Alec Koppel 
  
Santiago Paternain 
  
Cédric Richard 
  
Alejandro Ribeiro 
  
Decentralized Online Nonparametric Learning

We consider decentralized online supervised learning where estimators are chosen from a reproducing kernel Hilbert space (RKHS). Here a multi-agent network aims to learn nonlinear statistical models that are optimal in terms of a global convex functional that aggregates data across the network, while only having access to locally observed streaming data. We address this problem by allowing each agent to learn a local copy of the global regression function while enforcing consensus constraints. We use a penalized variant of functional stochastic gradient descent operating simultaneously with low-dimensional subspace projections. The resulting algorithm allows each individual agent to learn, based upon its locally observed data stream and message passing with its neighbors, a function that is provably close to globally optimal and satisfies the consensus constraints. Moreover, the complexity of the learned regression functions is guaranteed to be finite. We then validate this approach on the Brodatz textures dataset for the case of decentralized online multi-class kernel logistic regression.

I. INTRODUCTION

We focus on decentralized online statistical learning problems, in which agents aim to make inferences as well as one which has access to all data at a centralized location in advance. Instead of assuming agents seek a common parameter vector w ∈ R p , we focus on the case where agents seek to learn a common decision function f (x) belonging to a reproducing kernel Hilbert space (RKHS). Such functions represent, e.g., nonlinear statistical models [START_REF] Anthony | Neural network learning: Theoretical foundations[END_REF] or trajectories in a continuous space [START_REF] Marinho | Functional gradient motion planning in reproducing kernel hilbert spaces[END_REF].

Optimization tools for multi-agent online learning have thus far been restricted to the case where each agent learns a linear statistical model [START_REF] Koppel | A saddle point algorithm for networked online convex optimization[END_REF] or a task-driven dictionary [START_REF] Koppel | D4l: Decentralized dynamic discriminative dictionary learning[END_REF], which exclude state of the art nonlinear interpolators: kernel methods [START_REF] Slavakis | Online learning in reproducing kernel hilbert spaces[END_REF], [START_REF] Li | Kernel Learning Algorithms for Face Recognition[END_REF] and neural networks [START_REF] Haykin | Neural networks: A comprehensive foundation[END_REF], [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF]. We note that instabilities associated with non-convexity which are only a minor issue in centralized settings [START_REF] Mairal | Task-driven dictionary learning[END_REF], but become both theoretically and empirically difficult to overcome in constrained settings [START_REF] Koppel | D4l: Decentralized dynamic discriminative dictionary learning[END_REF], and therefore efforts to extend neural network learning to multi-agent online learning must overcome duality gap issues associated to constrained non-convex settings. Instead, we focus on extending kernel methods to decentralized online settings, motivated both by its advantageous empirical performance, as well as the theoretical benefits of convexity. This stochastic convex problem, however, is defined over an infinite space, and therefore one must both solve the optimization problem and sure it is optimally sparse. Doing so in multiagent settings, which underlie Internet of Things [START_REF] Liu | Algorithm design for femtocell base station placement in commercial building environments[END_REF], [START_REF] Ghosh | Pricing for profit in internet of things[END_REF] and multi-robot [START_REF] Koppel | Online learning for characterizing unknown environments in ground robotic vehicle models[END_REF], [START_REF] Schwager | A multi-robot control policy for information gathering in the presence of unknown hazards[END_REF] applications, is our goal.
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§ Computational and Information Sciences Directorate, U.S. Army Research Laboratory Department of Electrical and Systems Engineering, University of Pennsylvania † Laboratory Lagrange, Observatory of the French Riviera, University of Nice Sophia-Antipolis To understand our approach, consider centralized vectorvalued stochastic convex programming, which has been classically solved with stochastic gradient descent (SGD) [START_REF] Robbins | A stochastic approximation method[END_REF]. SGD involves descending along the negative of the stochastic gradient rather than the true gradient to avoid the fact that computing the gradient of the average objective has complexity comparable to the training sample size, which could be infinite. In contrast, a stochastic program defined over a function space is an intractable variational inference problem in general, but when the function space is a RKHS [START_REF] Kimeldorf | Some results on tchebycheffian spline functions[END_REF], the Representer Theorem allows us to reduce an infinite space into a parameterization of weights and data samples [START_REF] Schölkopf | A generalized representer theorem[END_REF]. Unfortunately, the resulting feasible set has complexity comparable to sample size N (intractable for N → ∞ [START_REF] Norkin | On stochastic optimization and statistical learning in reproducing kernel hilbert spaces by support vector machines (svm)[END_REF]). Efforts to mitigate this complexity explosion have been developed that combine functional extensions of stochastic gradient method (FSGD) with compressions of the function parameterization [START_REF] Engel | The kernel recursive least-squares algorithm[END_REF]- [START_REF] Zhu | Kernel Logistic Regression and the Import Vector Machine[END_REF]. Mostly, such methods compress the function representation independent of the iterative sequence to which they are applied. In contrast, a method was recently proposed that combines greedily constructed [START_REF] Pati | Orthogonal Matching Pursuit: Recursive Function Approximation with Applications to Wavelet Decomposition[END_REF] sparse subspace projections with functional SGD, and tailors the compression to preserve optimality properties of FSGD [START_REF] Koppel | Parsimonious online learning with kernels via sparse projections in function space[END_REF].

Here we extend [START_REF] Koppel | Parsimonious online learning with kernels via sparse projections in function space[END_REF] to multi-agent settings (Section II). Multiple distributed optimization tools may be used to develop such an extension; however, the Representer Theorem [START_REF] Schölkopf | A generalized representer theorem[END_REF] has not been established for stochastic saddle point problems in RKHSs. Thus, we adopt an approximate primal-only approach via penalty methods [START_REF] Johansson | Subgradient methods and consensus algorithms for solving convex optimization problems[END_REF], [START_REF] Ram | Distributed stochastic subgradient projection algorithms for convex optimization[END_REF], which in decentralized optimization is called distributed gradient descent (DGD) (Section III). Using functional stochastic extensions of DGD, together with the greedy projections designed in [START_REF] Koppel | Parsimonious online learning with kernels via sparse projections in function space[END_REF], we develop a method such that each agent, through its local data stream and neighborhood message passing, learns a memoryefficient approximation to the globally optimal function almost surely (Section IV), which contrasts with other nonlinear interpolation techniques such as dictionary learning [START_REF] Koppel | D4l: Decentralized dynamic discriminative dictionary learning[END_REF], [START_REF] Mairal | Task-driven dictionary learning[END_REF], [START_REF] Chainais | Learning a common dictionary over a sensor network[END_REF] or neural networks [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF] which exhibit instability due to non-convexity. In Section V, we apply our method to decentralized online multi-class kernel logistic regression on the Brodatz textures [START_REF] Brodatz | Textures: A Photographic Album for Artists and Designers[END_REF], and observe stable learning, memory efficiency, and competitive error rates. Compared to [START_REF]decentralized efficient nonparametric stochastic optimization[END_REF], we have corrected our main convergence result, establish that consensus is attained in the full RKHS, rather than only in mean square, and further validate the proposed method on a practically challenging visual identification task.

II. ONLINE LEARNING WITH KERNELS

Consider the problem of distributed expected risk minimization, where the goal is to learn a regressor that minimizes a loss function quantifying the merit of a statistical model averaged 

)] fi,t+1 (•) = (1 -ηλ)f i,t -η∇ fi ψi,c (f i (x i,t ), y i,t ) . Update params: Di,t+1 = [D i,t , x i,t ], wi,t+1 [cf. ( 8 
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(f i,t+1 , D i,t+1 , w i,t+1 ) = KOMP( fi,t+1 , Di,t+1 , wi,t+1 , )
end loop end for over a data set scattered across an interconnected network that represents, for instance, robotic teams [START_REF] Koppel | D4l: Decentralized dynamic discriminative dictionary learning[END_REF], communication systems [START_REF] Ribeiro | Ergodic stochastic optimization algorithms for wireless communication and networking[END_REF], or sensor networks [START_REF] Kozick | Source localization with distributed sensor arrays and partial spatial coherence[END_REF]. To do so, we define a symmetric, connected, and directed network G = (V, E) with |V| = V nodes and |E| = E edges and denote as n i := {j : (i, j) ∈ E} the neighborhood of agent i. Each agent i ∈ V observes a local data sequence as realizations

(x i,n , y i,n ) from random pair (x i , y i ) ∈ X × Y ⊂ R p × R
and seeks to learn a common globally optimal regression function f from the class function H. This setting may be mathematically captured by associating to each node i a convex loss functional i : H × X × Y → R that quantifies the merit of the estimator f (x i ) evaluated at feature vector x i . This loss averaged over all possible x i defines the statistical loss L( f ) := i∈V E xi,yi i ( f x i ), y i , which we combine with a Tikhonov regularizer to construct the regularized loss

R( f ) := argmin f ∈H L( f ) + (λ/2) f 2 H [33]
, [START_REF] Evgeniou | Regularization networks and support vector machines[END_REF]. Then the globally optimal regression function f * is defined as

f * = argmin f ∈H i∈V E xi,yi i ( f x i ), y i + λ 2 f 2 H . (1) 
Observe that this global loss is a network-wide average (scaled by V ) of all local losses, and therefore the minimizers of ( 1) and a centralized agent with access to all data coincide when (x i , y i ) have a common joint distribution for each i. However, in multi-agent optimization, agents select a regression function f with only local data, which yields different decision functions f * i that are not as good as one selected with data aggregated across the network. To overcome this limitation, we allow message passing between agents and consider a setting where agents seek to select decisions as good as a centralized meta-agent. Thus, constrain the regression functions among neighbors to be equal

f i = f j , (i, j) ∈ E, yielding f * = argmin {fi}⊂H i∈V E xi,yi i (f i x), y i + λ 2 f i 2 H such that f i = f j , (i, j) ∈ E . ( 2 
)
Define the product Hilbert space H V of functions aggregated over the network, whose elements are stacked functions

f (•) = [f 1 (•); • • • ; f V (•)]. Further define stacked random vec- tors x = [x 1 ; • • • ; x V ] ∈ R V p and y = [y 1 ; • • • y V ] ∈ R V that
represents V labels or physical measurements, for instance. We seek to solve (2) when nodes do not know the distribution of the random pair (x i , y i ) but sequentially observe local independent training examples (x i,n , y i,n ), but are allowed to do local message passing with one another. Next, we discuss details of function space H V that make (2) tractable.

A. Reproducing Kernel Hilbert Spaces

The problem in ( 2) is intractable in general, since it defines a variational inference problem integrated over the unknown joint distribution P(x, y). However, when H is equipped with a reproducing kernel κ : X ×X → R (see [START_REF] Li | Kernel Learning Algorithms for Face Recognition[END_REF], [START_REF] Müller | Special issue on advances in kernel-based learning for signal processing[END_REF]), a functional problem of the form (1) may be reduced to a parametric form via the Representer Theorem [START_REF] Norkin | On stochastic optimization and statistical learning in reproducing kernel hilbert spaces by support vector machines (svm)[END_REF], [START_REF] Wheeden | Measure and Integral: An Introduction to Real Analysis[END_REF]. Thus, we restrict the Hilbert space in (2) to be one equipped with a kernel κ that satisfies for all functions f : X → R in H and for all x i ∈ X :

(i) f , κ(x i , •)) H = f (x i ) (ii) H = span{κ(x i , •)}. (3)
Here •, • H denotes the Hilbert inner product for H. Further assume that κ is positive semidefinite, i.e. κ(x i , x i ) ≥ 0 for all x i , x i ∈ X . For kernelized regularized empirical risk minimization, the Representer Theorem [START_REF] Murphy | Machine Learning: A Probabilistic Perspective[END_REF] states that optimal f in the function class H may be written in terms of kernel evaluations only of the training set

f (x i ) = N n=1 w i,n κ(x i,n , x i ) , (4) 
where ) become sequentially available or their total number N is not finite, the complexity of representing a function f in (4) approaches infinity as well, and thus requires an intractable amount of memory. Thus, our goal is to solve (2) in an approximate manner such that each f i admits a finite representation near f * i , while satisfying the consensus constraints f i = f j for (i, j) ∈ E.

w i = [w i,1 , • • • , w i,N ] T ∈ R N denotes

III. DECENTRALIZED COLLABORATIVE LEARNING

We now develop an online decentralized iterative solution to (2) when the functions {f i } i∈V are elements of a RKHS, as detailed in Section II-A. To exploit the properties of this function space, we require the applicability of the Representer Theorem [cf. [START_REF] Marinho | Functional gradient motion planning in reproducing kernel hilbert spaces[END_REF]], but this result holds for any regularized minimization problem with a convex functional. Thus, we may address the consensus constraint

f i = f j , (i, j) ∈ E in (2)
by enforcing approximate consensus on estimates f i (x i ) = f j (x i ) in expectation. Thus, we introduce the penalty function

ψ c (f ) = i∈V R i (f i ) + c 2 j∈ni E xi [f i (x i )-f j (x i )] 2 , (5) 
where

R i (f i ) := E xi,yi i (f i x i ), y i + (λ/2) f i 2 H . Further define f * c = argmin f ∈H V ψ c (f )
and the local penalty as

ψ i,c (f i ) = R i (f i ) + c 2 j∈ni E xi [f i (x i )-f j (x i )] 2 . ( 6 
)
Observe from ( 5) -( 6) that ψ c (f ) = i ψ i,c (f i ).

A. Functional Stochastic Gradient Method

The data distribution P(x, y) is unknown, so minimizing ψ c (f ) directly via variational inference is not possible. Rather than postulate a distribution for (x, y), we only require sequentially available independent and identically distributed samples (x t , y t ) from their joint density. Then, we address (5) using stochastic methods. Thus, compute ∇ f ψi,c (f (x t ), y t ), the functional stochastic gradient (5), as in [START_REF] Kivinen | Online Learning with Kernels[END_REF] ∇ f ψi,c (f

(x t ), y t ) = i (f i (x i,t ), y i,t )κ(x i,t , •)+ λf i (7) +c j∈ni (f i (x i,t )-f j (x i,t ))κ(x i,t , •).
Now we may define the distributed stochastic gradient method for the kernelized λ-regularized multi-agent problem in (2) as

f i,t+1 = f i,t -η∇ f ψi,c (f (x t ), y t ) , (8) 
where η > 0 is an algorithm step-size. We further require that, given λ > 0, the step-size satisfies η < 1/λ and the global sequence is initialized as f 0 = 0 ∈ H V . With this initialization, the Representer Theorem (c.f. ( 4)) implies that, at time t, the function f i,t admits an expansion in terms of feature vectors x i,t observed thus far as

f i,t (x) = t-1 n=1 w i,n κ(x i,n , x) = w T i,t κ Xi,t (x) . (9) 
On the right-hand side of (9) we have introduced the notation

X i,t = [x i,1 ,. . ., x i,t-1 ] ∈ R p×(t-1) , κ Xi,t (•) = [κ(x i,1 ,•),. . ., κ(x i,t-1 ,•)] T , and w i,t = [w i,1 , . . . w i,t-1 ] ∈ R t-1
. Moreover, observe that the kernel expansion in ( 9), together with the update (8), yields the fact that performing the stochastic gradient method in H V amounts to V parallel parametric updates on the dictionaries X i and coefficients w i :

X i,t+1 = [X i,t , x i,t ] , (10) 
[w i,t+1 ] u = (1 -ηλ)[w i,t ] u for 0 ≤ u ≤ t -1 -η i (f i,t (x i,t ),y i,t )+c j∈ni (f i,t (x i,t )-f j,t (x i,t )) ,
where the second case on the last line of ( 10) is for u = t. This update causes X i,t+1 to have one more column than X i,t . We define the model order as number of data points M i,t in the dictionary of agent i at time t (the number of columns of X t ). FSGD is such that M i,t = t -1, and hence grows unbounded with t. Next we address this intractable memory growth such that we may execute stochastic descent through low-dimensional projections of the stochastic gradient [START_REF] Koppel | Parsimonious online learning with kernels via sparse projections in function space[END_REF].

B. Sparse Subspace Projections

Reduce the complexity noted in Section III-A, we approximate the function sequence ( 8) by one that is orthogonally projected onto subspaces H D ⊆ H that consist only of functions that can be represented using some dictionary

D = [d 1 , . . . , d M ] ∈ R p×M , i.e., H D = {f : f (•) = M n=1 w n κ(d n , •) = w T κ D (•)} = span{κ(d n , •)} M n=1 , and {d n } ⊂ {x u } u≤t . For convenience we define [κ D (•) = κ(d 1 , •) . . . κ(d M , •)],
and K D,D as the resulting kernel matrix from this dictionary. We enforce efficiency in function representation by selecting dictionaries D i that M i,t << O(t) for each i, following [START_REF] Koppel | Parsimonious online learning with kernels via sparse projections in function space[END_REF]. To be specific, we propose replacing the local update [START_REF] Li | Kernel Learning Algorithms for Face Recognition[END_REF] in which the dictionary grows at each iteration by its projection onto subspace

H Di,t+1 = span{κ(d i,n , •)} Mt+1 n=1 as f i,t+1 := P H D i,t+1 (1 -ηλ)f i,t -η ∇ fi i (f i,t (x i,t ), y i,t ) +c j∈ni (f i,t (x i,t )-f j,t (x i,t ))κ(x i,t , •) . (11)
We define projection P onto subspace H Di,t+1 by use of kernel orthogonal matching pursuit [START_REF] Pati | Orthogonal Matching Pursuit: Recursive Function Approximation with Applications to Wavelet Decomposition[END_REF] applied to the sequence of kernel dictionaries and weights with stopping tolerance . See [START_REF] Koppel | Decentralized online learning with kernels[END_REF][Section 3.2] for details. The coefficients and dictionary updates are given in Algorithm 1.

IV. OPTIMALLY SPARSE FUNCTION REPRESENTATION

We turn to establishing -based on extending Section IV of [START_REF] Koppel | Parsimonious online learning with kernels via sparse projections in function space[END_REF] to multi-agent settings -that Algorithm 1 converges with probability 1 to a neighborhood of the minimizer of the penalty function ψ c (f ) [cf. [START_REF] Koppel | A saddle point algorithm for networked online convex optimization[END_REF]] and that the kernel dictionary that parameterizes the regression function f i for each agent i remains finite. Let us define the local projected stochastic functional gradient associated with the update in [START_REF] Mairal | Task-driven dictionary learning[END_REF] as

∇fi ψi,c (f i,t (x i,t ), y i,t ) = (12) 
f i,t -P H D i,t+1 f i,t -η∇ fi ψi,c (f i,t (x i,t ),y i,t ) /η
such that the local update of Algorithm 1 [cf. [START_REF] Mairal | Task-driven dictionary learning[END_REF]] may be expressed as a stochastic projected functional gradient descent

f i,t+1 = f i,t -η ∇fi ψi,c (f i,t (x i,t ), y i,t ) . (13) 
Subsequently, we require the some technicalities common to kernelized stochastic methods, see [START_REF] Pontil | Error analysis for online gradient descent algorithms in reproducing kernel hilbert spaces[END_REF]- [START_REF] Nesterov | Introductory lectures on convex programming volume i: Basic course[END_REF].

i) The feature space X ⊂ R p and target domain Y ⊂ R are compact, and the reproducing kernel map satisfies

sup x∈X κ(x, x) = X < ∞. (14) 
ii) The local losses i (f i (x), y) are convex and differentiable w.r.t. the scalar argument f i (x) on R for all x ∈ X , y ∈ Y. Moreover, the instantaneous losses

i : H × X × Y → R are C i -Lipschitz continuous for all z ∈ R for a fixed y ∈ Y.
iii) Let F t be the filtration measuring the algorithm history:

F t = {x u , y u , f u } t u=1 .
The projected functional stochastic gradient of the penalty which stacks [START_REF] Liu | Algorithm design for femtocell base station placement in commercial building environments[END_REF] has finite conditional variance (c) Model Order Mi,t vs. samples processed Fig. 1: In Fig. 1a, we plot the global objective i∈V (Ex i ,y i [ i(fi,t x), yi ]) versus the number of samples processed, and observe convergence. In Fig. 1b we display the Hilbert-norm network disagreement (i,j)∈E fi,t -fj,t 2

E[ ∇f ψc (f t (x t ), y t ) 2 H | F t ] ≤ σ 2 . ( 15 
)
H with a penalty parameter c = 0.02. In Fig. 1c, we plot the model order of a randomly chosen agent's regression function, which stabilizes to 4299.

Under the previous assumptions, the iterates of Algorithm 1 converge to a neighborhood of the minimizer of ψ c (f ).

Theorem 1: Consider the sequence {f t } generated by Algorithm 1 with f 0 = 0 and regularizer λ > 0. Suppose Assumptions i-iii hold, and we select η < 1/λ and compression budget = Kη 3/2 for any K > 0. Then we have convergence to a neighborhood with probability 1 as

lim inf t→∞ f t -f * c H ≤ √ η λ KV + K 2 V 2 +λσ 2 = O( √ η) a.s. (16) 
Empirically, use of constant step-sizes maintains consistent algorithm adaptivity in the face of new data. Moreover, we may apply Theorem 3 of [START_REF] Koppel | Parsimonious online learning with kernels via sparse projections in function space[END_REF], which guarantees the model order of the function sequence remains finite.

Corollary 1: Denote f t ∈ H V as the sequence defined by Algorithm 1 with η and as in Theorem 1. Let M t be the model order of function f t . Then there exists a finite upper bound M ∞ such that, for all t ≥ 0, the model order is always bounded as M t ≤ M ∞ , and the model order of the limiting function f ∞ c = lim t f t is finite. Thus, use of constant step-sizes yields approximate convergence to f * c while ensuring finite memory (Corollary 1). Under an additional hypothesis, we have that consensus in the RKHS is attained, as we state next.

Theorem 2: Let Assumptions i -iii hold. Let f * c be the minimizer of the penalty function [START_REF] Koppel | A saddle point algorithm for networked online convex optimization[END_REF]. Then, suppose the penalty parameter c in (5) approaches infinity c → ∞, and that the node-pair differences f * i,c -f * j,c are not orthogonal to mean transformation E xi [κ(x i , •)] of the local input spaces x i for all (i, j) ∈ E. Then f * i,c = f * j,c for all (i, j) ∈ E. Thus, as long as a specific condition holds on the feature map induced by the kernelization of node i's data, consensus is achieved when we send the penalty parameter to infinity. Next, we asses Algorithm 1 in practice.

V. NUMERICAL EXPERIMENTS

Consider the task of kernel logistic regression from multiclass training data that is scattered across a multi-agent network. In this case, the merit of a particular regressor for agent i is quantified by its contribution to the class-conditional probability. Define a set of class-specific functions f i,k : X → R, and denote them jointly as f i ∈ H C , where {1, . . . , C} denotes the set of classes. Then, define the probabilistic model of the odds ratio of being in class c vs. all others

P (y i = c | x i ) := exp(f i,k (x i )) k exp(f i,k (x i )) . ( 17 
)
The negative log likelihood defined by ( 17) is the instantaneous loss (see, e.g., [START_REF] Murphy | Machine Learning: A Probabilistic Perspective[END_REF]) at sample (x i,n , y i,n ):

(f i , x i,n , y i,n ) = -log P (y i = y i,n |x i,n )+ λ 2 k f i,k 2 H (18) 
We generated the brodatz data set from a subset of [START_REF] Brodatz | Textures: A Photographic Album for Artists and Designers[END_REF]: from 13 texture images (i.e. D=13), we generate a set of 256 textons [START_REF] Leung | Representing and Recognizing the Visual Appearence of Materials using Three-dimensional Textons[END_REF]. Next, for each overlapping patch of size 24pixels-by-24-pixels within these images, we took the feature to be the associated p = 256-dimensional texton histogram. The corresponding label was given by the index of the image from which the patch was selected. We then randomly selected N = 10000 feature-label pairs for training and 5000 for testing. Each agent in network with V = 5 observes a unique stream of samples from this data set. Here the communication graph is a random network with edges generated randomly between nodes with probability 1/5 repeatedly until we obtain one that is connected, and then symmetrize it. We run Algorithm 1 for ten epoches: in each epoch we stream the entire training set to each agent. A Gaussian kernel is used with bandwidth σ 2 = 0.1, step-size η = 4, compression budget = η 3/2 with parsimony constant K = 0.04, mini-batch size 32 and regularizer λ = 10 -5 . The penalty coefficient is c = 0.02.

Results of this experiment are in Figure 1: Fig. 1a displays the global objective i∈V (E xi,yi [ i (f i,t x), y i ]) relative to no. of samples, where we can clearly observe global convergence; Fig. 1b plots the network disagreement (i,j)∈E f i,tf j,t 2 H , which remains small during training; and the model order of an agent chosen at random versus samples processed is given in Fig. 1c. The resulting decision function achieves 93.5% accuracy over the test set which is comparable with the accuracy of the centralized version (95.6%) [START_REF] Koppel | Parsimonious online learning with kernels via sparse projections in function space[END_REF]. However, the model order required is more than twice the model order in the centralized case (4358 in average v.s. 1833 [START_REF] Koppel | Parsimonious online learning with kernels via sparse projections in function space[END_REF]). Compared to other distributed classification algorithms, we outperform the state of the art by a significant margin: D4L achieves 75% accuracy [START_REF] Koppel | D4l: Decentralized dynamic discriminative dictionary learning[END_REF].

  Algorithm 1 Greedy Projected Penalty MethodRequire: {x t , y t , η, } t=0,1,2,...

	initialize f i,0 (•) = 0, D i,0 = [], w 0 = [], i.e. initial
	dictionary, coefficients are empty for each i ∈ V
	for t = 0, 1, 2, . . . do
	loop in parallel for agent i ∈ V
	Observe local training example realization (x i,t , y i,t )
	Send obs. x i,t to nodes j ∈ n i , receive scalar f j,t (x i,t )

Receive obs. x j,t from nodes j ∈ n i , send f i,t (x j,t ) Compute unconstrained stochastic grad. step [cf. (

  a set of weights. The upper index N in (4) is referred to as the model order, and for ERM the model order and training sample size are equal. By exploiting the Representer Theorem, we transform an infinite dimensional optimization problem in H V into a finite N V -dimensional parametric problem. Thus, the RKHS provides a principled framework to solve nonparametric regression problems as a search over R V N for a set of coefficients. However, when training examples (x i,n , y i,n