of interference: (i)
Neyman-Pearson update functions provide the best possible sensitivity to detect the signal of interest in absence
of interference, but cannot guarantee a desired specificity ; (ii) by detecting large amplitudes of any signal in
noise, update functions based on Random Distortion Testing yield a suboptimal sensitivity to detect the signal
in noise, but guarantee a wanted specificity even in presence of interference. Thus, statistical inference theories
offer functional and structural redundancy and open prospects to model fractal-like holarchies, via networks of
communicating degenerated automata, to feature properties of the immune system.

1 Introduction

Living systems, from cells to micro and macro-
ecosystems, interact and adapt to their environment
through permanent interactions and communications to
perceive a multiplicity of events and detect signals of po-
tential interest in noise and stochastic interference. Per-
ception and detection occur within cell molecules, be-
tween cells, among and between multicellular organisms,
to trigger biochemical reactions, molecular/cellular diver-
sification, organism proliferation/selection and changes of
state in living systems. Networked communication sys-
tems then occur at the level of the micro-ecosystems that
are hosted in holobiont organisms, whose commensal mi-
crobiota is controlled by their immune systems. In turn,
these micro-ecosystems are wired together to constitute
macro-ecosystems connecting multicellular organisms in
social-ecosystems. State transition models were presented
in [1], [2] to account for the complex cell communica-
tions characterizing the immune ecosystems [3] and sum-
marized in Figure 1. In these works, state transition mod-
els are state-machines whose state-diagram transitions are
driven by rules.

In the present paper, we move from such a top-
down approach, where state-machines are black boxes,
to a bottom-up approach involving sensitive and reactive

∗e-mail: dominique.pastor@imt-atlantique.fr
∗∗e-mail: erwan.beurier@gmail.com
∗∗∗e-mail: veronique.thomas-vaslin@sorbonne-universite.fr

holons whose behavior is probabilistic according to ran-
dom contextual changes. By so proceeding, we thus aim
to improve modeling approaches by developing cognitive
network models.

Understanding and modeling the balanced sensitivity
and specificity of signal detection performed by living sys-
tems and required for these systems to communicate to-
gether is therefore of particular interest. This dynamic
equilibrium is the consequence of the living system co-
evolution with extremely high diversification and selection
of structures and functions, including self-assembly and
transmission of molecules and cells. The multiplicity of
solutions induces resilience of dynamical living systems,
but also potential disorders and failures.

We thus wonder whether a multiplicity of biological
solutions generated by stochastic combinations and selec-
tion through evolution, could allow to consider a multi-
plicity of criteria for performance and/or optimality, each
criterion being aimed to conciliate sensitivity and speci-
ficity. In this respect, we ask whether communication and
resilience of a dynamical system could be attained through
multiple statistical models, allowing for degeneracy of
structure and functions. Indeed, biological dynamical sys-
tems as cells receive and perceive a multiplicity of physi-
cal or biological events and process them as a cascade of
fluxes, through interacting molecules. These molecules act
as adapted “sensors” issued from the long-term selection
during species co-evolution to detect and transmit signals
with various sensitivity and specificity. These sensors al-



Figure 1: Abstraction of biological communicating living holons, as dynamical systems perceiving fluxes of events,
detecting signals and reacting in self-similar networks. As an example (adapted from [3]), a cell is the smallest au-
tonomous living dynamical system that can be modeled as a perceptive/reactive degenerate holon capable of perception,
recursive transmission and reconfiguration of its state and functions. A cell is a local observer equipped with a network
of thousands of internal and external holon-molecules that can combine together to make the cell integrate internal and
external fluxes of changes. Holons can communicate by integrating input signals, transmitting flux of changes and gener-
ating output signals and actions.

low molecules to detect more or less expected signals, in
presence of interference and noise, and to process such
signals through a cascade of transmissions and reactions,
to finally trigger a change of the system state. The immune
system of high vertebrates moreover provides adaptive de-
generated solutions, through stochastic receptors clonally
expressed by lymphocytes and leading to adaptive capaci-
ties, regulations and self-organization.

A conceptual framework to model and simulate living
systems as “[. . . ] self organizing open hierarchical sys-
tems” [4] is provided by the concepts of holon and hol-
archy [5]. “A holarchy is according to A. Koestler a tree-
like hierarchy where the nodes of the tree — the compo-
nents of the hierarchy — are autonomous intelligent act-
ing I/0 systems” [4]. The holons are the components of the
holarchy. In Koestler’s view, a holon is a whole, which is
itself included in a vaster whole. A holon is autonomous in
various senses: first, it can deal with events without “au-
thorization” or “instruction” from any monitor; in addi-
tion, it communicates with other holons at the same level,
but also between superordinate and subordinate structures.
Mella extended this concept up to social holons and human
artifacts [6].

A holon (also called a monad by Ehresmann [7]) pre-
serves its identity while its internal components are con-
tinuously repaired or replaced. Then, the concept of holon

appears as a suitable concept encapsulating the “fractal-
like” structure of the living systems at any scale. By
fractal-like structure, we do not mean that we retrieve the
same pattern at every scale of the living system. We rather
mean that the same type of communication processes, sup-
ported by agents with the same type of properties, are en-
countered at every scale of the living system and obey to
self-similar cascades of signal processing.

The concept of holon was previously used in [3] to
propose a model communication in the immune system
through the notions of holon-cell, holon-lymphocyte and
holon-organism. Such a model allowed to consider the
recursive self-assertion and integration required for the
dynamical individuation of the holon-lymphocytes in the
communicating immune system evolving in the changing
environment of vertebrate organisms. It accounts for the
fact that, at each scale of the vertebrate organism and im-
mune system organization (organism, cells, receptors), we
face networks of biological agents whose patterns clearly
differ from one scale to another, but that however interact
and communicate via similar processes with similar prop-
erties and consequences. Cells equipped with a diversity
of molecules displaying a diversity of molecular binding
sites are typical examples of biological holons [3], as il-
lustrated by Figure 1.

In the present paper, we follow Pichler who wrote that



Figure 2: Automaton communication based on a multipliticy of criteria for signal detection. Facing a multiplicity of
events and interference fluxes (schematized here by a superposition of colors), a discrete dynamical system (a biological
holon, mathematically modeled as an automaton) should use a multiplicity of criteria to balance its performance and
potential optimality, in terms of signal detection (sensitivity or Pdet) vs. false alarm avoidance (specificity or 1 − Pfa),
according to the changing environment and context of the signal detection. This balance can be sought by resorting
to a multiplicity of statistical models, functions and structures. The signal detection on the basis of an input can be
abstracted by an “update function” aimed at discriminating the signal from interference and noise. The outcome of the
update function updates the holon state, which in turn triggers the transduction/transmission of a readout signal via a
readout function. The automaton internal cascade of treatments thus allows for the holon action and the transmission of
an external signal to other holons. The table at the bottom of the figure benchmarks the NP update functions and the RDT
update functions by comparing the respective criteria they optimize.

“[. . . ] as seen from the systems-theoretical point of view,
the most desirable formal model for a component of a ho-
larchy is given by a dynamical system with input and out-
put” [8]. We thus seek models of living holons as dynam-
ical systems that capture input signals, change state and
output signals. Such a model is suggested by the typical

holon-cell properties summarized by Figure 1. The same
holds for antigen recognition molecules expressed by lym-
phocytes and that achieve interactions and perceptions of
millions of antigens with various affinities. Collectively,
this leads to a dynamic interactive network, where adap-
tive clonal selection of lymphocytes with degenerate reper-



toires can occur according to environmental changes.
On the other hand, degeneracy, in the scientific dis-

course, is a crucial feature of living systems at all scales
[9]. In life science, degeneracy is not synonymous to de-
generation and should therefore not be confused with de-
viance and decay of a system [10]. In fact, Edelman and
Gally, considering the nervous and immune systems, de-
fine degeneracy as “[. . . ] the ability of elements that are
structurally different to perform the same function or yield
the same output” [9]. Degenerate biological subsystems
or organs, albeit structurally different, can thus substitute
each other to perform a given task when one of them fails.
The Jerne idiotypic network [11, 12] is a perfect exam-
ple of degeneracy. Degeneracy also underlies the cross-
reactivity of immunoreceptors expressed by lymphocytes
[13] and that gives rise to novelty, evolvability, adaptive-
ness and functional integrity.

Since dynamical systems are generic models of liv-
ing holons and degeneracy can mathematically be modeled
through the Multiplicity Principle (MP) introduced in [14]
and extensively studied in [15], the question addressed be-
low is thus whether we can propose mathematical mod-
els of dynamical systems satisfying the MP. In the vein
of Pichler, such mathematical models could prove help-
ful to model and simulate in multi-agent systems “[. . . ]
the kind of complex biological or socio-economic systems
which Koestler had in mind” [4].

2 Summary of main results

The mathematical models exhibited in the sequel, as a first
answer to the question above, are at the interface between
theoretical biology, the theory of dynamical systems, cat-
egory theory — from which the MP derives — and statis-
tical inference. So, to ease the reading of this paper and
convey the main concepts underlying the approach, this
section summarizes our main results. In this section and
throughout the paper, mathematical details will be omitted
in favor of intuition. The interested reader can refer to pa-
pers cited herein for mathematical details.

To begin with, Figure 2 summarizes the multiplicity of
aleatoric incertitudes and biological solutions selected by
nature. This figure also features their abstractions consid-
ered in this paper to account for the capability of holons to
perform detection, communication and achieve resilience
in adverse conditions.

In Section 3, holons are abstracted as automata, also
called Discrete Dynamical Systems in [16, 17]. Among all
possible automata, memoryless Boolean automata are then
our main focus because they can be interpreted as basic
stimulus-response holons with the capacity to detect a sig-
nal in noise and possible interference. The detection of the
signal by a given memoryless Boolean automaton is per-
formed by the automaton update function f updt, interpreted
as a statistical test whose outcome triggers an update of
the automaton state, regardless of the automaton previous
state. Because the prior probabilities of presence and ab-
sence of the signal are unknown or even not defined, our
approach is fundamentally non-Bayesian. The approach
followed below thus aims to achieve a balance between

Pdet, the probability of detection, that is the probability of
detecting the signal when this one is actually present, and
1 − Pfa, the probability of false alarm, that is the proba-
bility of erroneously detecting this signal — and thus trig-
gering a spurious updating of the automaton state, when
this signal is actually absent 1 This balance is illustrated in
Figure 2 between the “sensitivity” and “specificity” used
in biology and that are the empirical counterparts of Pdet
and 1 − Pfa, respectively. Too many erroneous changes
of states may significantly affect holons and the overall
system they compose, especially in a biological context
where such changes may trigger a system bolting. In the
non-Bayesian framework, the balance is further controled
by imposing a maximum value — or level — for Pfa.

In Section 4, we propose a multiplicity of criteria to de-
sign update functions for signal detection according to the
changing random context of the holon. The work hypoth-
esis is that a system composed of memoryless Boolean au-
tomata should be resilient if the automata are equipped
with detectors with different performance and potential
optimality criteria that are “degenerate” in the mathemat-
ical sense specified by the MP. In this respect, we exhibit
two distinct families of update functions for memoryless
Boolean automata. Each update function of each family
guarantees a sufficiently good and possibly optimal Pdet,
while maintaining the Pfa below a certain level. The first
family is that of all Neyman-Pearson (NP) update func-
tions based on the standard likelihood detection of a sig-
nal in noise (Neyman-Pearson theory). These update func-
tions should be convenient to model germline encoded cell
sensors and receptors. The second family is that of all
RDT update functions that aim at detecting sufficiently
large distortions of this same signal in noise (RDT the-
ory). These RDT update functions are surrogates to NP
update functions to detect the signal of interest in noise
when some interference is present. Indeed, the effect of
interference on the noisy signal can suitably be modeled
as a distortion of the signal in noise, a situation to which
RDT update functions are tailored. RDT update functions
are expected to be suitable for modeling variable regions
of immunoreceptors stochastically expressed by lympho-
cyte clones at the somatic level. In this respect, to the best
of our knowledge, the present work is the first to exploit
statistical inference as a theoretical tool to model holons
as elementary components of leaving systems.

3 Memoryless Boolean automata

As highlighted in [4, 8], the theory of Dynamical Systems
(DS) provides us with a suitable framework — summa-
rized in Figure 2 — to model biological holons (Figure
1): a given holon captures an input signal; this signal and
the current state of the DS induce a new state for the DS;
according to its new state, the DS completes the transduc-
tion of the input signal by emitting an output signal. This
output signal flags that the holon is still active and com-
municates to “the rest of the world” an information about

1In textbooks such as [23], the probability of false alarm is also called
the size of the test. To alleviate the terminology, we will not use this
terminology in the sequel.



its reaction to the input signal.
We can reasonably assume that processes evolve in

discrete time at the holon scale. Therefore, we rather focus
on automata and memoryless Boolean automata, particu-
larly suitable for a direct implementation on a computer.
Mathematically, we follow [16, 17] — where automata
are called Discrete Dynamical Systems — and pose the
following definition:

Definition 1 (Automaton) Given two sets Xin and Xout,
an automaton, of which input (resp. output) signals are the
elements ofXin (resp. Xout), is a tripleA = (S, f updt, f rdout)
such that:
(i) S is a set called the set of states ofA;
(ii) f updt : Xin × S → S is a function called the update
function ofA;
(iii) f rdout : S → Xout is a function called the readout
function ofA.

With the notation used in the definition above, since
an output signal Xout ∈ Xout of A is the outcome of the
readout function f rdout, we will call Xout a readout signal.
Note that the system does not issue a readout signal Xout

according to a given input signal Xin ∈ Xin of A, but to
the current state of the automaton. It is also worth notic-
ing that no specific condition is imposed to f updt and f rdout.
Note also that S, Xin and Xout can be any sets. The defi-
nition given above for an automaton is thus very general.
We restrict it now to the case of memoryless Boolean au-
tomata, which will be our focus throughout the rest of the
paper. In what follows, we set B = {0, 1}.

Definition 2 (Memoryless Boolean Automaton)
Given two sets Xin and Xout, letA = (S, f updt, f rdout) be an
automaton with input (resp. output) signals in Xin (resp.
Xout).
(i)A is said to be memoryless if f updt : Xin → S;
(ii)A is said to be Boolean if S = B.

The update function of a memoryless automaton depends
on the input signal only. It is thus memoryless in the
sense that it is essentially reactive, reacting to any in-
put regardless of its current state (Figure 2). It is thus
suited to model stimulus-response holons. In the sequel,
we consider memoryless Boolean automata. Such an au-
tomaton is thus a triple A = (B, f updt, f rdout) such that
f updt : Xin → B. It is then worth noticing that in the
particular but practical case where Xin = Rn for some inte-
ger n and R is the standard set of real numbers, an update
function f updt : Rn → B is nothing else but a test in the
statistical sense2.

4 Degeneracy of memoryless Boolean
automata

4.1 Reconciliating optimality and degeneracy

The definitions proposed above for automata are very gen-
eral. In the particular case of a memoryless Boolean au-
tomaton whose set of input signals is Xin = Rn, we have

2Strictly speaking, we should assume that f updt is measurable. How-
ever, measurable functions exist in so great profusion that all tests of
practical interest in statistical inference are measurable.

further noticed that the update function f updt : Rn → B is
a statistical test. There is a plethora of statistical tests and
we can thus wonder whether there would not exist some
“optimal” choices for f updt : Xin → B.

From the biological point of view, the sought for an
optimal solution might seem of lesser importance than es-
tablishing that our models of holons satisfy a mathematical
formalization of biological degeneracy. Since the MP is
a mathematical formalization of degeneracy, the biologist
might actually consider the MP as a far more relevant con-
cept than optimality to seek models capable of accounting
for the sustainability of living systems (see Figure 2).

Our approach reconciliates degeneracy and optimal-
ity by exploiting the fact that there is no unique and ul-
timate notion of optimal update function to detect the sig-
nal. As recalled in Section 2, when the prior probability
of presence of the signal of interest is unknown or not de-
fined, which is a reasonable assumption to model biologi-
cal holons, optimality in the non-Bayesian sense is defined
with respect to a certain criterion to achieve the best pos-
sible Pdet with a Pfa below a certain level (cf. Figure 2).
In addition, optimality depends on the holon environment
and can thus evolve according to the context. Therefore,
different criteria tailored to different contexts may lead to
different optimal solutions. If each of these criteria is rel-
evant for a given problem, several optimal solutions can
thus exist for the same problem. This multiplicity of cri-
teria and solutions yields some functional and structural
redundancy that can be exploited in case one of these so-
lutions is unavailable at a given time because of degraded
or adverse conditions.

Since we focus on the signal detection via the update
function of an automaton, readout functions are not in-
volved in what follows and will be considered in further
work. Indeed, a readout signal can be regarded as a trans-
duction of the input signal according to the outcome of the
update function. A readout signal thus conveys the deci-
sion of the automaton as to the presence or the absence of
the signal. Thus, it is rather at the update function level
that we can actually expect to model degeneracy, as sum-
marized by Figure 2.

4.2 A multiplicity of families of update functions
for signal detection in interference and noise

A first attempt to embrace both the MP and the design of
optimal tests within the same framework is provided in
[18] from a pure statistical point of view. In what follows,
we use arguments similar to those given in [18] to exhibit
families of update functions that satisfy the MP. As a con-
venient shortcut, we hereafter say that these families of up-
date functions are “degenerate” as compared to each other,
as a reminder of the corresponding biological notion.

At this stage, we must introduce some additional ma-
terial, mainly aimed at modeling the input signal to be
treated by f updt. In this respect, we incorporate some ran-
domness in our model, as a crucial feature. To cast the
following in a probabilistic setting, we first assume that
all the random variables and vectors encountered below
are defined on the same probability space, the probability



measure being hereafter denoted by P.
LetA = (S, f updt, f rdout) be a memoryless Boolean au-

tomaton. The signal ξ to detect is hereafter modeled as
an n-dimensional real vector ξ = (ξ1 . . . , ξn) ∈ Rn where
ξ1, ξ2, . . . , ξn are n available samples in time of the input
signal. Since this signal may be either captured or not by
A, we introduce a random variable ε to indicate whether ξ
is randomly present or absent: if ε = 0, the signal is absent
and if ε = 1, this signal is present.

Signals emitted by other holons can interfer with ξ at
the input of A. The resulting of all these possible inter-
fering signals is denoted by ∆. We assume that it is an n-
dimensional real random vector ∆ = (∆1, . . . ,∆n), where
∆1, . . . ,∆n are n available random samples of ∆. These
samples are supposed to be captured at the same times as
those of ξ. When P [∆ = 0] , 1, since ∆ is unknown to
A and may result from highly variable signals emanating
from a plethora of holons, we do not assume any known
probability distribution for ∆. We assume that this inter-
ference is additive. Accordingly, the signal received by the
automaton from its (external) environment is defined as

X rx = εξ + ∆ (1)

As any device that senses its environment, the mem-
oryless Boolean automatonA introduces some corrupting
noise when it receives X rx. This noise is hereafter denoted
by W. It is supposed to be an n-dimensional real random
vector W = (W1, . . . ,Wn), where W1, . . . ,Wn are n noise
samples captured at the same times as those of ξ and ∆.
We further assume that W is independent of ∆. In contrast
to the interference ∆, the noise W can reasonably be as-
sumed to have a relatively stable probability distribution.
In the sequel, we choose the standard Gaussian probability
distribution N(0, In) for W, where N(0, In) is the centred
Gaussian distribution whose covariance matrix is the n× n
identity matrix In. Finally, we assume that the received
signal X rx is additively corrupted by W. Our model for the
input signal Xin of A is therefore standard in time series
analysis and statistical signal processing since it writes as:

Xin = X rx +W = εξ + ∆ +W (2)

Given Xin as defined by Eq. (2), the problem is to devise
an appropriate update function f updt to estimate the value
of ε. We have already seen that such an update function is
actually a statistical test. Therefore, to proceed further, we
need additional probabilistic definitions.

First, we define the probability of false alarm
Pfa
[
f updt
(
Xin
)]

of a given update function f updt for A, as
the probability that f updt(Xin) is 1 when ξ is absent — that
is, when ε = 0. With the assumptions above, we have:

Pfa
[
f updt
(
Xin
)]
= P
[
f updt(∆ +W) = 1

]
Second, we define the probability of detection of f updt as
the probability Pdet

[
f updt
(
Xin
)]

that f updt returns 1 when ξ
is actually present — that is, when ε = 1. We thus have:

Pdet
[
f updt
(
Xin
)]
= P
[
f updt(ξ + ∆ +W) = 1

]

We now consider two different families of optimal update
functions and will explain why these two families are de-
generate.

Neyman-Pearson (NP) update functions. Our first fam-
ily is the family of optimal update functions that we can
derive if ∆ = 0, in which case

Xin = εξ +W (3)

This family is that of the NP update functions resulting
from the Neyman-Pearson theory [19].

Given γ ∈ (0, 1), the NP update function is hereafter
defined by setting:

f updt
NP(γ)(X

in) =
{

1 if
∑n

i=1 ξiX
in
i > ∥ξ∥Φ

−1(1 − γ)
0 otherwise

(4)

with Xin = (Xin
1 , . . . , X

in
n ) and where Φ is the cumulative

distribution function (cdf) of N(0, In). This update func-
tion f updt

NP(γ) is optimal in the NP sense because it satisfies
the following two properties. First,

Pfa
[
f updt
NP(γ)

(
Xin
)]
= P
[
f updt
NP(γ) (W) = 1

]
= γ (5)

This property garantees that the memoryless Boolean au-
tomaton equipped with this update function controls the
rate of false detections of ξ in absence of interference. Sec-
ond, f updt

NP(γ) provides the highest possible probability of de-
tection among all possible update functions whose proba-
bility of false alarm does not exceed γ. Thus, if f updt is any
update function such that Pfa

[
f updt (εξ +W)

]
⩽ γ then:

Pdet
[
f updt
NP(γ)

(
Xin
)]
⩾ Pdet

[
f updt
(
Xin
)]

After some algebra, we have:

Pdet
[
f updt
NP(γ)

(
Xin
)]
= P

[
f updt
NP(γ) (ξ +W)

]
= 1 − Φ

(
Φ−1(1 − γ) − ∥ ξ ∥

)
Unfortunately, when P [∆ = 0] , 1, f updt

NP(γ) is definitely
hopeless because, as stated in [20, Appendix A], it incurs
an unavoidable increase beyond γ of its probability of false
alarms, whatever small the amplitude of ∆ can be. In this
sense, the NP update function is not robust to model mis-
matches and is thus not suitable to guarantee a specified
probability of false alarm in presence of a non-null inter-
ference ∆.

Random Distortion Testing (RDT) update functions. In
contrast, the RDT approach, introduced in [21] and ex-
tended in [22], aims to overcome the foregoing issue by
addressing a different question from that tackled by the
NP update function.

Although we do not assume a known distribution for
the interference ∆, we bound our lack of prior knowledge
about this distribution by assuming the existence of a tol-
erance τ ∈ (0, ∥ ξ ∥/2) such that ∥∆∥ < τ. It follows from
this assumption and Eq. (1) that{

ε = 0 ⇔ ∥X rx∥ ⩽ τ
ε = 1 ⇔ ∥X rx∥ > τ



Therefore, for any interference ∆ such that ∥∆∥ < τ, de-
ciding on the presence (ε = 1) or the absence (ε = 0) of
ξ, when the input signal is Xin given by Eq. (2) and can be
rewritten as Xin = X rx+W, is equivalent to testing whether
∥X rx∥ exceeds τ or not. Such a problem is exactly a Ran-
dom Distortion Testing (RDT) problem as defined in [21].
The RDT theory in [21] thus provides us with an optimal
RDT update function given by:

∀x ∈ Rn, f updt
RDT(γ)(x) =

{
1 if ∥x∥ ⩽ λγ(τ)
0 otherwise

where λγ(τ) is calculated according to [21, Lemma 2].
It is important to remark that the RDT update function

harnesses the amplitude of the input signal. This is a key
feature of the RDT theory: it basically aims at comparing
some measure of the input signal amplitude to a suitable
threshold. We write "some measure of the input signal
amplitude" to convey the idea that we have many ways to
measure this amplitude, depending on the environmental
conditions. The interested reader can refer to [21] or [22]
in this respect.

In the definition of f updt
RDT(γ) above, the parameter γ has

exactly the same meaning as above: it is the maximum
value specified for the probability of false alarm of the
RDT update function. In fact, it can be proved that [21]:

Pfa
[
f updt
RDT(γ)(X

in)
]
⩽ γ (6)

In addition, according to [21, Theorem 2, statement (ii)]

Pdet
[
f updt
RDT(γ)(X

in)
]
⩾ Qn/2

(
∥ ξ ∥/2, λγ(τ)

)
(7)

where Qn/2 is the generalized Marcum function [24].
Thus, in case of an interference, f updt

RDT(γ) keeps control of
both its probability of false alarm and its probability of de-
tection, whereas f updt

NP(γ) cannot guarantee its probability of
false alarm anymore.

We will not describe further the criterion that an RDT
update function optimizes. This criterion is slightly more
difficult to discuss than that satisfied by f updt

NP(γ), because it
requires introducing some material about the group invari-
ance of the problem as well as some considerations on con-
ditional probabilities. What actually matters with respect
to our purpose is the following.

First, f updt
RDT(γ) is a surrogate of f updt

NP(γ) for testing whether
ξ is present or not, even in presence of interference. Of
course, when there is no interference, f updt

RDT(γ) is subopti-

mal. In contrast, in case of a non-null interference, f updt
RDT(γ)

can still guarantee the same probability of false alarm as
in absence of interference, whereas f updt

NP(γ) cannot. In ad-
dition, the NP update functions and the RDT update func-
tions are based on different theories in statistics. It is worth
elaborating further on this point.

The NP approach is based on likelihood theory in bi-
nary hypothesis testing [23], via the notion of likelihood
ratio. In a few words, if fξ+W and fW are the probability
density functions of ξ + W and W, respectively, then the
likelihood ratio between the two possible hypotheses —
presence of ξ vs. absence of ξ — is L = fξ+W/ fW in ab-
sence of interference. Given γ ∈ (0, 1), it turns out that

comparing L(Xin) to a threshold chosen to guarantee that
Pfa
[
f updt
NP(γ)(X

in)
]
= γ amounts to comparing

∑n
i=1 ξiX

in
i to

∥ξ∥Φ−1(1− γ) to another threshold, as specified in Eq. (4).
In contrast, the RDT approach resorts to criteria that do

not involve likelihood ratio at all since, in this approach,
the statistical properties of the input signal are not sup-
posed to be known because the probability distribution of
∆ is itself unknown. Moreover, the NP update function is
optimal when there is no interference, whereas the RDT
update function is optimal when this interference is not
zero. For all these reasons, NP and RDT update functions
are simply not comparable. Albeit simple, these remarks
are decisive to explain, without getting the reader bogged
down into mathematical details, why memoryless Boolean
automata equipped with NP update functions and memo-
ryless Boolean automata endowed with RDT update func-
tions satisfy the MP.

More specifically, as conveyed by the term ”Multiplic-
ity Principle”, we need multiple solutions to state that de-
generacy is at work. These multiple solutions are simply
the NP and RDT update functions.

The functional redundancy sustained by the different
structures resulting from these multiple solutions is the
ability to detect the presence or the absence of the signal
ξ with a bounded probability of false alarm. Finally, the
NP and RDT update functions are structurally different be-
cause, as explained above, these update functions cannot
be compared together through the same preorder. For all
these reasons summarized at the bottom of Figure 2, we
can conclude that the family of NP tests and the family of
RDT tests are degenerate in the MP sense. As such, these
families should be convenient to model holons whose de-
generative properties in signal detection and communica-
tion allow them to evolve with resilience in fluctuating
contexts. A formal proof of this result can be achieved
by mimicking the reasoning followed in [18]. It is not pro-
vided here because it would require a significant amount
of additional material.

5 Conclusion
We have presented statistical models of elementary bio-
logical holons that detect signals in noise and presence of
interference and satisfy the multiplicity principle, a math-
ematical formalization of biological degeneracy. These
models are compatible with the degeneracy feature of liv-
ing systems and, in particular, might explain the resilience
of adaptive immune systems in vertebrates. They are based
on the notion of memoryless Boolean automaton and the
introduction of aleatoric incertitude to model input signals
of such memoryless Boolean automata. To detect signals,
these memoryless Boolean automata are equipped with
update functions belonging to families verifying the mul-
tiplicity principle.

A key feature of the approach is that we can use var-
ious statistical update functions to detect signals even in
adverse conditions. This might allow in future work to
model the perception of the biological holon by combin-
ing different sensor types. Therefore, in our approach, sta-
tistical inference is not used to describe or analyze data



but to model holons as elementary components of leaving
and immune systems. Our theoretical approach also em-
phasizes that degeneracy allows to optimize the sensitivity
(Pdet) while maintaining the specificity (1−Pfa) within the
same dynamical system.

We expect that this preliminary work along with our
purely mathematical results in [18] can lay the ground-
work to derive models of “fractal-like” holarchies, in the
continuation of research works such as [3, 4, 8, 26] among
others. We can also expect that our approach could be ben-
eficial to theoretical biology in the sought for new models
for real components of the immune system, at different
scales, from the molecule to the organism scale [25]. In
this respect, our on-going research involves a generaliza-
tion of the theoretical material proposed in this paper to
model such components.

However, to achieve such models via the holon-based
approach proposed above, the issue is that the concept of
holon is highly nonspecific. In particular, mentions of spe-
cific holons in biology are usually purely illustrative in ref-
erences such as those cited in this paper. Further scientific
efforts are thus needed to move from principles to mod-
els truly applicable in biology and capable of describing,
explaining and predicting biological phenomena.
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