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Stuttering is a speech disorder during which the flow of speech is interrupted by involuntary pauses and
repetition of sounds. Stuttering identification is an interesting interdisciplinary domain research problem
which involves pathology, psychology, acoustics, and signal processing that makes it hard and complicated to
detect. Recent developments in machine and deep learning have dramatically revolutionized speech domain,
however minimal attention has been given to stuttering identification. This work fills the gap by trying to
bring researchers together from interdisciplinary fields. In this paper, we review comprehensively acoustic
features, statistical and deep learning based stuttering/disfluency classification methods. We also present
several challenges and possible future directions.
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1 INTRODUCTION
Speech disorders or speech impairments are communication disorders in which a person has
difficulties in creating and forming the normal speech sounds required to communicate with
others [1, 2]. These disorders can take the form of dysarthria, apraxia, stuttering, cluttering, lisping,
and so on [1–5].
Dysarthria is defined as a speech disorder caused my muscle weakness (including face, lips,

tongue, and throat) controlled by nervous system. The patients with dysarthria produce slurred or
mumbled sounds with aberrant speech patterns, such as flat intonation or very low or fast speech
rate, which makes their speech very difficult to comprehend [6]. Cluttering is characterized by a
patient’s speech being too jerky, too rapid, or both. Persons with cluttering usually exclude/collapse
most of the syllables, or aberrant rhythms or syllable stresses, and also contain excessive amounts
of interjections such as so, hmm, like, umm, etc [6]. Apraxia is defined as a speech disorder when
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the neural path between the nervous system and the muscles responsible for speech production is
obscured or lost. The persons with apraxia knows what they want to speak, but can not speak due
to the fact that the brain is unable to send exact message to the speech muscles which can articulate
the intended sounds, despite of the fact speech muscle movements are working fine [6]. Lisping
speech disorder is defined as the incapability of producing sibilant consonants (z or s) correctly. The
sibilant sounds are usually substituted by th sounds. For example, the persons with lisping speech
disorder would pronounce the word lisp as lithp [6]. Stuttering speech impairment is different than
other speech disorders because it can be cured, if early intervention is being made to help the
persons who stutter (PWS) develop normal fluency [1]. Of all these speech impairments, stuttering
is the most common one1.
Stuttering - also called stammering/disfluency2 - is a neuro-developmental disorder that com-

mences when neural connections supporting language, speech, and emotional functions are quickly
changing [7], and is characterized by core behaviours which usually take the form of involuntary
stoppages, repetition and prolongation of sounds, syllables, words or phrases. Stuttering can be
described as an abnormally and persistent duration of stoppages in the normal forward flow of
speech [1]. These speech abnormalities are generally accompanied by unusual behaviours like head
nodding, lip tremors, quick eye blinks and unusual lip shapes, etc [8]. Fluency can be defined as
the capacity to produce speech without any effort, at a normal rate [9]. A fluent speech requires
linguistic knowledge in the spoken language and a mastery of the message content. Concerning
physiological aspects, a precise respiratory, laryngeal and supraglottic control movement is neces-
sary to maintain fluency [10]. When all these conditions are not met, speech disorder (stuttering)
can emerge. They can take the form of silent or filled pauses, repetitions, interjections, revisions
(content change or grammatical structure or pronunciation change), incomplete phrases [11]. Gener-
ally, the normal speech is made up of mostly the fluent and some disfluent parts. Notice that normal
disfluencies are useful in speech production, since they can be considered in time during which the
speaker can correct or plan the upcoming discourse. In some cases, like stuttering, disfluencies do
not help the speaker to organize his/her discourse. Indeed, contrary to persons without any fluency
disorder, PWS know what they want to pronounce but are momentarily unable to produce it [12].

Stuttering can broadly be classified into two types [1]:
• Developmental Stuttering: This stuttering is the most common one and it usually occurs in
the learning phase of the language, i.e. between two and seven. Recent researches conclude
that developmental stuttering is a multifactorial trouble including neurological and genetic
aspects [13, 14]. Indeed, fMRI studies show anomalies in neural activity before speech, i.e.
during the planning stages of speech production [15]. Furthermore, an atypical activation
in the left inferior frontal gyrus and right auditory regions [16, 17] has been highlighted.
Concerning the genetic aspects, Riaz et al. [18] observe an unusual allele on chromosom
12 by PWS. Drayna and Kang [14] identify 87 genes which could be involved in stuttering,
including one called GNPTAB, which was significantly present in a lot of PWS.

• Neurogenic Stuttering: This stuttering can occur after head trauma, brain stroke, or any kind
of brain injury. This results in disfluent speech because of the incoordintaion of the different
regions of the brain which are involved in speaking [19]. Even if neurogenic stuttering is
rare, it can be observed in children and adults regardless of their age.

Globally, stuttering concerns 1% of the world’s global population and its incidence rate is between
5% and 17% [20]. The difference between the prevalence and incidence rates can be explained
by the fact that developmental stuttering disappears in 80% of the cases before adulthood either

1https://www.healthline.com/health/speech-disorders
2In this review, we will use the terms disfluency, stuttering and stammering interchangeably
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without any intervention or thanks to a speech therapy. Thus, about 70 million people suffer from
this trouble which affects four times males than females [20]. As considered by the non-stuttering
persons, the disfluency affects the flow of speech only, however for PWS, it is greater than that.
Several studies show that PWS are ignored, teased and/or bullied by normo-fluent people [21]. The
PWS are usually rated less popular than their non-stuttering peers and less likely to be considered
leaders [21]. According to national stuttering association [22], 40% of the PWS have been repudiated
school opportunities, promotion or job offers and it affects relationships. The data should be assessed
in close conjunction with the fact that 85% of businessman consider stuttering as a negative element
during a job interview and prefer offering a work which does not require a customer contact [23].
All these elements explain that PWS develop social anxieties and negative feelings (fear, shame,
etc.) when they have to speak in public [24].

Stuttering appears to be complex and mysterious. Several factors that lead to stuttering includes:
stress, delayed childhood development, speech motor control abnormalities, as there is a strong
correlation between stress, anxiety, and stuttering [1]. Indeed, disfluencies are more frequent in
stress or anxiety conditions, in dual tasks including speech and another cognitive charge and when
they speak fast. Conversely, PWS produce less disfluencies when they sing in unison or speak
with an altered auditory feedback [25]. In a recent study, Smith and Weber [7], postulated the
mutifactorial dynamic pathways theory, where they asserted that the stuttering actually occurs
because of the failure of central nervous system in generating the necessary patterns of motor
commands for fluent speech. Thus, stuttering shows impairment in sensorimotor processes that
are responsible for speech production, and its orientation throughout the life of PWS is strongly
affected by linguistic and emotional aspects.
In conventional stuttering assessment, the speech language pathologists (SLP) or speech thera-

pists (ST) manually analyze either the PWS’ speech or their recordings [26]. The stuttering severity
is usually measured by taking the ratio of disfluent words/duration to the total words/duration [1].
The most conventional speech therapy sessions involve helping the PWS observe and monitor
their speech patterns in order to rectify them [1]. The speech therapeutic success rate recoveries
have been reported to be 60-80% when dealt in early stage [27]. This convention of detecting
stuttering severity and its improvement due to therapeutic sessions is very demanding and time
consuming, and is also biased and prejudiced towards the subjective belief of SLPs. Due to the
nature of stuttering, its therapeutic sessions are very intense course, that usually, extends to several
months (several years in some cases), which necessitates PWS to see the SLP regularly [28]. Usually,
the speech therapy sessions are private and are very expensive, thus makes it unaffordable to some
PWS. Thus, it is important to develop interactive automatic stuttering detection systems.

The automatic speech recognition systems (ASR) are working well for the fluent speech, but they
fail to recognise the stuttered speech. So, it would not be feasible for a PWS to easily access virtual
assistant tools like Alexa, Apple Siri, etc. [29]. The stuttering detection may help in adapting the
virtual assistant tools for the disfluent persons.

Therefore, automatic stuttering identification systems (ASIS) is the need of an hour which
provides an objective and consistent measurement of the stuttered speech. Consequently, with the
recent developments in natural language processing, machine learning and deep learning, it became
a reality to develop smart and interactive stuttering detection and therapy tools [30]. In-spite of the
fact, that there are numerous applications of ASIS, very little attention has been given to this field.
We define an ASIS as a compilation of techniques and methodologies that takes audio speech

signal as an input, pre-processes and categorizes them in order to identify the stuttering embedded
in them. When we take a broad view of ASISs, we can express it into several domains as shown
in Figure 2. It would be extremely useful to understand the stuttering better in order to enhance the
stuttering classification process. The stuttering problem is still an open problem and it has been
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approached through several techniques, most of them fall in the supervised learning category [31–
33]. An ASIS system which consists of a classifier and a supervised learning loss function is trained
on the data to recognize and identify stuttering types embedded in the audio speech signal. These
supervised learning systems require the stuttering embedded labeled data. To feed the data to
the model, it requires some preprocessing in order to extract useful features like Mel-frequency
cepstral coefficients (MFCCs) which reduces the original data into its important characteristics that
are essential for the classification purposes. In speech, these can be grouped into spectral, voice
and prosodic features. The spectral ones are the mostly used in the literature. In addition to these,
features from other modalities such as linguistic(textual) can also be incorporated to improve the
classification performance. Deep learning based classifiers have become common these days for
stuttering identification.

Different researchers have used different acoustic features and classifiers for stuttering detection.
As such, there is no systematic study which mentions the detailed analysis and challenges of
various stuttering detection methods. In this paper, we give an up-to-date comprehensive survey by
unifying all the stuttering methods. We also give a basic summary of various acoustic characteristics
of stuttering, that can be exploited in stuttering detection. This paper will be a valuable resource
for the researchers, engineers and practitioners. This paper discusses some stuttering datasets that
can be referenced by various researchers. Despite the recent advancements by deep learning (DL)
in speech recognition [34], emotion detection [35], speech synthesis[36], etc, it has not been much
used in the stuttering domain. Due to the data scarcity in stuttering domain, the DL has not been
explored in a great extent in stuttering detection. We recently proposed StutterNet trained on small
dataset, that shows promising results in stuttering detection. In this paper, we also present several
challenges faced by various stuttering detection methods and their possible solutions to show that
how we can efficiently use DL to boost stuttering detection from voice.

There are severalmodalities that are considered in stuttering detection, which include: speech [31],
visual [37], text [38], bio-respiratory signals [39], and functional near-infrared spectroscopy [40, 41].
This paper focuses mainly on the speech modality. Most of the stuttering modalities are very ex-
pensive to collect besides speech modality, because that is cheap and can be collected remotely by
a simple mobile application or a web interface.
The remainder of the paper is organised as follows. Section 2 discusses the various acoustics

properties of stuttered speech. This section describes how the stuttered speech impacts the various
characteristics like formant transitions, pitch, VOT, etc. Section 3 presents stuttering datasets that
have been used in the ASIS. Section 4.1 describes various acoustic features like MFCC, LPCC, etc,
that have been exploited in stuttering detection. This section also discusses all statistical machine
learning methods, that have been used in various stuttering detection events. Section 4.2 describes,
how deep learning can be used to model and detect various types of stuttering disfluencies. This
section also provides some preliminary studies of DL in stuttering detection, and discusses the use
of spectrograms in stuttering detection. Section 5 discusses various challenges that the current ASIS
systems are facing. Among them, few are data scarcity, hand engineered features, cross domain, etc.
This section also describes their possible solutions, that can be exploited to address the mentioned
challenges, and, finally, the concluding remarks are provided in Section 6.

2 CHARACTERISTICS OF STUTTERED SPEECH
Most brain scan studies show that, during fluent speech and silent rest, there is no difference in
cerebral activity between PWS and normal fluent speakers [42]. However, during stuttering, there
is a dramatic change in cerebral activity. The right-hemisphere areas which are normally not active
during normal speech becomes active, and the left-hemisphere areas, which are active during
normal speech becomes less active [5, 42]. It has also been found that there is under-activity in
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Stutter Type Definition Example
Blocks Involuntary pause before a word I w blockage/pause ant to speak

Prolongations Prolonged Sounds Sssssssam is kind
Interjection Insertion of sounds uh, uhm

Sound Repetition Phoneme repetition He w-w-w-wants to write
Part-Word Repetition Repetition of a Syllable Go-go-go back
Word Repetition Repetition of a Word Well, well, I didn’t get you
Phrase Repetition Repetition of several successive words I have, I have an iphone

Repetition−Prolongation Repetition and Prolongation Gggo b-b-bback
disfluencies occurring at the same time

Multiple Multiple disfluencies in a word or phrase Tttttt-Tttttt-Ttttttariq blockage/pause is kkkkind
False Start Revision of a phrase or a word I had- I lost my watch

Table 1. Various Stuttering Types

the central auditory processing area. In 1997, a study by Kehoe and Contributors [5], suggests that
adult PWS have an inability to integrate somatic and auditory processing. A brain study by Foundas
et al. [43] found that PWS have rightward asymmetry in planum temporale (PT), i.e, their right PT
is larger than their left PT, on the contrary, normal people’s PT is larger in the left side of their
brains. Studies based on motor data have been carried out about stuttering. The PWS also show
over-activity in the speech motor control area [5], in particular in the left caudate nucleus area.
Conture et al. [44, 45] observe inappropriate vocal folds abductions and adductions which lead
to anarchic openings and closure of the glottis. Concerning the supraglottic level, Wingate [46]
hypothesizes that stuttering is not a trouble dealing with sound production but a coarticulation
trouble. He theorizes that disfluencies occur during a fault line, which corresponds to the interval
when muscular activity due to a sound which have been produced is going off and muscular
movements for the following sound is going on. However in a recent study, Didirková and Hirsch
[47] show, thanks to EMA data, that stuttering is not a coarticulation trouble. They found correct
coarticulatory patterns in the fluent and stuttered utterances. Furthermore, another study based
on articulatory observation, notes that stuttered disfluencies and non-pathological disfluencies do
have common characteristics. However, stuttered disfluencies and non-pathological disfluencies
produced by PWS present some particularities, mainly in terms of retention and anticipation, and
the presence of spasmodic movements [48]. PWS tend to develop strategies allowing them to avoid
sounds or words which can result in a disfluency; such strategies consist in using paraphrases or
synonyms instead of the problematic segment [4].
Concerning stuttering-like disfluencies, several types have been observed: repetitions, blocks,

prolongations, interjections, etc, which are detailed in Table 1. Some works try to link the locus
of disfluencies and phonetic proprieties. Jayaram [49], Blomgren et al. [50], and Didirkova [51]
indicate that unvoiced consonants are more disfluent than their voiced counterparts. Furthermore,
Blomgren et al. [50] notices that disfluencies are more frequent at the beginning of an utterance or
just after a silent pause. Moreover, Didirkova [51] observes an important inter-individual variability
concerning sounds and/or phonetic features which are the most disfluent.
Acoustic analysis has been carried out about stuttering, including speech rate, stop-gap dura-

tion, vowel(V)-consonant(C) transition duration, fricative duration, voice on-set time (VOT), CV
transition duration, vowel duration, formants, glottis constriction, sharp increase in articulatory
power and closure length elongation before the speech segmented is released [52].
Dehqan et al. [53] studied the second formant (F2) transitions of fluent segments of persian

speaking PWS. They concluded that the F2 frequency extent transitions are greater in stuttering
speakers than normal fluent ones. The PWS takes longer to reach vowel steady state, but the
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overall F2 formant slopes are similar for both stuttering speakers and normal ones [53]. The
PWS generally exhibit slower speaking rates when compared to normal speakers. Several other
studies have investigated the CV formant transitions in stuttered speech. Yaruss and Conture [54]
examined the F2 transitions of children who stutter on syllable repetitions, and found no aberrant
F2 transitions. However, Robb et al. [55] analyzed the fluent speech segments of PWS, and showed
that F2 fluctuations are longer for voiced and voiceless stops than normal speakers. In a different
study by Chang et al. [56], where 3-5 year aged children were analyzed in picture-naming task.
The results showed that disfluent children produced smaller fluctuations of F2 transitions between
alveolar and bilabial place of articulations than did fluent children, and the overall of degree of
CV coarticulation is no different among stuttering and control groups. Subramanian et al. [57]
analyzed the F2 frequency fluctuations of voiceless stops, and revealed that near the onsets of CV,
the stuttering children exhibited smaller F2 changes than the normal speakers. Blomgren et al. [58]
found that PWS and normal speaker in /CVt/ token exhibit no differences in the F1 (average). The
stutters show significantly lower F2 in /Cit/ tokens than the control groups. The formant spacing
for /i/ is significantly lower in PWS than fluent persons [58]. Hirsch et al. [59] conducted a study by
analysing the first two formants (vowel space) in CV sequences between the stuttered and normal
group. At a normal speaking rate, stuttering group shows reduction in the vowel space, in contrary
to the fast speaking rate, where, the latter shows no noticeable deviation.

VOT is the duration of time between the release of a stop consonant and the beginning of vocal
fold vibrations [1]. Healey and Ramig [60] showed that for voiceless stops, chronic stuttering
exhibits longer VOT when compared with normal fluent persons. They showed that consonant and
vowel duration were longer only in real-world phrases like take the shape in contrast with nonsense
phrases like ipi saw ipi [60]. Hillman and Gilbert [61] also found that the PWS reveals longer VOT for
voiceless stops than fluent persons. Adams [62] found that not only voiceless stops exhibits longer
VOT in PWS, but also, voiced stops displays longer VOT than non-stuttering persons. No significant
VOT differences have been found in control and PWS groups [63]. In another study by Jäncke
[64], the PWS show strong variability in repeated production of VOT for voiceless stops, however,
there is no significant difference between the two groups. In a study carried by De Nil and Brutten
[65], it shows that the stuttering children exhibit more variability in VOT than their counterparts.
Celeste and de Oliveira Martins-Reis [66] also found that the stuttering group shows higher VOT
for voiceless stops. Brosch et al. [67] examined the VOT in stuttering children. They found that the
children with severe stuttering have higher values of VOT. Borden et al. [68] examined the VOT
of fluent utterances from PWS. Their study showed that the fluent utterances of PWS exhibit no
statistical differences in VOT and are within the limits of normal groups.
Fosnot and Jun [69] examined the prosodic characteristics of PWS and fluent children. They

found that the variability in pitch is greater in stuttered group, but slightly differ from the normal
group. In another study, it has been shown that the normal group and PWS show same patterns in
f0 deviation [70]. The stuttering occurs less significantly in low-pitched condition as compared to
high-pitched condition [70]

3 DATASETS FOR STUTTERING DETECTION RESEARCH
Data is an indispensable component of any DL model. DL saves feature engineering costs by
automatically generating relevant features, however require substantial amounts of annotated data.
Most stuttering identification studies so far are based on in-house datsets [3, 30, 33, 71, 72] with
limited speakers. In stuttering domain, there is a lack of datasets and several stuttering datasets
that have been collected so far are discussed below:
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Fig. 1. Speech waveforms and spectrograms of a speaker (male) saying Communication disorder. The left is
waveforms (amplitude v/s time); the right is a time–frequency plot using a wavelet decomposition of these
data. Top row is fluent speech; bottom row is stuttering (repetitions), occur at the “D” in “disorder.” Five
repetitions can be clearly identified by arrows in the spectrogram. (bottom right)

.

UCLASS. The most common concern in stuttering research is the lack of training data. University
College Londons Archive of Stuttered Speech (UCLASS) public dataset (although very small) [71]
is the most commonly used amongst the stuttering research community. The UCLASS comes in
two releases from the UCL’s department of Psychology and Language Sciences. This contains
monologues, conversations, readings with a total audio recordings of 457. Some of these recordings
contain transcriptions like orthographic, phonetic and standard ones. Of these, orthographic are the
ones which are best suitable for stutter labelling. The UCLASS3 release 1 contains 139 monologue
samples from 81 PWS, aged from five to 47 years. The male samples are 121 and female samples
are 18.

LibriStutter. The availability of small amount of labelled stuttered speech led to synthetic Lib-
riStutter’s creation [30]. The LibriStutter consists of 50 speakers (23 males and 27 females), and
is approximately of 20 hours and includes synthetic stutters for repetitions, prolongations and
interjections. For each spoken word, Kourkounakis et al. [30] used Google Cloud Speech-to-Text
(GCSTT) API to generate timestamp correspondingly. Random stuttering was inserted within the
four second window of each speech signal.
3url:http://www.uclass.psychol.ucl.ac.uk/uclass1.htm
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TORGO. This was developed by a collaboration between departments of Speech Language
Pathology Computer Science at University of Toronto and the Holland-Bloorview Kids Rehab
hospital [72]. This dataset comprises samples from seven persons, diagnosed with cerebralpalsy or
amyotrophic lateral sclerosis including four males and three females aged between 16 to 50 years.
In addition to this, it also contains samples from control speakers of the same age.

FluencyBank. This is a shared database for the study of fluency development which has been
developed by Nan Bernstein Ratner (University of Maryland) and Brian MacWhinney (Carnegie
Mellon University) [3]. The platform proposes audio and video files with transcriptions of adults
and children who stutter. The FluencyBank is an interview data of 32 PWS.

SEP-28k. The public stuttering datasets are too small to build well generaizable ASISs. So in order
to address this, Colin et al [33] recently curated a public version of Stuttering Events in Podcasts
(SEP-28k) dataset. This dataset contains a total samples of 28,177. The SEP-28k dataset is the first
publicly available annotated dataset with stuttering labels including (prolongations, repetitions,
blocks, interjections, fluent(no disfluencies)) and non-disfluent labels including (natural pauesm
unitelligible, unsure, no speech, poor audio quality and music)

4 AUTOMATIC STUTTERING IDENTIFICATION
4.1 Statistical Approaches
Stuttering identification, an interdisciplinary research problem in which a myriad number of
research work (in-terms of acoustic feature extraction and classification methods) are currently
going on with a focus on developing automatic tools for its detection and identification. Most
of the existing work detect and identify stuttering either by language models [73, 74] or by ASR
systems [75, 76], which first converts the audio signals into its corresponding textual form, and
then by the application of language models, detects or identifies stuttering. This section provides
in detail the comprehensive review of the various acoustic based feature extraction and machine
learning stuttering identification techniques, that have been used in the literature.

Acoustic Features: In case of developing any speech recognition or stuttering identification system,
representative feature extraction and selection is extremely an important task that affects the system
performance. The first common step in speech processing domain is the feature extraction. With
the help of various signal processing techniques, we aim to extract the features that compactly
represents the speech signal and approximates the human auditory system’s response [77].
The various feature extraction methods that have been explored in the stuttering recognition

systems are autocorrelation function and envelope parameters [78], duration, energy peaks, spectral
of word based and part word based [79–81], age, sex, type of disfluency, frequency of disfluency,
duration, physical concomitant, rate of speech, historical, attitudinal and behavioral scores, family
history [38], duration and frequency of disfluent portions, speaking rate [26], frequency, 1𝑠𝑡 to 3𝑟𝑑
formant’s frequencies and its amplitudes [81, 82], spectral measure (fast Fourier transform (FFT)
512) [83, 84], mel frequency cepstral coefficients (MFCC) [81, 85–87], Linear Predictive Cepstral
Coefficients (LPCCs) [81, 86], pitch, shimmer [88], zero crossing rate (ZCR) [81], short time average
magnitude, spectral spread [81], linear predictive coefficients (LPC), weighted linear prediction
cepstral coefficients (WLPCC) [86], maximum autocorrelation value (MACV) [81], linear prediction-
Hilbert transform based MFCC (LH-MFCC) [89], noise to harmonic ratio, shimmer harmonic to
noise ratio , harmonicity, amplitude perturbation quotient, formants and its variants (min, max,
mean, median, mode, std), spectrum centroid [88], Kohonen’s self-organizing Maps [84], i-vectors
[90], perceptual linear predictive (PLP) [87], respiratory biosignals [39], and sample entropy feature
[91]. With the recent developments in convolutional neural networks, the feature representation of
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Overview of ASIS

Datasets Processing Features Modalities Classifiers

UCL

LibriStutter

Torgo

FluencyBank

SEP-28k

Framing

Windowing

DCT

Filters

MFCCs

Spectrogram

LPCC

LFPC

LH-MFCC

PLP

Formants

Jitter

Shimmer

Pitch

Energy

i-vectors

Duration

MACV

SOM

APQ

ZCR

PP

Audio

H.Pulses

Textual

Visual

SM

DLM

MLP

SVM

HMM

GMM

Correlation

ANN

𝐾-NN

LDA

NBC

SOM

Fuzzy Logic

Rough Sets

DBF

CNN

ResNet

LSTM

Attention

FluentNet

StutterNet

Fig. 2. Overview of automatic stuttering identification systems
DLM: Deep learning models SM: Statistical models

MLP: Multi layer perceptron, SVM : Support vector machines
CNN: Convoluitonal neural network, HMM: Hidden Markow models
RNN: Recurrent neural network, GMM: Gaussian mixture models
LSTM: Long short term memory, LDA: Linear discriminant analysis
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Features
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LPCC: Linear prediction cepstral coefficients

LFPC: Log frequency power coefficients
DCT: Discrete cosine transforms
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stuttered speech is moving towards spectrogram representations from conventional MFCCs. One
can easily discern the fluent and stuttered part of speech by analyzing the spectrograms as shown
in Figure 1. Kourkounakis et al. [30] exploited the use of spectrograms (as a gray scale image)
as sole feature extractors for stutter recognition and thus makes it suitable for the convolutional
neural networks.

Different speech parameterization methods have their own benefits and drawbacks. Mahesha and
Vinod [92] compared LPC, LPCC and MFCC for syllable repetition, word repition and prolongation
and showed that LPCC basedmulti-class SVM (92% acc.) outperforms LPCC (75% acc) andMFCC(88%
acc) based SVM stutter recognition models. Hariharan et al. [86] discussed the effect of LPC, LPCC,
and WLPCC features for stuttering (repetition and prolongation only) recognition events. They also
discussed the effect of frame length and percentage of frame overlapping on stuttering recognition
models (SRM). The authors conclude that the WLPCC feature based SRM outperforms LPC and
LPCC. Fook et al. [93] compared and analyzed the effect of LPC, LPCC, WLPCC and PLP features
on the repetition and prolongation type of disfluencies and it has been shown that the MFCC
feature based stuttering recognition models surpass the LPC, LPCC and WLPCC based ones. Arjun
et al. [94] used LPC and MFCCs as input features and concluded that MFCCs performs better than
LPCs. Ai et al. [95] performs comparative study of LPCC and MFCC features in repetition and
propagating stuttering and reports that LPCCs based ASIS outperforms MFFCs based ASIS slightly
in varying frame length and frame overlapping. The optimal results of 94.51% and 92.55% accuracy
on 21 LPCC & 25 MFCC coefficients respectively have been reported [95]. This can be due to the
possibility of LPCCs are potential in capturing the salient cues from stuttering [95]. The use of
spectrograms showed state-of-the-art performance in recognising the stuttering events [30]. The
work by Kourkounakis et al. [30] didn’t focus on the blocks and multiple stuttering types if present
in a speech segment.

Machine Learning Classifiers: Stuttering detection systems process and classify underlying stutter-
ing embedded speech segments. Including traditional classifiers, many statistical machine learning
techniques have been explored in the automatic detection of stuttering. However, the studies are
empirical, so there is no generally accepted technique that can be used. Table 2 lists chronologically
the summary of stuttering classifiers including datasets, features, modality and stuttering type.
In ASIS, typically classification algorithms are used. A classification algorithm approximates

the input X and maps it to output Y by learning procedure, which is then used to infer the class
of new instance. The learning classifier requires annotated data for training which discerns the
samples and their corresponding labels/classes. Once the training is finished, the performance of
the classifier is evaluated on the remaining test data.

The traditional classifiers that explore stuttering identification include support vector machines
(SVM), hiddenMarkovmodels (HMM), perceptron, multi layer perceptrons (MLP), Gaussian mixture
models (GMM), k-nearest neighbor (𝑘-NN), naive Bayes classifier (NBC), rough sets, Kohonen maps
(self organizing maps (SOM)), linear discriminant analysis (LDA), artificial neural networks (ANN)

Hidden Markov Models. HMMs lie at the heart of all contemporary speech recognition systems
and has been successfully extended to disfluency classification systems. A simple and effective frame-
work is provided by HMMs for modelling temporal sequences. Wiśniewski et al. [97] used euclidean
distance as a codebook based on 20 MFCCs with HMMs. They reported an average recognition

4Modality Considered: Audio Only
5Modality Considered: Audio and Textual
6Modality Considered: Audio, Visual and Textual
7Modality Considered: Bio-Respiratory Signals
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Author and Year Datasets Features Stutter Type Model
Howell and Sackin [78](95)4 6 Speakers EP, ACF-SC (P),(R) ANN
Howell et al. [79, 80](97)5 12 Speakers Energy peaks, NA ANN

Duration
Nöth et al. [26](00)4 Northwind and Sun Disfluent Frequency, NA HMMs

37 Stutters, Speaking rate,
16 Non-Stutters Duration

Geetha et al. [38](00)5 51 Stutters Gender, Age NA ANNs
Duration, Speech Rate

Czyzewski et al. [82](03)4 6-Normal, Formants(1𝑠𝑡 to 3𝑟𝑑 ), (P),(R),(SG) Rough Sets
6-SG Samples Amplitude ANNs

Suszyński et al. [96] (03)4 NA FFT (P) Fuzzy Logic
Szczurowska et al. [83](06)4 8 PWS FFT 512 (B) MLP and

Spectral Measure SOM
Wiśniewski et al. [97](07)4 30 samples MFCCs NA HMMs

Tan et al. [98](07)5 UTM Skudai MFCCs NA HMMs
10 Speakers (7M, 3F)

Ravikumar et al. [99](08)4 10 PWS MFCCs, (SR) Perceptron
DTW for

Score Matching
Świetlicka et al. [84](09)4 8 PWS (Aged 10-23) FFT 512 NA Kohonen based ML

4 Fluent (2M, 2F) Spectral Measure Kohonen based RBF
Chee et al. [100](09)4 UCLASS MFCCs (R), (P) k-NN, LDA
Chee et al. [101](2009)4 UCLASS LPCCs (R), (P) k-NN, LDA

Ravikumar et al. [102](09)4 15 PWS MFCCs, DTW for (SR) SVM
score matching

Yildirim and Narayanan [37](09)6 10 CWS(Aged 4-6) Duration, Pitch, (R),(FS), (FP),(RP) NBC
Energy, Gestural,

Linguistic
Pálfy and Pospíchal [103](11)4 UCLASS MFCCs (R) SVM(Linear Kernel)

SVM(RBF Kernel)
Mahesha and Vinod [92](13)4 UCLASS LPCC, MFCC (P),(WR),(SR) SVM
Świetlicka et al. [104](13)4 19 PWS FFT(512) (B),(P), (SR) Hierarchical ANN

Oue et al. [105](15)4 TORGO MFCCs, LPCCs (R) DBN
Mahesha and Vinod [89](17)4 UCLASS LH-MFCC (P),(R),(I) GMMs

Esmaili et al. [87](17)4 UCLASS PLP (P) Correlation
Esmaili et al. [87](17)4 UCLASS WPT with entropy (P),(R) SVM
Esmaili et al. [87](17)4 Persian WPT with entropy (P),(R) SVM
Ghonem et al. [90](17)4 UCLASS I-Vectors (R),(P), (RP) k-NN, LDA
Santoso et al. [106](19)4 UUDB, PASD Modulation Spectrum NA BiLSTM

(Speech Rythm)
Santoso et al. [107](19)4 UUDB, PASD Modulation Spectrum NA BiLSTM + Attention

(Speech Rythm)
Villegas et al. [39](2019)7 69 Participants Heart Rate (B) MLP

Respiratory Air Volume
Respiratory Air Flow

Kourkounakis et al. [30](20)4 UCLASS Spectrograms (WR),(I),(P), ResNet + BiLSTM
(SR),(RP), (FS)

Kourkounakis et al. [32](20)4 UCLASS, Spectrograms (WR),(I),(P), FluentNet
(SR),(R)

LibriStutter
Sheikh et al. [31](21)4 UCLASS MFCCs (B),(P),(R),(F) StutterNet

128 PWS
Table 2. Summary of several ASIS Systems in chronological order

ACM Comput. Surv., Vol. 54, No. 4, Article . Publication date: 2021.



12 Shakeel A. Sheikh et al.

rate of 70% for two stuttering classes including blocks and prolongation with deleted silence and
60 frames of window length. Tan et al. [98] used 12 MFCC features with HMMs. The average
recognition rate is 93% [98]. This tool recognizes only normal and stutter utterances and is not
classifying different types of disfluencies. In 2000, Nöth et al. [26] used speech recognition system
to evaluate the stuttering severity. This system can perform statistical counting and classification of
three different types of disfluencies including repetition, pauses, and phoneme duration. Frequency
of disfluent segments, speaking rate and disfluent durations are the measurable factors used to
evaluate the stuttering severity during therapy sessions [101]

Support Vector Machines. SVMs gained substantial attention, have been widely used in the area
of speech domain. SVM is a linear classifier that separates the data samples into its corresponding
classes by creating a line or hyperplane. Mahesha and Vinod [92] used multiclass SVM to classify
three stuttering disfluencies including prolongations, word repetitions and syllable repetitions. In
this study, the different acoustic features including 12 LPC, LPCC and MFCCs are used. 75% average
accuracy is obtained for LPC based SVM, whereas LPCC based SVM is 92% and for MFCCs based
SVM is 88% [92]. Ravikumar et al. [102] used SVM to classify one disfluency type which is syllable
repetitions. The features used are MFCCs and DTW for score matching. An average accuracy of
94.35% is obtained on syllable repetitions. Pálfy and Pospíchal [103] used SVM with two different
kernel functions including linear and radial basis function (RBF). In this case study, they used 16
audio samples from UCLASS [71] with eight males and eight females. 22 MFCC acoustic features
with hamming window (25ms) with an overlap of 10 ms are used in this case study [103]. 96.4% is
the best recognition rate that has been reported with SVM when RBF is used as a kernel function
[103]. With linear kernel based SVM, recognition rate is 98% [103]. Esmaili et al. [87] used PLP
features with a hamming window of 30 ms and an overlap of 20 ms to detect the prolongation type
of stuttering based on correlation similarity measure between successive frames. 99% and 97.1%
is the best accuracy that has been reported on UCLASS and persian datasets respectively [87]. In
the same study they also evaluated the WPT+entorpy feature based SVM on UCLASS and persian
stuttering datasets with 99% and 93.5% accuracies respectively [87].

Artificial Neural Networks (ANNs). They consist of several connected computing neurons that
loosely model the biological neurons [108]. Like the synapses in biological neuron, each neuron
can transmit a signal to other neurons via connections. A neuron receives a signal, processes it
and can transmit signal to other connected neurons. The connections have weights associated
with it which adjusts the learning procedure [108]. ANNs are trained by processing examples that
maps input to its corresponding result by forming probability-weighted associations between the
two. The training is conducted with the help of backpropagattion by optimizing the loss function
by computing the error difference between the predicted output and its corresponding ground
truth. Continuous weight adaptations will cause the ANNs to produce the similar output as the
ground truth. After adequate number of weight adjustments, the training can be terminated once
the optimization criteria is reached [108]. ANNs are essential tools both in the speech and speaker
recognition. In recent times, ANNs play important roles in identifying and classifying the stuttering
speech. Howell and Sackin [78] used two ANNs for repetition and prolongation recognition. The
neural net is trained with 20 ACF, 19 vocoder coefficients of 10 ms frame length and also with
20 frames of envelope coefficients. The networks are trained for with just two minutes of speech.
The best accuracies of 82% and 77% are obtained for prolongations and repetitions when envelope
parameters are used as an input features to ANNs [78]. ACF-SC based ANNs gives the best accuracy
of 79% and 71% for prolongations and repetitions respectively [78]. Howell et al. [79, 80] designed
a two stage recognizer for the detection of two types of disfluencies including prolongation and
repetitions. The speech is segmented into linguistic units and then classified into its constituent
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category. The network is trained with the input features duration and energy peaks on a dataset of
12 speakers [79, 80]. The average accuracy on prolongations and repetitions obtained in this case
study is 78.01% [79, 80]. Geetha et al. [38] studied ANNs on 51 speakers to differentiate between
stuttering children and normal disfluent children based on the features including disfluent type, rate
of speech, disfluency duration, gender, age, family history and behavioral score. They reported a
classification accuracy of 92% [38]. Szczurowska et al. [83] used Kohonen based MLP to differentiate
between non-fluent and fluent utterances. 76.67% accuracy has been reported on blocks and stopped
consonant repetition disfluency types [83]. The Kohonen or self organizing maps (SOM) are used
first to reduce the feature dimensions of FFT 512 (with 21 digital 1/3-octave filters and a frame
length of 23ms) input features, that later acts as an input to the MLP classifier. The model is
trained on eight PWS [83]. Ravikumar et al. [99] proposed an automatic method by training a
perceptron classifier for syllable repetition type of disfuency on 10 PWS with 12 MFCCs and DTW
as the feature extraction methods. The best accuracy obtained for syllable repetition is 83% [99]. In
2003, Czyzewski et al. [82] addressed the stuttering problem by the help of stop-gaps detection,
identification of syllable repetitions, detecting vowel prolongations. They applied ANNs and rough
sets to recognize the stuttering utterances on the dataset of six fluent and six stop-gap based speech
samples [82]. They reported that the average prediction accuracy of ANNs is 73.25% and rough-sets
yielded an average accuracies of 96.67%, 90.00%, 91.67% on prolongations, repetitions and stop-gaps
respectively [82]. Suszyński et al. [96] proposed a fuzzy logic based model for the detection and
duration of prolongation type of disfluency. They used sound blaster card with a sampling frequency
of 22 kHz. 21 1/3 octave frequency bands with 𝐴 filter and FFT features are used with the hamming
window of 20 ms. The features representing the prolongations are described by the use of fuzzy
sets. Only the disfluent fricatives and nasals are considered in this study [96]. Świetlicka et al. [84]
proposed an automatic recognition of prolongation type of stuttering by proposing Kohonen based
MLP and RBF. From a dataset of eight PWS and fourfluent speakers, 118 (59 disfluent, 59 fluent),
118 total speech samples are recorded for the analysis. 21 1/3 octave filters with frequencies ranging
from 100 Hz to 10000 Hz are used to parametrize the speech samples [84]. The parametrized speech
samples are used as an input features to the Kohonen network that is expected to model the speech
perception process. Thus, Kohonen is used to reduce the input dimensionality to extract salient
features. These salient features are then fed to the MLP and RBF classifiers that are expected to
model the cerebral processes, responsible for speech classification and recognition [84]. The method
yielded a classification accuracy of 92% for Kohonen based MLP and 91% for Kohonen based RBF
[84].
Villegas et al. [39] introduced a respiratory bio-signals based stuttering classification method.

They used respiratory patterns (air volume) and pulse rate as an input features to MLP. The dataset,
developed at Pontifical Catholic University of Peru consists of 68 Latin American Spanish speaking
participants with 27 PWS (aged 18-27 with mean of 24.4±5 years), 33 normal (aged 21-30 with mean
of 24.3±2.3 years). The stuttering type studied in this research work is blocks with an accuracy of
82.6% [39].
In 2013, Mahesha and Vinod [89] introduced a new Linear prediction-Hilbert transform based

MFCC (LH-MFCC) human perception feature extraction technique to capture the temporal, instan-
taneous amplitude and frequency characteristics of speech. The study compares the MFCC and
LH-MFFC features for three types of disfluencies including prolongation, repetition and interjection
in combination with 64 Gaussian mixture model (GMM) components and reports a gain of 1.79% in
average accuracy [89] with LH-MFCCs. The proposed LH-MFCC improves discriminatory ability
in all classification experiments [89].
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K-Nearest Neighbor and Linear Discriminant Analysis. K-NN, proposed by Thomas Cover is a
non parametric model that can be used for both classification and regression. In k-NN classification,
the output is described by the class membership and a sample is classified by the contribution of its
neighbors. The sample is assigned to the class which is most common among its k (k≥0) neighbors.
This method relies on the distance metric for classification [109]

LDA also called normal discriminant analysis (NDA), or discriminant function analysis is a
technique used in statistics and machine learning, to find a linear combination of features that
separates two or more classes of samples. The resulting combination dimensionality reduction
before classification or may be used as a linear classifier as well [109].
Chee et al. [100] presented an MFCC feature based k-NN and LDA classification models for

repetition and prolongation types of disfluencies. The proposed models reports the best average
accuracies of 90.91% for k-NN (with 𝑘=1) and 90.91% for LDA [100] on UCLASS [71] dataset. In
2009, Chee et al. [101] studied the effectiveness of LPCC features in prolongation and repetition
detection with k-NN and LDA classfiers. The work achieved an average accuracy of 87.5% and the
best average accuracy of 89.77% for LDA and k-NN respectively on the UCLASS [71] dataset. In
2017, Ghonem et al. [90] introduced an I-vector (commonly used in speaker verification) feature
based stuttering classification with k-NN and LDA methods. The technique reported an average
accuracy of 52.9% among normal, repetition, prolongation and repetition-prolongation8 stuttering
events [90]. This is the first technique so far that has taken two disfluencies (occurring at same
time) into consideration.
In 2009, Yildirim and Narayanan [37] proposed the first multi-modal disfluency boundaries

detection model in spontaneous speech based on audio and visual modalities. The dataset used in
this study was collected using Wizard of Oz (WoZ) tool. Audio recordings of high-quality were
collected using a desktop microphone at 44.1 kHz. Two SonyTRV330 digital cameras, one focused
from the front and the other capturing the child and the computer screen from the side were also
used [37]. Three different classifiers including k-NN, NBC and logistic model trees have been utilised
to evaluate the effectiveness of multi modal features on the collected dataset [37]. The stuttering
types included in this case study are repetition, repair, false start and filled pauses [37]. In this work,
the combination of three different modality based features including prosodic (duration, pitch and
energy), lexical (hidden event posteriors) and gestural (optical flow) features were studied at feature
level and decision level integration [37]. The work achieved the best accuracy for NBC among the
three classifiers [37] and reports an accuracy of 80.5% and 82.1% at feature level integration and
decision level feature integration respectively [37].

In 2005, Oue et al. [105] introduced deep belief network for the automatic detection of repetitions,
non-speech disfluencies. 45 MFCC and 14 LPCC features from TORGO dataset [72] has been used
in this case study for the detection of disfluencies [72]. The experimental results obtained showed
that MFCCs and LPCCs produce similar detection accuracies of approximately 86% for repetitions
and 84% for non-speech disfluencies [105].
The majority of statistical machine learning ASIS systems detailed above mostly focused only

on either 𝑝𝑟𝑜𝑙𝑜𝑛𝑔𝑎𝑡𝑖𝑜𝑛 or 𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛 types of disfluencies with the most widely used features as
MFCCs. Among the statistical techniques mentioned above, SVMs is the most widely used classifier
in stuttering detection and identification.

4.2 Deep Learning Approaches
The majority of the state-of-the-art deep learning techniques combines several non-linear hidden
layers as it can also reach to hundreds of layers as well, while a traditional ANNs consists of only

8repetition and prolongation disfluencies appearing at the same time
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one or two hidden layers. With the advancement in deep learning technology, the improvement
in speech domain surpasses the traditional machine learning algorithms and hence the research
in speech domain shifts towards the deep learning based framework and stuttering detection is
no exception. The salient advantage of these deep networks is automatic feature selection and
extraction which avoids the cumbersome and tedious work of manual feature engineering step. The
goal of these deep architecture classifiers is to approximate a mapping function 𝑓 with y = 𝑓 (X;𝜃 )
from input samples X to target labels y by adjusting its parameters 𝜃 . The most common deep
learning architectures used in ASIS research domain are Convolutional neural networks and
recurrent neural networks.

Recurrent Neural Networks (RNNs). RNNs belong to a family of deep neural architectures where
connections between neurons/nodes form a directed graph along a temporal sequence, thus allowing
it to show temporal dynamic behaviour. RNNs consists of internal state (memory) that is used to
process variable length input sequence. This structure makes RNNs good for modelling sequential
tasks like time series, connected handwriting, video or speech recognition [108]. The other networks
process inputs which are independent of each other, but in RNNs, inputs are related to each other.

Long short term memory networks (LSTMs) introduced by Hochreiter and Schmidhuber [110], is
a special type of RNN, capable of capturing the long term dependencies in the temporal sequence.

In 2019, Santoso et al. [107] proposed modulation spectrum feature based BiLSTM (Bidirectional
LSTM) to detect the causes of errors in speech recognition systems. The method is tested on
the Japanese dataset of 20 speakers with 10 males and 10 females [107]. The experiment used
640-dimensional modulation spectrum feature vector with a block length of 320 ms [107]. The
method achieved an F-score of 0.381 for successfully detecting the stuttering events in the speech
[107]. The proposed model used the overall utterance for the stuttering error detection, however
recognition errors arise only from a small part of the full utterance. In order to address this issue,
Santoso et al. [106] introduced attention based BiLSTM classifier for stuttering event detection.
The best F-score of 0.691 is attained by taking the block length of 32 ms [106].

Convolutional Neural Networks (CNN). CNNs are special type of neural nets that work with
grid-structured data like images, audio spectrograms, video frames etc. A CNN consists of several
layers in pipeline: convolution, pooling and fully-connected layers. With the help of several feature
maps, CNNs are successful in capturing the spatial and temporal dependencies from the input data.

Convolution layer, a core component of the CNNs, is comprised of a set of learnable parametric
kernels (filters) that transforms an input image into several number of small receptive fields [108]. In
forward pass, a dot product is performed between the entries of an input image and filter resulting
in an activate map of that filter [108]. This dot product is also known as convolution operation,
defined by the following equation:

𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 𝑚𝑎𝑝 = 𝑦 [𝑖, 𝑗] = 𝑖𝑛𝑝𝑢𝑡 ⊛ 𝑘𝑒𝑟𝑛𝑒𝑙 =
∑∑

𝑋 [𝑖 −𝑚, 𝑗 − 𝑛] .ℎ[𝑚,𝑛] (1)

where 𝑖, 𝑗 indices related to image and𝑚,𝑛 are concerned with the kernel , 𝑋 represents the audio
spectrogram or image matrix which is to be convolved with the filter ℎ.
Due to parameter sharing of the convolutional operation, divergent feature or activation maps

can be extracted, thus makes the CNNs translation invariance architectures [108]. Pooling, a down-
sampling dimensionality reduction layer partitions the input matrix into a set of translational
invariant non-overlapping combination of features. There are many methods to implement pooling
operation, the most common among which is 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 pooling, computes the average value from
each sub-region of the feature maps [108]. Fully connected (FC) layers, a global operation unlike
convolution and pooling, usually used at the end of the network, connects every neuron in one
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layer to every neuron in another layer [108]. The FC layer takes the non-linear combination of
selected features, which is later used for downstream tasks like classification [108].
As discussed in Section 4.1 that most of the existing stuttering identification work either de-

pend on language models or on ASR systems. This procedure of stuttering identification seems
a subsidiary computational step and could also be a potential source of error. In order to address
this, Kourkounakis et al. [30] proposed a CNN based model to learn stutter-related features. They
formulated it a binary classification problem, where they used the same architecture for identifying
different types of stuttering. They used residual based CNN and BiLSTM (for temporal aspect) to
capture the disfluency-specific features from the spectrograms [30], that are the sole input features
used in this study. The model is trained with batch norm and ReLU activation function [30]. Each
BiLSTM layer is followed by a dropout rate of 0.2 and 0.4 respectively [30]. The proposed model
reported an average accuracy of 91.15% and average miss rate of 10.03% (surpasses the state-of-
the-art by almost 27%) on six different types of stuttering: revision, prolongation, interjection,
phrase repetition, word repetition, and sound repetition [30]. Kourkounakis et al. [32] proposed a
FluentNet as shown in Figure 4. that combines squeeze-and-excitation residual network (SE-ResNet)
with BiLSTM networks, where SE-ResNet (eight blocks) is used to learn the stutter-specific spectral
frame-level representations. Each audio speech is first segmented into four second audio clips,
then acoustic features (spectrograms) are extracted, which are fed to SE-ResNet in order to capture
stutter-specific spectral features, followed by a global attention based two layered BiLSTM (512
units) network, that helps in capturing effective temporal relationships [32]. The model is trained
uisng a root mean square propagation (RMSProp) optimizer on a binary cross entropy loss function
with a dropout of 0.2 and a learning rate of 10−4.

In order to tackle the issue of stuttered speech data scarcity, they developed a synthetic stuttered
speech dataset (LibriStutter) from a fluent LibriSpeech datatset [32]. The proposed FluentNet
model reports an average accuracy of 91.75% and 86.7% on UCLASS and LibriStutter datasets
respectively. Six different disfluency types are considered in this experimental study including
phoneme repetition, word repetition, phrase repetition, interjection, prolongation, and revisions
[32].

The stuttering identification methods discussed above consider only a small subset of disfluent
speakers in their experimental studies, so it can not be said with certainty that the discussed models,
which performed very well on small speakers can also generalize to large set of stuttered speakers.
In order to evaluate this, we recently proposed a StutterNet [31], a time delay neural network based
stuttering detection method shown in Figure 3. We addressed this problem by formulating it a
multi-class classification problem. Only the core behaviours (blocks, repetition and prolongation)
and fluent segments of the speech were considered in this case study. 128 speakers from the UCLASS
dataset were used in this case study, thus makes it the first experimental study to be evaluated on
the large set of disfluent speakers. Each audio sample is initially divided into four second audio
segments, then acoustic features (MFCCs) are extracted, which are then fed to the StutterNet. The
features are generated after every 10 ms on a 20 ms window for each 4-sec audio sample. On this
larger set of disfluent speakers, we compared this study with the ResNet+BiLSTN [30] based ASIS
system and reported an overall average accuracy of 50.79% and Mathews correlation coefficient
(MCC) of 0.23, in comparison to ResNer+BiLSTM based system comprising of 46.10% overall average
accuracy and 0.21 MCC. The comparative results are shown in Table 3 and Table 4.

Among the DL based ASIS systems described above in detail, for a small set of disfluent speakers,
the FluentNet classifier proposed by Kourkounakis et al. [32] and the spectrogram feature repre-
sentations of stuttered speech are the most effective, that gives promising classification results
on disfluency identification. However for a large set of stutterted speakers, StutterNet is the most
effective one.
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Precision Recall F1-Score
Method Rept Pr B F Rept Pr B F Rept Pr B F

ResNet+BiLSTM [30] 0.33 0.42 0.43 0.63 0.20 0.23 0.53 0.55 0.22 0.28 0.44 0.52
StutterNet (Baseline) 0.36 0.43 0.42 0.59 0.28 0.17 0.42 0.67 0.30 0.23 0.42 0.62

StutterNet (Optimized) 0.35 0.31 0.47 0.59 0.24 0.13 0.47 0.70 0.27 0.16 0.46 0.63
Table 3. Results in precision, recall and F1-score (B: Block, F: Fluent, Rept: Repetition, Pr: Prolongation)

Method Accuracy Tot. Acc. MCC.
Rept Pr B F

Resnet+BiLSTM [30] 20.39 23.17 53.33 55.00 46.10 0.20
StutterNet (Baseline) 27.88 17.13 42.43 66.63 49.26 0.21

StutterNet (Optimized) 23.98 12.96 47.14 69.69 50.79 0.23
Table 4. Results in accuracies and MCC(B: Block, F: Fluent, Rept: Repetition, Pr: Prolongation)

Fig. 3. StutterNet (reproduced with permission taken from authors) [31].

In a recent study by Lea et al. [33], they curated a large stuttering dataset named SEP−28k and
employed ConvLSTM model to detect various types of stuttering. In addition to 40 MFCC input
features, the model also takes pitch and articulatory features as an input, and reports a weighted
accuracy of 83.6, F1 of 83.6 on the FluencyBank. On SEP-28k, they reported F1-scores of 55.9, 68.5,
63.2, 60.4, and 71.3 in block, prolongation, sound repetition, and word repetition respectively. They
also evaluated their proposed model on 41 dim phoneme probabilities extracted from pre-trained
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Fig. 4. FluentNet model for stuttering classification (reproduced with permission taken from authors) [32].

time-depth separable CNN on LibriSpeech, and reports F1 score of 74.8 on FluenyBank. The model
was trained with a mini-batch size of 256 and cross entropy loss function.

5 CHALLENGES & FUTURE DIRECTIONS
This section describes various challenges faced by ASIS systems and their possible solutions, which
can be explored in the field of stuttering research. Although there have been several developments
in the automatic identification of stuttering, there are still several impediments that need to be
addressed for robust and effective identification of stuttering.

5.1 Dataset Collection
One of the most common barriers that needs to be addressed is the issue of scarcity of data on
stuttering identification research. There are only few natural stuttered datasets as discussed in
Section 3. Usually, the medical data collection is expensive and very demanding, and stuttering is no
exception. Thus, having ample speaker and sentence variation adds more complexity in stuttering
domain. In order to make a fine analysis across several speakers, it is appropriate to have the same
content (same list of sentences). Unfortunately, in practice, when a PWS is asked to read a list of
sentences, the disfluency effects are greatly reduced. For this reason, more spontaneous speech is
used to hope to induce disfluencies. Moreover, depending on the speaker, the presence of disfluency
in a recording is more or less important for several reasons: emotional state, speaking in public or
alone, spontaneous or read speech, etc. This makes the collection of a corpus even more difficult
and its size from one speaker to another can be variable if one aims at having a comparable number
of examples of disfluencies. Moreover, it is extremely difficult, if not impossible, to collect a corpus
that contains the same number of examples of each type of disfluency. It is even more challenging
to achieve high variability in gender, language and dialect. It should be noted that the recording of
spontaneous speech must be well controlled to comply with the legislation. Due to the sensitivity
of medical data and privacy concerns, it can not applied at large scale. Currently, we are not dealing
with anonymization, as the voice could identify the speaker, but a minimum effort in this direction
is required.
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In order to identify stuttering using deep learning models, the data must be properly labelled.
Different background noises can corrupt the stuttered speech data. Likewise, the noise of recording
equipments can also degrade the speech signal. Noise injection techniques [111] can be exploited
to learn reliable stutter-specific features from the noisy corrupted data. DL models like denoising
auto encoders, imputation auto encoders [112] can also be utilized to learn robust stutter-specific
features from corrupted data. Training and testing data distribution mismatch is a significant
challenge for ASIS systems to be robust to noise.
Since stuttering datasets are scarce, we can attempt to solve this problem by enlarging the

training data size and its diversity by generative models. Deep generative models such as generative
adversarial networks can be utilized for data augmentation [113] to generate more stuttered speech
samples with the aim of improving the stuttering identification systems.

5.2 Data Annotation Issue
It is no doubt that DL has led to the enormous advancement in speech domain, nonetheless, it
demands a large amount of labelled data, and also, the dataset bias has plagued current ASIS
methods. Annotating the stuttered speech requires expert speech pathologists/therapists, thus is
expensive and laborious. Unsupervised learning [108] can be used to exploit unlabelled data from
different distributions, and these learned representation can later on be used in various (limited
data, e.g., stuttering) downstream classification tasks. Unsupervised learning such as contrastive
predictive coding [114] enables to capture the underlying innate structure/pattern(s) in the data
distribution [112]. In the context of stuttered speech, it can capitalize the unlabelled data to create
understandings and learn good stutter specific feature representations, which later on, can be used
to enhance the performance of ASIS systems in a supervised fashion. Semi-supervised learning [115]
can also be exploited to solve this problem by employing unlabelled data, in conjunction with the
annotated data to develop better classification models. Due to the unavailability of annotated and
limited size of stuttering data, it becomes extremely difficult for the deep models to generalize.
Self supervision, where the main idea is to find a proxy or pretext task for the deep models to
learn without any explicit annotations, but rather, the data’s innnate patterns provides the labels
[116], is a compelling approach to address this paucity of stuttered data by capturing the innate
compositions of the disfluency data.

5.3 Data Imbalance
Stuttering datasets also suffer from the data imbalance problems, i.e., the number of samples
available for different disfluenct categories is not uniform. It is mentioned that in stuttering, the
repetitions are the most frequent ones followed by prolongations, and blocks [1]. However, in
UCLASS datset, the block type is present in majority followed by repetitions and prolongations.
The model trained on this type of imbalanced dataset is biased towards the majority class. In order
to address this, several techniques can be exploited, including resampling [117], reweighting [118]
and metric learning [119]. Self supervision as proposed recently by Yang et al. [120] can also be
used to address the problem of labeling bias effect in learning on imbalanced disfluent data.

5.4 Lack of Appropriate Acoustic Representation
The another issue in the stuttering related speech domain is the need of hand-engineered features,
which approximates the human auditory system. MFCCs are the principal set of hand-engineered
acoustic features that have been used mainly for stuttering identification tasks. The main drawback
of this approach is that by being manual it is cumbersome and requires human knowledge. Over the
past few years in speech domain, the use of hand-engineered acoustic features is gradually changing
and representation learning is acquiring recognition as an effective alternative to learn and capture
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task specific features directly from raw speech signals, thus circumvents the hand-engineered
feature extraction module from the pre-processing pipeline [112]. Liu et al. [121] recently proposed
a learnable MFCCs for speaker verificaton. Sailor and Patil [122] showed that unsupervised deep
auditory model can learn human auditory processing relevant features like filterbanks from raw
speech. In addition, Millet and Zeghidour [123] used raw signal to learn the filterbanks for dysathria
detection. This could be exploited to learn and capture the stuttered-specific features directly from
the raw speech signal, which later on can be used for down stream tasks like classification, prediction
etc.

5.5 Domain Adaptation
Most of the existing ASIS techniques proposed so far are evaluated on dataset of specific language
consisting of limited speakers. The existing ASIS techniques depend on a probabilistic model to
capture domain specific factors, so that any alteration in the input speech domain could have a
significant impact (in terms of language or speakers) at the time of inference. It is yet to be explored
that, how well an ASIS technique performs on cross-domain or cross-language environment. There
could be two possible scenarios for cross-language issue: the first is when the model is trained with
a specific-language data, but tested in other languages; the other scenario could be, during training,
a disfluent person registered in one language, but evaluated in a different language at the test time.
Learning stutter-specific features that are invariant to variabilities in language, speakers, recording
conditions, etc., could improve the performance of ASIS systems. Domain adaptation techniques
have been successfully applied in various speech tasks such as, emotion recognition [124], speaker
verification [125], and ASR [126]. However in stuttering domain research, it has not been exploited
yet. Several domain adaptation techniques such as [127, 128] culd be exploited to learn domain-
invaraint stutter representations. These domain-invariant stutter specific representations can later
on be used to improve the performance of various ASIS systems.

One more issue with the ASIS systems is the generalization of trained models. Several techniques
such as early stopping, regularization, dropout have been used to improve generalization [129]. The
main drawback of these techniques is that they are limited by the identification/recognition task.
This problem can be solved by the multi-task learning strategy, (i.e., if the model is forced to learn
some auxiliary tasks in parallel, in addition to it’s main task). Language and gender classifications
are two auxiliary tasks, that can be learned together with the stutter identification task on the same
input feature space to improve generalization.

5.6 Multimodal Learning
In stuttering identification, DL have been successfully applied to single modalities like text and
audio. Inspired from the human brain, where the perceptions are carried out through the integration
of information from several sensory inputs including vision, hearing, smell etc., Ngiam et al. [130]
proposed a multi-modal (audio visual) learning and showed how to train deep models that learn
effective shared representations across the modalities. The stuttering itself exhibits as an audio
visual problem. Cues are present both in the visual (e.g. head nodding, lip tremors, quick eye blinks
and unusual lip shapes) as well as in the audio modality [19]. This multimodal learning paradigm
from could be helpful in learning robust stutter-specific hidden representations across the cross-
modality platform, and could also help in building robust ASIS systems. Self supervised learning can
also be exploited to capture acoustic stutter-specific representations based on guided video frames.
As proposed by Shukla et al. [116], this framework could be helpful in learning stutter-specific
features from audio signal guided by visual frames or vice-versa. Altinkaya and Smeulders [131]
recently presented the first audio-visual stuttered dataset which consists of 25 speakers (14 male,
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11 female). They trained ResNet based RNN (gated recurrent unit) on audio-visual modality for the
detection of block stuttering type.

5.7 Attention Approach
The nature of stuttering is that it either usually happens on specific words or part of words, or part
of sounds, syllables or phrases and thus, is contained only in certain frames. The attention networks
have been successfully applied in speech emotion detection [132], speaker verification [133], speech
recognition [134]. Attention networks [134, 135] which imitates the cognitive attention can be
exploited to force the neural networks to focus on the particular stutter-embedded frames that may
improve the detection performance of ASIS systems.

5.8 Multi-Stuttering Identification
Most of the ASIS studies focus on utterances, which consists of only one type of stuttering. However,
the speech utterance can contain a mix of stuttering such as d-d-d—–dog dog is big, which consists
of syllable repetition, prolongation and word repetition types of disfluencies [136]. There is a
lack of studies in detecting multiple stuttering types if present in an utterance, and to the best of
our knowledge, Ghonem et al. [90] is the only study, that has been carried out to detect multiple
stuttering types (repetition-prolongation) in an utterance.

6 CONCLUSION
Stuttering is a speech disorder during which the flow of speech is interrupted by involuntary blocks,
prolongations and repetitions. The conventional assessment of stuttering is to count manually the
occurrences of stuttering types and indicate them as a proportion to the total number of words in a
speech passage. The main drawback in this manual counting is that they are time consuming and
subjective whichmakes it inconsistent and prone to error across different judges/STs. Approximately
70 million people suffer with stuttering problem worldwide which constitutes 1% of the world’s
population. Among them, the stuttering is significant in males which is approximately four-fifth.

Stuttering identification is a complex interdisciplinary problemwhich involves speech processing,
signal processing, neuroscience, psychology, pathology, and machine learning. The recent advance-
ments in machine and DL has significantly transformed the speech domain. However in stuttering
detection, it has not been explored eminently. This work tries to fill the gap by trying to bring
researchers together from interdisciplinary fields. In the past two decades, a lot of research work
has been performed in the automatic identification of stuttering. This paper gives an up-to-date
comprehensive review of the various datasets, acoustic features and ASIS classification methods,
that have been used by various researchers for the identification and recognition of stuttering
disfluencies. In this paper, We also discussed several challenges with possible solutions that need
to be addressed for future work. These ASIS systems demand the training data among which the
most common dataset, that have been used in the stuttering research is UCLASS [71].

Due to the challenges discussed in the Section 5, ASIS systems are not yet available for real-time
stutter identification, unlike ASR, that are easily accessible on portable mobile devices. To achieve
this goal, ASIS systems demandmore powerful models so that stuttering identification rate increases
in cross language and cross speaker platforms with no labelled or very few annotated data.
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