
HAL Id: hal-03633933
https://hal.science/hal-03633933

Preprint submitted on 7 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A unified treatment of structural definitions on syntax
for capture-avoiding substitution, context application,
named substitution, partial differentiation, and so on

Tom Hirschowitz, Ambroise Lafont

To cite this version:
Tom Hirschowitz, Ambroise Lafont. A unified treatment of structural definitions on syntax for capture-
avoiding substitution, context application, named substitution, partial differentiation, and so on. 2022.
�hal-03633933�

https://hal.science/hal-03633933
https://hal.archives-ouvertes.fr

A unified treatment of structural definitions on syntax

for capture-avoiding substitution, context application,

named substitution, partial differentiation, and so on

TOM HIRSCHOWITZ, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LAMA, 73000, France

AMBROISE LAFONT, University of Cambridge, United Kingdom

We introduce a category-theoretic abstraction of a syntax with auxiliary functions, called an admissible

monad morphism. Relying on an abstract form of structural recursion, we then design generic tools to con-

struct admissible monad morphisms from basic data. These tools automate ubiquitous standard patterns like

(1) defining auxiliary functions in successive, potentially dependent layers, and (2) proving properties of

auxiliary functions by induction on syntax. We cover significant examples from the literature, including the

standard lambda-calculuswith capture-avoiding substitution, a lambda-calculus with binding evaluation con-

texts, the lambda-mu-calculus with named substitution, and the differential lambda-calculus.

Additional Key Words and Phrases: syntax ; variable binding ; substitution ; category theory

1 INTRODUCTION

Motivation. The literature offers several initial-algebra semantics frameworks for generating
and reasoning about syntax with variable binding (e.g., [Fiore and Hur 2009; Fiore et al. 1999;
Gabbay and Pitts 1999; Hofmann 1999]). Still, even state-of-the-art frameworks lack some expres-
siveness to suit the working operational semanticist’s needs. One typical limitation, which is the
topic of active research [Coraglia and Di Liberti 2021; Gratzer and Sterling 2021], concerns some
complex typing features like dependent types.
In this paper, we are concerned with a different limitation: although existing frameworks do

explain capture-avoiding substitution satisfactorily, they largely ignore the numerous similar aux-
iliary operations on syntax, like context application (e.g., in ML [Pierce 2004, Chapter 10]), named
substitution in the _`-calculus [Parigot 1992] (a.k.a. named application [Vaux 2007]), partial differ-
entiation in the differential _-calculus [Ehrhard and Regnier 2003], and so on.
One way of dealing with such auxiliary operations is to build them into the syntax, and view

their defining equations as an equational theory, by which to quotient the initial model (see, e.g.,
[Fiore and Hur 2009; Gratzer and Sterling 2021]). The problem with this approach is that it lacks
the basic, inductive construction of the initial model. Or in other words, it misses the fact that
auxiliary operations are... auxiliary, i.e., that they are admissible (= encodable) in the initial model.

Contributions. In this paper, we propose a categorical foundation for such admissible operations,
called admissiblemonadmorphisms, together with a general framework for constructing them
and reasoning about them. In particular, the framework offers tools to

(a) define successive layers of auxiliary operations, each layer potentially depending on previ-
ous ones (as, e.g., in the differential _-calculus [Ehrhard and Regnier 2003]),

(b) automatically derive benign equations, i.e., equations involving auxiliary operations that
are satisfied by the syntax (such as, e.g., associativity of substitution 4 [f] [\] = 4 [f [\]]).

Remark 1. The framework does not yet allow the user to automatically prove that auxiliary op-
erations are compatible with severe equations, i.e., equations not involving auxiliary operations (as,
again, in the differential _-calculus), whose initial model thus may be a proper quotient of the syntax.

Authors’ addresses: Tom Hirschowitz, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LAMA, 73000, Chambéry,

France; Ambroise Lafont, University of Cambridge, Cambridge, United Kingdom.

T. Hirschowitz and A. Lafont

We illustrate the expressiveness of the framework by reconstructing (1) Fiore et al.’s [1999] ap-
proach as a special case, and (2) a few concrete examples from the literature, notably a _-calculus
with explicit substitution [Accattoli 2019] (which involves variable capture by evaluation con-
texts) and the differential _-calculus [Ehrhard and Regnier 2003] (without quotienting by struc-
tural equations). We also demonstrate that our framework is not tied to any particular setting for
modelling variable binding, by reconstructing pure _-calculus with capture-avoiding substitution
in De Bruijn representation (§4.6).
The framework consists of the following components.

1. First, we offer a fundamental, very easy construction of admissible monad morphisms from
suitable monad distributive laws in the sense of Beck [1969]. A monad distributive law is a natural
transformation)(→ () , where we think of (as the monad of basic operations, hence call it
the basic monad, and of) as the one of auxiliary operations, hence call it the auxiliary monad.
We show that, whenever) preserves the initial object, any monad distributive law induces an
admissible monad morphism (→ () to the composite monad.
2. Then, we design a toolbox for constructing such distributive laws from more basic data:
(i) We first introduce a simple notion of signature for distributive laws. A signature consists of

an endofunctor Σ, equipped with an abstract analogue of a structurally recursive definition,
called a simple structural law. From such a signature, we generate a distributive law of
the desired form, whose basic monad is the free monad Σ

∗ on Σ. We also establish a simple
characterisation of augmented algebras, i.e., Σ-algebras featuring the specified auxiliary
operations in a compatible way.
Simple structural laws are expressive enough to equip (potentially binding) syntaxwith capture-
avoiding substitution, but not to tackle Features (a) and (b) above.

(ii) We then introduce a second notion of signature, which is an incremental form of the first. A
signature consists of a distributive law X :)(→ () whose basic monad (is free on some
endofunctor Σ, equipped with a so-called incremental structural law over it. The idea is
that we have already specified a few auxiliary operations over (, bundled as the monad) , and
an incremental structural law is like a structurally recursive definition by pattern-matching
on basic operations, whose body may use all auxiliary operations. From this, we construct a
new distributive law with the same basic monad, but whose auxiliary monad contains new
operations. We again present a simple explicit description of augmented algebras.
Incremental structural laws are expressive enough to equip syntax with incremental layers of
auxiliary operations, hence implement Feature (a) above.

(iii) We finally address the benign equations feature (b). For this, we again start from a distributive
law with a free basic monad, and introduce structural equational systems, which, roughly,
consist of:
• (an abstract form of) equations on terms, potentially using auxiliary operations, and
• data that ensures that the equations will be satisfied by the syntax.

From this, we construct a distributive law with the same basic monad.

Plan. We start in §2 by introducing admissible monad morphisms and showing how they may
be derived from suitable monad distributive laws. We then study simple structural laws in §3,
incremental structural laws in §4, and benign equations in §5, giving applications along the way.
Finally, we conclude and give some perspectives in §6.

Related work. Our framework abstracts over the idea of a definition by structural recursion, to
categories other than sets. The abstraction emphasises the idea that the syntax equipped with aux-
iliary functions is initial in a category of augmented algebras. Our framework is directly inspired

2

A unified treatment of structural definitions on syntax

by (and abstracts over) Fiore et al.’s [Fiore et al. 1999; Fiore 2008]. A notable difference is that Fiore
et al. rely on a technical notion called pointed strong endofunctors, which intuitively amounts to
assuming that the argument of the endofunctor already has part of the desired structure – in this
case, variables. The corresponding instance of our abstract framework avoids this astute trick by
taking the free structure. Technically, this is visible in the presence of - ⊗ ((.) in the codomain
of our simple structural law in §3.5. Indeed, taking ((.) instead of merely . is what allows us to
use f↑ in the definition.
Our work is related to the idea of traversals [Allais et al. 2018]. The latter are however limited to

categories of families of sets indexed by some fixed set of types, and tailored for capture-avoiding
substitution.

Notation and prerequisites. We often conflate natural numbers with the corresponding finite
ordinals, or some choice of equipotent set, hopefully made clear by the context.
We assume basic knowledge of category theory [Mac Lane 1998] and locally finitely presentable

categories [Adámek and Rosicky 1994] (although the latter may be ignored on a superficial read-
ing). By default, our categories are locally small, although we occasionally repeat it for emphasis.
We let CAT denote the category of (locally small) categories.

We generally denote initial objects by ∅, relying on context to infer the corresponding category.
For any category C and object 2 ∈ C, we denote by C/2 the slice category over 2 .
On any category C with binary coproducts, for any object � ∈ C, we denote the corresponding

option functor by$� , i.e., $� (�) = � + �, for some choice of coproducts.
For any endofunctor � , we denote its category of algebras by � - alg. For any monad) , we

denote its category of monad algebras by) -Alg; it is then a full subcategory of) - alg. We denote
the coproduct of two monads) and) ′ by) ⊕) ′, to distinguish it from the coproduct) +) ′ of
underlying endofunctors.
Any finitary endofunctor � on a locally finitely presentable category C generates a free monad,

that we denote by � ∗. In particular, the initial algebra is denoted by � ∗∅. As is well-known, this
may often be computed as a directed colimit which we denote by `�.� (�). We furthermore denote
the unit � → � ∗ by [� . Please also note that � ∗ -Alg is isomorphic to � - alg: the isomorphism
maps an algebra � ∗2 → 2 to �2 → � ∗2 → 2 .
We write Δ for the diagonal functor C → C × C mapping an object 2 of a category C to (2, 2).

We use the letters Γ and Θ to denote bifunctors C × C→ C. We sometimes write Γ instead of ΓΔ.
E.g., we talk about Γ-algebras instead of ΓΔ-algebras, and denote (ΓΔ)∗ by Γ

∗. We furthermore
sometimes denote Γ(-,.) by Γ.- . If � is a functor to C, the bifunctor mapping (-,.) to Γ(-, �.)

is denoted by Γ� .
Moreover, for denoting the components of a natural transformation U : � → � , we freely switch

between U� and U� , and we denote horizontal composition in CAT by mere juxtaposition. E.g.,.
given any 5 : � → � in the domain category, we also write U 5 , or U 5 , for either composite U� ◦
� (5) = � (5) ◦ U� .
The middle dot · is overloaded: it may have the followin three meanings, depending on context:

• for any presheaf � : Cop → Set, morphism 5 : 2 → 3 in C, and element G ∈ � (3), we define
G · 5 := � (5) (G);
• for any set - and object 2 of any category with enough coproducts, we denote by - · 2 the
- -fold coproduct

∑
G ∈- 2; and finally,

• the middle dot is used in the syntax of differential _-calculus.

Definition 1.1. A monad morphism (→) between monads (and) on a given category C

is a natural transformation U : (→) commuting with multiplication and unit, i.e., making the
following diagrams commute.

3

T. Hirschowitz and A. Lafont

(())

()

UU

`(

U

`)

idC

()

[(

U

[)

We let Mnd(C) denote the category of monads in C and monad morphisms between them, and
Mnd5 (C) denote its full subcategory spanned by finitary monads.

2 ADMISSIBLE MONAD MORPHISMS AND DISTRIBUTIVE LAWS

In this section, we introduce admissible monad morphisms, and show how to construct them from
monad distributive laws.

2.1 Admissible monad morphisms

Definition 2.1. LetC have an initial object. Amorphism U : ' → (of monads onC is admissible

iff its component U∅ : '∅ → (∅ at the initial object is an isomorphism.

Remark 2. Intuitively, thinking of ' and (as algebraic structures, or families of operations, '(∅)
and ((∅) are the initial algebras, i.e., morally the syntaxes of both languages. The monad morphism
translates each operation from ' to some (derived) operation from (. Admissibility then amounts to
the translation being an isomorphism.

We will give the paradigmatic example of admissible morphism just below, but before that, let
us mention a different point of view on admissible morphisms.

Definition 2.2 ([Mac Lane 1998, §VI.3]). We call monadic (over C) any functor isomorphic in
CAT/C to some forgetful functor) -Alg→ C, and let Monadic/C denote the full subcategory of
CAT/C spanned by monadic functors.

Given a categoryC, the assignmentmapping anymonad) onC to the forgetful functor*) :) -Alg→
C extends to a functor sem : Mnd(C)op → Monadic/C, and we have:

Lemma 2.3. The functor sem is an equivalence of categories.

Proof. The functor sem is essentially surjective by definition of monadic functors. It is also full
and faithful by [Barr 1970, Proposition 5.3]. �

Proposition 2.4. Given a category C with initial object, monads (and) on C, and a monad
morphism U : (→) , the following are equivalent:

(i) U is admissible;
(ii) sem(U) :) -Alg→ (-Alg preserves the initial object;
(iii) sem(U) :) -Alg→ (-Alg creates the initial object in the sense of [Mac Lane 1998, §V.1], which
in this case means that the initial (-algebra (∅ possesses a unique) -algebra structure 0 :)(∅ → (∅

making the triangle

((∅)(∅

(∅

U(∅

`(
∅

0

commute, which furthermore makes it initial in) -Alg.

Proof. See §A. �

4

A unified treatment of structural definitions on syntax

Example 2.5. Our motivating example is in fact a class of examples. For any finitary, pointed
strong endofunctor Σ on any nice monoidal category (C, ⊗, � , U, _, d) (the impatient reader may
consult Definitions 5.14 and 5.16 below for details, but these are not yet needed), Fiore et al. [1999]
introduce a category Σ -Mon of Σ-monoids, which are objects - ∈ C with both Σ-algebra struc-
ture Σ- → - and monoid structure � → - ← - ⊗ - , satisfying a standard coherence condition
(Definition 5.15 below).

They then show that the initial (� + Σ)-algebra, or equivalently the free Σ-algebra on � , admits a
unique Σ-monoid structure, whichmakes it initial in Σ -Mon. Furthermore, both forgetful functors
from (�+Σ) - alg and Σ -Mon toC aremonadic, and there is an obvious forgetful functor Σ -Mon→

(� + Σ) - alg.
Thus, denoting by (�+Σ)∗ and Σ⊛ the correspondingmonads, their result may be read as proving

that the induced monad morphism
(� + Σ)∗ → Σ

⊛

is admissible.

2.2 From distributive laws

Let us now show how to construct admissible monad morphisms from distributive laws. We first
recall from [Beck 1969] that

(i) a monad distributive law of (over) is a natural transformation X :)(→ () , commuting
with unit and multiplication of both monads (and) , and that
(ii) any such distributive law equips the composite functor () with monad structure, which in
particular makes the natural transformation ([) : (→ () into a monad morphism.

The idea is to start from a distributive law with a suitable constraint on) , namely that) (∅) � ∅.
Intuitively,) may have many operations, but no constants to feed them with. We name such
monads accordingly:

Definition 2.6. A monad) on a category with an initial object ∅ is constant-free iff its unit at
∅, [)

∅
: ∅ →) (∅), is an isomorphism.

Proposition 2.7. For any distributive law X :)(→ () with) constant-free, the monadmorphism
([) : (→ () is admissible.

Proof. Immediate. �

This result might seem purely academic, but in fact all of our applications arise in this way. The
technical core of the paper thus consists in designing tools to construct such distributive laws over
constant-free monads.

3 SIMPLE STRUCTURAL LAWS

In this section, we introduce our first construction of distributive laws with constant-free auxiliary
monad, from what we call simple structural laws. Let us start by working on a simple (perhaps
surprising) example, and abstract over it in the following subsection.

3.1 On a simple example

We consider the unary (Peano) natural numbers, viewed as the initial algebra of the endofunctor Σ
on sets defined by Σ(-) = 1+- . We use standard syntax, i.e., 0 for the constant and B for successor.

Let us now consider the category, say Σ - algadd , of Σ-algebras- equipped with a binary operation,
denoted by (G,~) ↦→ G + ~, satisfying the following equations.

B (G) + ~ = B (G + ~) 0 + ~ = ~

5

T. Hirschowitz and A. Lafont

We call such an operation an addition.

Proposition 3.1. The initial algebra Σ
∗(∅) is equipped with a unique addition, which makes it

initial in the category of Σ-algebras with addition.

Proof. An easy induction. �

Furthermore, the forgetful functor * add : Σ - algadd → Set is monadic, and the corresponding
monad, say (add maps any set - of variables to terms generated from 0 and all G ∈ - by B and +,
modulo the above equations.
Now, for each set - , there is an obvious inclusion (- ↩→ (add- . This family of inclusions

induces a monad morphism (→ (add , and it is admissible by Propositions 3.1 and 2.4.
Let us now describe the monad (add and its relation to (more carefully, which will lead us to

distributive laws.
Orienting equations, terms generated by 0, B , and + from a given set of variables, quotiented by

the equations, have a normal form in which the first argument of an addition is either a variable, or
a further addition. Otherwise said, normal formswith variables in- are generated by the following
grammar:

4 ::= 0 | B (4) | 0
0 ::= G | 0 + 4.

(1)

Clearly, if no variable is available, only the first two cases can occur in a term 4 , which together
correspond precisely to the syntax generated by (. We thus recover the fact that (∅ → (add∅ is an
isomorphism.
Let us replay this reasoning, at a slightly more abstract level. The starting point is to refine the

arity of the auxiliary function (addition), here the endofunctor - ↦→ - 2, into a bifunctor

Γ : Set2 → Set

(-,.) ↦→ - × . .

Intuitively, this allows us to distinguish the “decreasing” occurrence of the argument.
By mimicking the recursive definition of addition on (∅, we then define the following natural

transformation
3-,. : Γ(Σ(-),.) → ((Γ(-,.) + .)

(0,~) ↦→ [((8=2(~))

(B (G),~) ↦→ B ([((8=1(G,~))),
(2)

where we write elements of Σ(/) as terms of depth 1 in ((/), for any set / . (We will use a slightly
more general codomain in the abstract case.) Elements of the domain are thought of as patterns
in the first argument, and the natural transformation maps them to “definition bodies”, which
are basic terms generated from the auxiliary arguments in . , and potentially a “recursive call” in
Γ(-,.) — hence with “strictly smaller” main argument.
We furthermore define a monad) := Γ

∗
(, which, we recall from §1, denotes (Γ(Δ)

∗. Concretely,
) (-) := `�.(-+�×((�)) corresponds to the syntactic category0 above: terms consist of additions
in normal form, i.e., additions whose first argument may be a variable or some further addition,
inductively, and whose second argument is an arbitrary expression. We thus have (add � (◦) .
Finally, we construct a distributive law)(→ () , by induction from the natural transforma-

tion (2), which repeatedly applies oriented equations until some normal form is reached. We will
be done if we prove) (∅) � ∅, for then

(add (∅) � () (∅) � ((∅),

as desired. But) (∅) � ∅ follows from the next lemma with Θ = Γ(.

6

A unified treatment of structural definitions on syntax

Lemma 3.2. For any category C and functor Θ : C2 → C, if Θ is cocontinuous in its first argument
and finitary in its second argument, then the initial object possesses a unique ΘΔ-algebra structure,
which furthermore makes it initial in ΘΔ - alg.

Proof. By cocontinuity, Θ∅∅ is initial, hence there is a unique morphism Θ∅∅ → ∅. The rest
follows easily. �

It may not be entirely obvious that Γ(is cocontinuous in its first argument, but - × . is iso-
morphic to the coproduct

∑
~∈. - , which is cocontinuous by interchange of colimits. Most of our

examples below follow the same pattern.

3.2 The abstract case

In this subsection, we introduce the general notion of simple structural law, and construct, from
any such law, a monad distributive law with constant-free auxiliary monad.

Definition 3.3. A simple structural law on a given locally finitely presentable category C con-
sists of

• a basic finitary endofunctor Σ : C→ C,
• an auxiliary functor Γ : C2 → C which is cocontinuous in its first argument and finitary
in its second argument, and
• a natural transformation

3-,. : Γ. (Σ(-)) → ((Γ((.) (-) + - + .),

where (:= Σ
∗ denotes the free monad generated by Σ.

Remark 3. Comparing with the example (2) of the previous section, we have added a new base case
- , and replaced . with the more general ((.) in the recursive call.

Let us now state the construction result, relying on the following lemma.

Lemma 3.4. For any finitary bifunctor � : C2 → C which is cocontinuous in its first argument, �∗

is constant-free.

Proof. More generally, if an endofunctor � preserves the initial object ∅, then ∅ equipped with
the isomorphism � (∅) → ∅ is easily seen to be the initial � -algebra, hence is isomorphic to � ∗∅. �

Theorem 3.5. Any simple structural law

3-,. : Γ. (Σ(-)) → ((Γ((.) (-) + - + .)

(with again (= Σ
∗) induces a monad distributive law

)(→ () ,

where) := Γ
∗
(
, making the following diagram commute.

Γ-Σ- ((Γ(-- + - + -)

Γ(-(-

Γ((-(-

)(- ()-

([[Γ(,- ,[
)
-
,[)
-
]

3-,-

Γ
[(
-
[Σ,-

Γ
[(
(-
(-

[Γ(,(-

X-

(3)

7

T. Hirschowitz and A. Lafont

Furthermore,) being constant-free by Lemma 3.4, the monad morphism (→ () is admissible.

Proof. This is a special case of Theorem 4.10 below, instantiating) with the identity monad.
�

Remark 4. By the usual characterisation of free algebras for finitary endofunctors [Reiterman 1977],
we have

) (-) = `�.(- + Γ(� (�)).

3.3 Augmented algebras

As a bonus, we may characterise algebras for the generated monad () , which we call augmented
algebras.

Definition 3.6.

• An algebra for a simple structural law ! = (Σ, Γ, 3) on C consists of an object - ∈ C,
equipped with
– Σ-algebra structure a : Σ(-) → - and
– ΓΔ-algebra structure b : Γ- (-) → - ,

making the following diagram commute,

Γ- (Σ(-)) ((Γ(- (-) + - + -)

((Γ- (-) + - + -)

Γ- (-) (-

-

3-,-

Γ- (a)

((Γā (-)+-+-)

([b,-,-]

b ā

where ā : ((-) → - is freely induced by a.
• Amorphism- → . of algebras for ! = (Σ, Γ,3) is a morphism between underlying objects
which is both a morphism of Σ- and ΓΔ-algebras.
• Let ! - alg denote the category of algebras for !, or !-algebras.

Proposition 3.7. Let ! = (Σ, Γ,3) be any simple structural law on C, and let) = Γ
∗
(. Then we

have
! - alg � () -Alg

over C, where we recall from the basic notations of §1 that capital Alg denotes monad algebras.

Proof. This is a special case of Theorem 4.13 below, instantiating) with the identity monad.
�

3.4 Application: evaluation contexts

Let us present a first application of Theorem 3.5, to generate a simple language with context ap-
plication. The language is generated by the following grammar

4, 5 ::= G | 4 5 | _G.4

� ::= � | � 4

and context application is defined inductively by

�[4] = 4

(� 4) [5] = � [5] 4.

8

A unified treatment of structural definitions on syntax

We now define a simple structural law, whose basic monad is the term monad, including con-
texts, and whose associated auxiliary monad will account for context application.

• Following Fiore et al. [1999], at least in spirit, we first choose as ambient category the cate-
gory [Set, Set2] 5 of finitary functors Set→ Set2, or equivalently [F, Set2], where F denotes
the category of finite ordinals and all maps between them.
We call p and c the two elements of 2, respectively for “program” and “context”.
For any object - ∈ [F, Set2] and = ∈ F, - (=) is a pair of sets, which we denote by
(- (=)p, - (=)c). We think of
– - (=)p as a set of programs with = free variables, and of
– - (=)c as a set of contexts with = free variables.

• The basic endofunctor is defined by:

Σ(-) (=)p = = + - (=)2p + - (= + 1)p
(4, 5 ::= G | 4 5 | _G.4)

Σ(-) (=)c = 1 + - (=)c × - (=)p
(� ::= � | � 4).

• The auxiliary bifunctor is

Γ(-,.) (=)p = - (=)c × . (=)p
Γ(-,.) (=)c = ∅.

• For our simple structural law, which is trivial by construction at c, we take at p:

Σ(-) (=)c × . (=)p → ((Γ(-, ((.)) + - + .) (=)p
(�, 4) ↦→ [((8=3(4))

(� 5 , 4) ↦→ [((8=1(�,[
((4))) [((8=2(5)).

3.5 Application: capture-avoiding substitution

In this section, we present a third application of Theorem 3.5, to pure _-calculus with capture-
avoiding substitution. This will be subsumed by §5.5, but we find it instructive to unfold the devel-
opment on a concrete example.

• We take as ambient category the category [Set, Set] 5 of finitary endofunctors of sets, or
equivalently [F, Set].
• The basic endofunctor on [F, Set] is defined by

Σ(-) (=) = = + - (=)2 + - (= + 1)

(4, 5 ::= G | 4 5 | _4).

• The auxiliary bifunctor is [Fiore et al. 1999]’s substitution tensor product

(- ⊗ .) (=) =

∫ ?

- (?) × . (=)? ,

or, expressed in [Set, Set] 5 , (- ⊗ .) (=) = - (. (=)).

• For our simple structural law, we take (sometimes omitting [(for readability)
∫ ?

Σ(-) (?) × . (=)? → ((- ⊗ ((.)) + - + .) (=)

(G, f) ↦→ 8=3(f (G))

(4 5 , f) ↦→ 8=1(4, [
(◦ f) 8=1(5 , [

(◦ f)

(_4, f) ↦→ _(8=1(4, f
↑)),

9

T. Hirschowitz and A. Lafont

where f↑ : ? + 1→ ((.) (= + 1) denotes the copairing of the following two maps.

?
f
−→ . (=)

. (8=1)
−−−−−→ . (=+1)

[(
.,=+1
−−−−→ ((.) (=+1) 1

8=2
−−→ =+1

8=1
−−→ Σ(.) (=+1) ↩→ ((.) (=+1)

Remark 5. In the final case, we crucially rely on the recursive call being in Γ(-, (.), rather than
just Γ(-,.). In Fiore et al. [1999], this is done by taking . “pointed”, in the sense of being equipped
with a natural transformation =→ . (=).

Remark 6. We obtain the expected syntax and substitution, but not yet the following standard equa-
tions,

4 [f] [f ′] = 4 [f [f ′]] 4 [id] = 4

where id : = → ((-) (=) picks the variables. We will complete the picture in §5.

3.6 Application: binding contexts

For a slightlymore involved example, we consider in this subsection the sharing _-calculus [Accattoli
2019, §4.1] (but see also [Hirschowitz et al. 2009; Sewell et al. 2008]).
Following Accattoli, the syntax is given by

4, 5 ::= G | 4 5 | _G.4 | 4〈G ↦→ 5 〉

� ::= � | �〈G ↦→ 5 〉.

Context application is then defined inductively by

�[4] = 4

(�〈G ↦→ 5 〉) [4] = � [4]〈G ↦→ 5 〉.

Remark 7. Context application may give rise to variable capture. E.g., (�〈G ↦→ 5 〉) [G] = G 〈G ↦→ 5 〉.

In order to model this, we extend the setting of the previous section as follows. In §3.4, for any
functor - : F → Set2 , we thought of - (=)p and - (=)c as sets of programs, resp. contexts with =
free variables. We now need to refine this point of view, and index contexts over the number of
capturing variables, i.e., variables bound above the context hole �. Instead of functors F→ Set2 ,
we thus consider functors F → Set1+N . Of course, we have N � 1 + N, but we write 1 + N to
emphasise the fact that 8=1(★), the unique element of the left-hand summand, models terms, while
each 8=2(=) models contexts with = capturing variables.

Notation 1. We abbreviate 8=1(★) to p and 8=2(=) to c= , so that, e.g., - (=)c< is thought of as a set
of contexts with = free variables and< capturing variables.

Accordingly, we specify the syntax by the endofunctor
Σ(-) (=)p = = + - (=)

2
p + - (= + 1)p + - (= + 1)p × - (=)p

Σ(-) (=)c<+1 = - (= + 1)c< × - (=)p
Σ(-) (=)c0 = 1.

Remark 8. On the second line, the expression - (= + 1)c< ×- (=)p reflects the fact that in the above
grammar, in �〈G ↦→ 5 〉, � may use the bound variable G , hence the use of = + 1, and has one less
capturing variable than �〈G ↦→ 5 〉, hence the passing from< + 1 to<. Otherwise said, G is free in �,
but capturing in �〈G ↦→ 5 〉.

10

A unified treatment of structural definitions on syntax

The generated monad (= Σ
∗ may be presented syntactically by the following rules

: ∈ - (=)p

= ⊢ : : p

8 ∈ =

= ⊢ G8 : p

= ⊢ 4 : p = ⊢ 5 : p

= ⊢ 4 5 : p

= + 1 ⊢ 4 : p

= ⊢ _(4) : p

= + 1 ⊢ 4 : p = ⊢ 5 : p

= ⊢ 4〈5 〉 : p

 ∈ - (=)c<

=;< ⊢ : c =; 0 ⊢ � : c

= + 1;< ⊢ � : c = ⊢ 5 : p

=;< + 1 ⊢ �〈5 〉 : c
,

with ((=)p = {4 | = ⊢ 4 : p} and ((=)c< = {� | =;< ⊢ � : c}. One then straightforwardly defines
the functorial action in =: for any renaming d : =→ =′, one replaces all G8 with Gd (8) , for 8 ∈ =.
Let us now model context application by a simple structural law:

• the arity functor is defined by

Γ(-,.) (=)c< = ∅

Γ(-,.) (=)p =
∑
<∈N - (=)c< × . (= +<)p,

reflecting the fact that in a context application � [4], 4 has as free variables the disjoint
union of the free and capturing variables of �;
• the simple structural law is defined componentwise by

Σ(-) (=)c< × . (= +<)p → ((Γ(-, ((.)) + - + .) (=)p
(�, 4) ↦→ 8=3(4) (if< = 0)

(�〈5 〉, 4) ↦→ 8=1(�, 4)〈8=2(5)〉 (if< =<′ + 1),

for all =,< ∈ N (omitting [(again for readability).

Remark 9. The reason 4 may be applied to both � and �〈5 〉 is that both contexts have the same
number of free or capturing variables ((= + 1) +<′ and = + (<′ + 1), respectively).

3.7 Application: named substitution

Let us now consider a last illustration of simple structural laws: named substitution in
_`-calculus [Parigot 1992; Vaux 2007]. Its usual form is as follows. The syntax of _`-calculus is:

4, 5 , 6 ::= G | 4 5 | _G.4 | `U.2

2, 3 ::= [U]4.

There are two syntactic categories: programs, ranged over by 4, 5 , 6, . . ., and continuations,
ranged over by 2, 3 . Accordingly, there are two kinds of variables: program variables, ranged
over by G,~, I, . . ., and continuation variables, ranged over by U, V, . . .

Remark 10. In this subsection, ` always denote the syntactic operation, as opposed to any monad
multiplication, or least fixed-point operator.

Intuitively, named substitution (C)U 6 (notation from [Vaux 2007, Definition 6.5]) takes as argu-
ment any term C (program or continuation) with a distinguished continuation variable U , together
with a program6, and replaces all subterms of the form [U]4 with [U] (4 6) in C . This may be defined
recursively by:

(G)U 6 = G

(_G.4)U 6 = _G.((4)U 6) (G ∉ 6)
(4 5)U 6 = ((4)U 6) ((5)U 6)

(`V.2)U 6 = `V.((2)U 6) (V ∉ U,6)

([V]4)U 6 =

{
[U] (((4)U 6) 6) (if U = V)
[V] ((4)U 6) (otherwise).

11

T. Hirschowitz and A. Lafont

In order tomodel this categorically, since we have two syntactic categories, each with its own set
of variables, we work with finitary functors Set2 → Set2, or equivalently the category [F2, Set2].
We write p and c for the elements of 2 (respectively standing for “program” and “continuation”).
Thus, for any - ∈ [F2, Set2], we think of

• - (<,=)p as a set of programs with< free program variables and = continuation variables,
and of
• - (<,=)c as a set of continuations with< free program variables and = continuation vari-
ables.

The basic syntax is specified by the endofunctor Σ defined by

Σ(-) (<,=)p = < + - (<,=)2p + - (< + 1, =)p + - (<,= + 1)c
Σ(-) (<,=)c = = × - (<,=)p.

For specifying named substitution, we take as auxiliary bifunctor

Γ(-) (<,=)p = - (<,=)p × = × . (<,=)p
Γ(-) (<,=)c = - (<,=)c × = × . (<,=)p.

Notation 2. Slightly generalising previous notation, we denote by G8 the 8th program variable, for
8 ∈<, and by U 9 the 9 th continuation variable, for 9 ∈ =.

Using this notation, we model named substitution by the following simple structural law (omit-
ting [(again for readability):

3-,.,<,=,p : Σ(-) (<,=)p × = × . (<,=)p → ((Γ(-, (.) + - + .) (<,=)p
(G8, 9 ,6) ↦→ 8=2(G8)

(_(4), 9 ,6) ↦→ _(8=1(4, 9 ,F
p
<,= · 6))

(4 5 , 9 ,6) ↦→ 8=1(4, 9 ,6) 8=1(5 , 9 ,6)

(`(4), 9 ,6) ↦→ `(8=1(4, 9 ,F
c
<,= · 6))

3-,.,<,=,c : Σ(-) (<,=)c × = × . (<,=)p → ((Γ(-, (.) + - + .) (<,=)c, i.e.,
3-,.,<,=,c : = × - (<,=)p × = × . (<,=)p → ((Γ(-, (.) + - + .) (<,=)c

([U 9]4, 9 ,6) ↦→ [U 9] (8=1(4, 9 , 6) 8=3(6))

([U 9′]4, 9 ,6) ↦→ [U 9′]8=1(4, 9 ,6) (for 9 ′ ≠ 9),

where

• F
p

<,:
:= (8=1, 83:) : (<,:) ↩→ (< + 1, :);

• Fc
<,:

:= (83<, 8=1) : (<,:) ↩→ (<,: + 1); and

• D · 0 denotes the action of a morphism D : (<,:) → (<′, : ′) in F
2 on an element 0 of some

�(<,:)B , for some � : F
2 → Set2 and B ∈ {p, c}.

4 INCREMENTAL STRUCTURAL LAWS

In this section, we introduce the incremental variant of structural laws. In §4.1, we sketch the idea
on a simple example. In §4.2, we introduce incremental structural laws in full generality, and
prove that they induce admissible morphisms (Theorem 4.2). In §4.3, we characterise the composite
monad induced by an incremental structural law, as objects equipped with suitably compatible
algebra structures. Then, in §4.4, we explain how to combine several, independent incremental
structural laws. Finally, we cover applications: partial differentiation in the differential _-calculus
(§4.5), and De Bruijn’s presentation of capture-avoiding substitution in the _-calculus (§4.6).

12

A unified treatment of structural definitions on syntax

4.1 On a simple example

Recalling the distributive law, say X :)(→ () constructed in §3.1 from the simple structural
law (2), we now want to extend the language with a second binary operation, multiplication, sat-
isfying

B (G) × ~ = (G × ~) + ~

0 × ~ = 0.

Furthermore, the full quotiented term language yields a monad (add,mul , and a monad morphism
(→ (add,mul . As in §3.1, orienting equations, we obtain normal forms, which are generated for
any argument - by the grammar

4 ::= 0 | B (4) | 1
1 ::= G | 1 + 4 | 1 × 4.

Of course, by the same reasoning as for mere addition, the initial (-algebra is initial in the category
of models of the whole language (i.e., (-algebras with addition and multiplication, satisfying all
four equations), hence the monad morphism (→ (add,mul is admissible.
Categorically, because the new equation uses addition, we cannot define a second, independent

structural extension of (. However, the recursive definition of multiplication yields a natural trans-
formation

Θ(Σ(-), .) → () (Θ(-,.) + .), (4)

where Θ(-,.) := - × . . Furthermore, inspecting the above grammar for normal forms, we find
(add,mul

� (◦ (Γ(+Θ()
∗: from the top level, we have a first layer of basic operations, until we meet

a binary operation; the first argument of the latter may then only consist of binary operations until
it reaches a variable G ∈ - , while the second argument is arbitrary. Equivalently, letting) ′ = Θ

∗
(,

we have

(Γ(+ Θ()
∗
� Γ

∗
(⊕ Θ

∗
(�) ⊕)

′,

hence

(add,mul
� (◦ () ⊕) ′).

By induction, i.e., applying (4) repeatedly, we define a distributive law () ⊕) ′) ◦ (→ (◦ () ⊕) ′).
Of courseΘ is cocontinuous in its first argument, which easily entails that) ⊕) ′ is constant-free,

and so (→ (add,mul
� (◦ () ⊕) ′) is admissible.

4.2 The abstract case

4.2.1 Main result. Let us now abstract over the previous section.

Definition 4.1. An incremental structural law on a locally finitely presentable category C

consists of

• a distributive law X :)(→ () with free basic monad (= Σ
∗ and constant-free auxiliary

monad) , together with
• a functor Γ : C2 → C which is cocontinuous in its first argument and finitary in its second
argument, equipped with
• a natural transformation

Γ. (Σ(-)) → () (Γ(). (-) + - + .).

Theorem 4.2. Any incremental structural law

3-,. : Γ. (Σ(-)) → () (Γ() (.) (-) + - + .)

13

T. Hirschowitz and A. Lafont

over X :)(→ () , with (:= Σ
∗, induces a distributive law

3/X : () ⊕)
′)(→ (() ⊕) ′),

where) ′ = Γ
∗
(, making the following diagram commute.

Γ-Σ- () (Γ()-- + - + -)

() (Γ()-)- + -)

Γ(-(- () () ′)- + -)

Γ((-(- () (() ⊕) ′) () ⊕) ′)- + -)

) ′(- (() ⊕) ′) () ⊕) ′)-

() ⊕) ′)(- (() ⊕) ′)-

3-,-

Γ
[(
-
[Σ,-

Γ
[(
(-
(-

3/X-

(`)⊕)
′

-

[Γ(,(-

8=2(-

(8=1 [`
)⊕) ′

-
,[)⊕)

′
-]

() (8=28=1-+-)

() (Γ()-[
)
-
+[-,-])

() ([Γ(,)- +-)

(5)

Furthermore,) ⊕) ′ is constant-free, hence the monad morphism

(→ (() ⊕) ′)

is admissible.

The next subsection is devoted to sketching the proof, and may be safely ignored.

4.2.2 Proof sketch. Our first stepwill consist in defining an intermediate notion called incremental
lifting, fitting in the following process:

incremental structural law→ incremental lifting→ distributive law→ admissible morphism.

To explain the idea, let us start by recalling fromBeck [1969] that distributive laws are equivalent
to monad liftings.

Definition 4.3. A lifting of a monad (: C→ C along a functor* : E→ C is a monad (′ : E→ E

such that the following square commutes

E E

C C

(′

*

(

*

and, furthermore, * preserves multiplication and unit, i.e., for all � ∈ E, * (`(
′

�) = `(
* (�)

and

* ([(
′

�) = [
(
* (�)

.

Given any monads) and (on a category C, a) -lifting of (is a lifting of (along the forgetful
functor) -Alg→ C.

Proposition 4.4. For all (and) ,) -liftings of (are in one-to-one correspondence with endofunc-
tors (′ :) -Alg→) -Alg, such that the following square commutes

14

A unified treatment of structural definitions on syntax

) -Alg) -Alg

C C

(′

(

and, for all - ∈) -Alg, `(
-
: ((- → (- and [(

-
: - → (- are) -algebra morphisms.

Proof. Straightforward. �

Lemma 4.5 (Beck [1969, §1]). For any monads (,) : C → C, monad distributive laws)(→ ()

are in one-to-one correspondence with) -liftings of (.

We now introduce incremental liftings.

Definition 4.6. Let (,) , and) ′ bemonads onC, and X :)(→ () be a monad distributive law. An
incremental lifting of (to) ′ -Alg along X is a functorial assignment, to each pair of a) -algebra
structure and a) ′-algebra structure on - , of a) ′-algebra structure on (- , such that for each such
- , the multiplication ((- → (- and unit - → (- are) ′-algebra morphisms.

This rather technical definition in fact unfolds rather simply, as we now explain. We first recall
the following, well-known characterisation of () ⊕) ′)-algebras.

Lemma 4.7. Let) and) ′ be monads on a complete (locally small) category C such that the monad
coproduct) ⊕) ′ exists. Then, the category of () ⊕) ′)-algebras consists of objects of C equipped with
algebra structures for both) and) ′. Otherwise said, the following square is a pullback.

() ⊕) ′) -Alg) -Alg

) ′ -Alg C

Proof. See §B. �

Remark 11. In passing, this result yields an easy proof that) ⊕) ′ is constant-free.

This directly entails the following equivalent presentation of incremental liftings.

Corollary 4.8. Incremental liftings of (to) ′ -Alg along X on a complete category C such that
the coproduct) ⊕) ′ exists are in one-to-one correspondence with liftings along the projection () ⊕

) ′) -Alg→) -Alg of the monad on) -Alg, say (X , itself obtained by lifting (, as in

() ⊕) ′) -Alg () ⊕) ′) -Alg

) -Alg) -Alg

C C.

(X,)
′

(X

(

In such a situation, (X,)
′
is furthermore a () ⊕) ′)-lifting of (.

It is now easy to see that incremental liftings give rise to distributive laws.

Corollary 4.9. Let (,) , and) ′ be monads on a complete category C such that the monad coprod-
uct) ⊕) ′ exists, and let X :)(→ () be any monad distributive law. Then, any incremental lifting
of (to) ′ -Alg along X gives rise to a distributive law X ′ : () ⊕) ′)(→ (() ⊕) ′).
Furthermore, if) and) ′ are constant-free, so is) ⊕) ′, hence the induced monad morphism (→

(() ⊕) ′) is admissible.

15

T. Hirschowitz and A. Lafont

Proof. By Corollary 4.8 and Lemma 4.5. Constant-freeness of) ⊕) ′ follows by Lemma 4.7. �

Remark 12. With the same hypotheses, it is straightforward to deduce that () → (() ⊕) ′) is
admissible, since (→ () and (→ () → (() ⊕) ′) both are.

We thus mostly reduce Theorem 4.2 to the following.

Theorem 4.10. Any incremental structural law

3-,. : Γ. (Σ(-)) → () (Γ() (.) (-) + - + .)

over X :)(→ () , with (:= Σ
∗, induces an incremental lifting of (to) ′ -Alg along X , where) ′ = Γ

∗
(
.

Remark 13. This result does not directly entail (5), which will follow from the construction of the
incremental lifting.

Proof sketch, see §C for a complete proof. We first define from 3 a natural transformation

3•l-,. : Γ(. (((-)) → () (Γ(). (-) + - + .),

notably using the fact that Γ(). , being a cocontinuous endofunctor on a locally finitely presentable
category, admits a right adjoint.
We then want to construct a lifting of (to some functor () ⊕) ′) -Alg→) ′ -Alg. But we have

) ′ -Alg � Γ(- alg, so we reduce to constructing a functor () ⊕)
′) -Alg→ Γ(-Alg – still behaving

like (on underlying objects.
For any) -algebra b :)- → - equipped with Γ(Δ-algebra structure c : Γ(-- → - , we construct

the desired Γ(Δ-algebra structure on ((-) as

Γ((-(-
Γ
`(
-
(-

−−−−−→ Γ(-(-
3•l
-,-
−−−→ () (Γ()- (-) + - + -)

() (b⊲c)
−−−−−−→ ()-

(b
−−→ (- ,

where (b ⊲ c) : Γ()-- + - + - → - is defined as follows.

Definition 4.11. For any) -algebra b :)- → - equipped with Γ(Δ-algebra structure c : Γ(-- →
- , let b ⊲ c denote the following composite.

Γ()- (-) + - + -
Γ(b-+[-,-]
−−−−−−−−−→ Γ(-- + -

[c,-]
−−−−→ - .

We then show that `(and [(are algebra morphisms, as desired. �

4.3 Augmented algebras

Let us now present the announced characterisation of the category of algebras of the composite
monad (() ⊕) ′) induced by an incremental structural law, which we call augmented algebras.

Definition 4.12. Consider any incremental structural law

3-,. : Γ. (Σ(-)) → () (Γ(). (-) + - + .)

over X :)(→ () , with (= Σ
∗.

• A (X, 3)-algebra is an object - equipped with morphisms

a : (- → - b :)- → - c : Γ(-,-) → - ,

the first two of which are monad algebra structures, making the following diagrams com-
mute.

16

A unified treatment of structural definitions on syntax

)(- ()-

)- (-

-

X-

) a (b

b a

(d1)

Γ(Σ-,-) () (Γ(-, ()-) + - + -)

Γ((-,-) () (Γ(-,-) + -)

Γ(-,-) () (-)

-

3-,-

Γ ([Σ,- ,-) () (Γ (-,a◦(b)+[-,-])

Γ (a,-) () [c,-]

c a◦(b

(d2)

• A (X, 3)-algebramorphism is a morphism between underlying objects which is an (-,) -,
and ΓΔ-algebra morphism.
• We let (X, 3) -Alg denote the category of (X, 3)-algebras and morphisms between them.

Theorem 4.13. Consider any incremental structural law

3-,. : Γ. (Σ(-)) → () (Γ(). (-) + - + .)

over X :)(→ () , with (= Σ
∗. Letting) ′ = Γ

∗
(as before, there is an isomorphism (() ⊕) ′) -Alg �

(X, 3) -Alg of categories over the base category C.
More precisely, for any (◦ () ⊕) ′)-algebra- , the canonical morphisms from (- ,)- , and Γ(-,-)

into ((() ⊕) ′) (-)) equip - with (X, 3)-algebra structure. This assignment extends to a functor
(() ⊕) ′) -Alg→ (X, 3) -Alg over C, which is an isomorphism of categories.

4.4 Independent extensions

Let us end the theoretical part of this section by briefly showing how to combine independent
incremental structural laws.

Proposition 4.14. For any set � , any � -indexed family

38-,. : Γ
8
. (Σ(-)) → () (Γ8() (.) (-) + - + .)

of incremental structural laws over X :)(→ () , with 8 ∈ � and (:= Σ
∗, induce a distributive law

() ⊕
⊕

8

)8)(→ (() ⊕
⊕

8

)8),

where)8 = (Γ
8
(
)∗ and) ⊕

⊕
8)8 is constant-free. We thus get an admissible morphism

(→ (() ⊕
⊕

8

)8).

Proof. Taking Γ. (-) =
∑
8 Γ

8
.
(-) and observing that

⊕
8)8 = Γ

∗
(, we obtain the desired result

directly by applying Theorem 4.2 to the cotupling of all

Γ
8
. (Σ(-))

38
- ,.
−−−→ () (Γ8

() (.)
(-) + - + .)

() ((8=8)-,() (.)+-+.)
−−−−−−−−−−−−−−−−−→ () (Γ() (.) (-) + - + .) �

17

T. Hirschowitz and A. Lafont

4.5 Application: differential _-calculus

In this section, we sketch an imperfect treatment of differential _-calculus, to illustrate incremental
structural laws.

4.5.1 Standard definition. Let us first introduce the calculus in the usual, informalway. The syntax
is:

Simple terms ∋ 4, 5 ::= G | 4 " | _G.4 | D4 · 5

Multiterms ∋ ", # ::= 0 | 4 +" ,

where simple and multiterms are considered equivalent modulo the following equations.

D(D4 · 5) · 6 ≡ D(D4 · 6) · 5

4 + 5 +" ≡ 5 + 4 +"
(6)

Structural operations are then defined as follows:

1. First of all, operations are extended to multiterms by induction, as in Figure 1.A. The first two

A. Extended operations

0 + # = #

(4 +") + # = 4 + (" + #)

0 # = 0
(4 +") # = (4 #) +" #

_G.0 = 0
_G.(4 +") = _G.4 + _G."

D(4) · 0 = 0
D(4) · (5 + #) = D(4) · 5 + D(4) · #

D(0) · # = 0
D(4 +") · # = D(4) · # + D(") · # .

B. Capture-avoiding substitution

G [G ↦→ "] = "

~ [G ↦→ "] = ~ + 0 (when G ≠ ~)
(_~.4) [G ↦→ "] = _~.(4 [G ↦→ "])

(~ fresh for G and")
(4 #) [G ↦→ "] = 4 [G ↦→ "] # [G ↦→ "]

(D4 · 5) [G ↦→ "] = D4 [G ↦→ "] · 5 [G ↦→ "]

0[G ↦→ "] = 0
(4 + #) [G ↦→ "] = 4 [G ↦→ "] + # [G ↦→ "] .

C. Partial differentiation

mG
mG
·" = "

m~

mG
·" = 0 (when G ≠ ~)

m (4 #)
mG
·" =

(
m4
mG
·"

)
+

(
D4 ·

(
m#
mG
·"

))
#

m_~.4

mG
·" = _~.

(
m4
mG
·"

)
(~ fresh for G and")

mD4 ·5
mG
·" = D(m4

mG
·") · 5 + D4 · (

m5

mG
·")

m0
mG
·" = 0

m (4+#)
mG ·" =

m4
mG ·" +

m#
mG ·".

Fig. 1. Auxiliary functions for differential _-calculus

lines extend 4 + " to take a multiterm as its first argument. The next two extend 4 " similarly.
The next two extend _-abstraction. Matters then get slightly subtle: D− ·− is first extended to take
a multiterm as its second argument, and then the obtained extension is further extended to take a
multiterm as its first argument.
2. Then, relying on this, capture-avoiding substitution of a variable by a multiterm in a simple or
multiterm is defined by induction in Figure 1.B, the result being a multiterm.
3. Finally, partial differentiation is also defined inductively, relying on extended operations, in
Figure 1.C.

18

A unified treatment of structural definitions on syntax

4.5.2 Using incremental structural laws. Let us now model this syntax and auxiliary operations
using incremental structural laws, but ignoring equations for this paper.
We have two syntactic categories, simple terms and multiterms, but only one sort for variables,

to be replacedwith multiterms. As in §3.4, wemodel this by working with the category [Set, Set2] 5
of finitary functors � : Set → Set2 , or equivalently functors F → Set2 . For a change, this time,
we emphasise the presentation as functors Set → Set2 . Furthermore, we write s and m for the
elements of 2, and think of � (-)s as a set of simple terms with free variables in - , and of � (-)m
as a set of multiterms with free variables in - . We sometimes write such functors as pairs (�s, �m)
of set-functors.
The basic endofunctor is then defined as follows.

Σ(�) (-)s = - + � (-)s × � (-)m + � (- + 1)s + � (-)
2
s

4, 5 ::= G | 4 " | _(4) | D4 · 5

Σ(�) (-)m = 1 + � (-)s × � (-)m
" ::= 0 | 4 +"

Notation 3. Writing ys = (1, ∅) and ym = (∅, 1) (viewing Set2 as the category of presheaves over
the discrete category {s,m}), we equivalently have

Σ(�) (-) = (- + � (-)s × � (-)m + � (- + 1)s + � (-)
2
s) · ys

+ (1 + � (-)s × � (-)m) · ym.

Let us now define extended operations. We start by defining the first four layers of Figure 1.A
independently, using Proposition 4.14 (with) = id). The relevant arities are

Γ
plus(�,�) (-) = (� (-)m ×� (-)m) · ym Γ

app (�,�) (-) = (� (-)m ×� (-)m) · ym

Γ
abs (�,�) (-) = � (- + 1)m · ym Γ

lapp0 (�,�) (-) = (� (-)s × � (-)m) · ym,

and the equations in the table may be read as defining the desired simple structural laws

Γ
8 (Σ(�),�) → ((Γ8 (�, ((�)) + � +�),

for 8 ∈ {plus, app, abs, lapp0}. We get a distributive law

X4 :)4(→ ()4,

where)4 = (
∑
8 Γ

8
(
)∗.

Remark 14. The operation in the fourth layer is defined by induction on the second argument, so
the main (inductive) argument for Γlapp0 goes to the right of the product.

For the last layer in Figure 1.A, we define an incremental structural law over X4, with arity

Γ
lapp (�,�) (-) = (� (-)m ×� (-)m) · ym.

Again the equations of the last layer may be read as defining this incremental law. By Theorem 4.2,

we get a distributive law X5 :)5(→ ()5, where)5 =)4 ⊕)lapp , with)lapp = (Γ
lapp
(
)∗.

We now define capture-avoiding substitution. The arity is reminiscent of substitution monoidal
structures, so we write it as a tensor product. Because the result of a substitution is a multiterm,
we readily put (� ⊗ �) (-)s = ∅. Then, we define

(� ⊗ �) (-)m = � (� (-)m)s + � (� (-)m)m,

reflecting the fact that we substitute multiterms for variables in both simple and multiterms.
The two layers of Figure 1.B may be read as defining the two components of the desired incre-

mental structural law
Σ(�) ⊗ � → ()5 (� ⊗ ()5� + � +�),

19

T. Hirschowitz and A. Lafont

which yields by Theorem 4.2 a distributive law X6 :)6(→ ()6, where)6 =)5 ⊕)subst , with)subst =
(− ⊗ (−)∗.
Finally, we define partial differentiation. The arity is again empty at s, with

Γ
diff (�,�) (-)m = � (- + 1)s ×� (-)m + � (- + 1)m ×� (-)m.

The additional variable in the first argument models the distinguished variable G along which we
differentiate. Again the equations may be read as defining an incremental structural law and we

get a distributive law X7 :)7(→ ()7, where)7 =)6 ⊕)diff , with)diff = (Γ
diff
(
)∗.

One could be content with this, prove the desired commutation lemmas [Vaux 2007, §6.1.4], and
then show that everything is compatible with Equations (6), all by hand. But of course, it would
be better to derive both results automatically. In the next section, we will explain how to derive
commutation lemmas (though on a simpler example), leaving compatibility with equations for
further work.

4.6 Application: capture-avoiding substitution, De Bruijn style

Most applications of the paper take place in the setting of so-called presheaf models, i.e., mild
generalisations of the category of finitary functors Set → Set [Fiore et al. 1999]. Our framework,
however, applies just as well in other settings. To illustrate this, in this subsection, we transpose
the example of capture-avoiding substitution to the De Bruijn-style setting of [Hirschowitz et al.
2022b].
To summarise the idea: just as the presheaf-based approach equipes the nested datatypes repre-

sentation [Bird and Paterson 1999] with initial algebra semantics, the setting of [Hirschowitz et al.
2022b] does the same for De Bruijn representation [De Bruijn 1972]. In the presheaf-based ap-
proach, terms are indexed by sets = of potential free variables, and by convention the bound vari-
able is always the greatest one, typically G=+1 for _= : - (= + 1) → - (=). Indexing is thus made
necessary by the binding convention. In De Bruijn representation, the binding convention is the
opposite: the bound variable is always 0. This makes indexing unnecessary, but some operations
become less intuitive (to many, at least [Berghofer and Urban 2007]).
In order to specify capture-avoiding substitution in the De Bruijn setting, we will need several

layers. Indeed, the presheaf-based approach features not only indexing, but also built-in renaming,
which is not the case in the De Bruijn setting. We thus need to define a first layer for renaming,
and then a second one for substitution.
We take Set as ambient category, and the basic syntax is specified by the endofunctor

Σ(-) = N + - 2 + - .

For the first layer, letting (= Σ
∗ again, the auxiliary bifunctor is

Γ(-,.) = - × N
N,

and renaming is specified by the following simple structural law (omitting [(for readability):

3-,. : Σ(-) × N
N → ((- × N

N + - + .)

(G8, d) ↦→ Gd (8)
(_(4), d) ↦→ _(8=1(4, 1 + d))
(4 5 , d) ↦→ 8=1(4, d) 8=1(5 , d)

where 1 + d : N→ N is defined by

(1 + d) (0) = 0
(1 + d) (1 + =) = 1 + d (=).

Letting) = Γ
∗
(
, we get a distributive law X :)(→ () by Theorem 3.5.

20

A unified treatment of structural definitions on syntax

Notation 4. We denote by 4 [d] the renaming operation of) .

We then specify substitution by taking as auxiliary bifunctorΘ(-,.) = -×.N, with incremental
structural law defined by

Σ(-) × .N → () (- × (().)N + - + .)

(G8 , f) ↦→ 8=3(f (8))

(_(4), f) ↦→ _(8=1(4, ⇑ f))

(4 5 , f) ↦→ 8=1(4, f) 8=1(5 , f),

where ⇑ f : N→ (). is defined by

⇑ f : N → ().

0 ↦→ G0
= + 1 ↦→ f (=) [↑],

letting ↑ : N→ N denote the successor map.

5 BENIGN EQUATIONS

In this section, we examine what we call “benign equations”, i.e., equations that are automatically
satisfied by the initial model. The initial model is thus initial in a potentially smaller category.
We start in §5.1 by presenting a simple example tomotivate this investigation. In §5.2, alongwith

recalling Fiore and Hur’s [2009] equational systems and some basic facts about them, we then
introduce a mathematical definition of a system of benign equations, called a benign equational
system. In §5.3, we present a notion of signature for benign equational systems, called structural
equational systems, which we apply in §5.4 to prove associativity of capture-avoiding substitu-
tion.

5.1 On a simple example

In the case of addition, as defined by structural recursion in §3.1, an example of benign equation
is associativity:

(G + ~) + I = G + (~ + I). (7)

This is typically proven by induction on the first variable G . We explain how to derive this result
from the results of §3.1 and §4, which leads to structural equational systems.
We start by briefly sketching the idea. By the construction of §4, we define a new, auxiliary

ternary operation op(G,~, I) by the structurally recursive equations

op(0, ~, I) = ~ + I (8)

op(B (G),~, I) = B (op(G,~, I)). (9)

By Theorem 4.2, the syntax, (∅, admits a unique such operation. But on the other hand, one easily
proves that taking op(G,~, I) = G + (~ + I) or op(G,~, I) = (G + ~) + I yields two such operations.
Indeed, we have

B (G) + (~ + I) = B (G + (~ + I)) 0 + (~ + I) = ~ + I

and

(B (G) + ~) + I = B (G + ~) + I = B ((G + ~) + I) (0 + ~) + I = ~ + I

by the defining equations of addition. By uniqueness, both definitions of op must thus coincide,
which proves (7).

More formally, we start from the distributive law X :)(→ () of §3.1. We introduce a bifunctor
Ψ : Set2 → Set mapping (-,.) to - × . × . , for the arity of the ternary operation. Again, -

21

T. Hirschowitz and A. Lafont

corresponds to the decreasing argument in the recursive definition of op, while . accounts for
other arguments. As in §4, the recursive definition is modelled by an incremental structural law

3-,. : Ψ(Σ-,.) → () (Ψ(-, ().) + - + .)

(0,~1,~2) ↦→ 8=3(~1) + 8=3(~2)

(B (G),~1,~2) ↦→ B (8=1(G,~1, ~2)).

Equation (7) induces a pair
!- , '- : Ψ(-,-) → ()-

of natural transformations, respectively mapping any triple (G,~, I) ∈ - 3 to (G+~)+I and G+(~+I),
andwe want to show that the algebra structure `()

∅
: ()() ∅ → () ∅ (� (∅) of the initial () -algebra

coequalises !() ∅ and '() ∅, as in

Ψ(() ∅, () ∅) ()() ∅ () ∅.

!() ∅

'() ∅

`()
∅

By Theorem 4.13, models of the incremental structural law 3 are () -algebras equipped with an
additional ternary operation making the diagram (d2) commute (with (:= () and Γ := Ψ), and
furthermore, by Theorem 4.10, () ∅ is an initial model. By initiality, we thus merely need to show
that both induced composites Ψ(() ∅, () ∅) → () ∅ make (d2) commute.
In the next subsections, we propose an abstract version of this idea, with a simple sufficient

condition for it to work.

5.2 Equations

In this subsection, loosely following [Fiore and Hur 2009; Hirschowitz et al. 2022a], we introduce
an abstract notion of equational system, and define what it means for such an equational system
to be benign.

Definition 5.1. Given a finitary monad) on a locally finitely presentable category C, an equa-

tional system consists of a finitary monad� on C, together with two monad morphisms� →) .

Example 5.2. Taking C = Set, we model associativity of a binary operation by taking) and �
to be the free monads on the endofunctors Σ(-) = - 2 and Θ(-) = - 3 on sets, respectively. The
monad morphisms !, ' : � →) are induced by universal property of � = Θ

∗ from the natural
transformations !0, '0 : Θ→) defined by

!0
-
(G1, G2, G3) = G1 + (G2 + G3)

'0
-
(G1, G2, G3) = (G1 + G2) + G3.

Definition 5.3. The quotient �★ of a finitary monad) by an equational system � = (�, !, ') is
the coequaliser

�) �★
!

'

@

of !, ' in Mnd5 (C).

Remark 15. The coequaliser exists because the category of finitary monads on a locally finitely
presentable category is itself locally finitely presentable [Lack 1997], hence in particular cocomplete.

Remark 16. The coequaliser is also a coequaliser in the categoryMnd(C) of (not necessarily finitary)
monads onC, since colimits are preserved by the embeddingMnd5 (C) → Mnd(C) by Blackwell [1976,
Proposition 5.6].

Definition 5.4. An equational system is benignwhen the universal coequalisingmorphism) →
�★ is admissible.

22

A unified treatment of structural definitions on syntax

Although coequalisers of finitary monads may not be intuitive to all readers, the monad �★

admits the following nice characterisation by its algebras.

Definition 5.5. Given a finitary monad) and an equational system � = (�, !, ') on it, a) -algebra
0 :)- → - satisfies � iff 0 coequalises !- and '- , i.e., 0 ◦ !- = 0 ◦ '- .

Such) -algebras are called �-algebras, and we denote by � - alg the full subcategory of) -Alg
spanned by them.

Remark 17. Equivalently, � - alg is the equaliser in CAT of the induced functors) -Alg→ � -Alg,
which a priori might differ from the equaliser in Monadic5 /C, the full subcategory of Monadic/C

spanned by finitary monadic functors. They in fact coincide, by the following Proposition.

Proposition 5.6. For any finitary monad) on a locally finitely presentable category C and equa-
tional system � = (�, !, ') on it, we have an isomorphism � - alg � �★ -Alg over C. Otherwise said,
the forgetful functor � - alg→ C is finitary and monadic, and the associated monad is isomorphic to
�★.

Proof. By Remark 16, �★ is a coequaliser of ! and ', as monad morphisms. By Kelly [1980,
Proposition 26.3], its category of algebras is thus computed as the equaliser in CAT/C of the func-
tors) -Alg→ � -Alg � Θ - alg, as claimed. �

We may derive from this the following useful characterisation of benign equational systems.

Proposition 5.7. An equational system is benign iff the initial) -algebra satisfies it, i.e., `)
∅
◦!) ∅ =

`)
∅
◦ ') ∅.

Proof. If the initial algebra satisfies an equational system �, then it is a fortiori initial in � - alg,
hence in �★ -Alg by Proposition 5.6. The forgetful functor �★ -Alg →) -Alg thus preserves the
initial object, and we conclude by Proposition 2.4.
Conversely, if an equational system � is benign, then, by Proposition 2.4, the initial) -algebra

admits a unique �★-algebra structure 4 : �★) ∅ →) ∅ making the following diagram commute

)) ∅ �★) ∅

) ∅,

@) ∅

`)
∅

4

and 4 makes) ∅ into an initial �★-algebra. But @) ∅ coequalises !) ∅ and ') ∅ , hence so does `)
∅
, as

desired. �

Let us conclude this subsection with the following observation on combining equations.

Definition 5.8. For any family (�8)8 ∈� of equational systems on a given finitary monad) on a
locally finitely presentable category C, with �8 = (�8 , !8 , '8) for all 8 ∈ � , let

∑
8 �8 denote the

equational system defined by the cotuplings

[!8]8 ∈� :
⊕

8 ∈� �8 →) and ['8]8 ∈� :
⊕

8 ∈� �8 →) .

Proposition 5.9. For any family (�8)8 ∈� of equational systems on a given finitary monad) on a
locally finitely presentable category C,

∑
8 �8 is benign iff each �8 is.

Proof. By Proposition 5.7 and universal property of coproduct. �

23

T. Hirschowitz and A. Lafont

5.3 Structural equational systems

In this subsection, we introduce a notion of signature for benign equational systems.
We fix a free monad (= Σ

∗ on a locally finitely presentable categoryC, with Σ (hence () finitary.

Definition 5.10.

• A structural interpretation of an incremental structural law

3-,. : Θ(Σ-,.) → () (Θ(-, ().) + - + .)

over some given distributive law X :)(→ () is a natural transformation - : Θ(-,-) →
()- making the coherence diagram of Figure 2 commute.

Θ(Σ-,-) () (Θ(-, ()-) + - + -)

Θ((-, (-) () (Θ(()-, ()-) + -)

()(- () (()()- + -)

(()- () (()-)

()-

Θ([Σ,- ,[
(
-
)

3-,-

 (-

(X-

`(
)-

() (Θ([()
-
,()-)+[-,-])

() (()- +-)

() [`()
-
,[()
-
]

`()
-

Fig. 2. Coherence diagram for structural interpretations

• A structural equational system over a distributive law X :)(→ () consists of
– an incremental structural law (Θ, 3) over X , together with
– a pair of structural interpretations !, ' : ΘΔ→ () of 3 .

We now associate an equational system to any structural equational system, and prove that it
is benign.

Definition 5.11. For any structural interpretation : ΘΔ→ () of

3-,. : Θ(Σ-,.) → () (Θ(-, ().) + - + .)

over X :)(→ () , let ̃ : Θ∗(→ () denote the monad morphism induced by universal property of
Θ
∗
(from the composite

Θ(--
Θ(-[

(
-

−−−−−→ Θ(-(-
 (-
−−−→ ()(-

(X-
−−−→ (()-

`(
)-
−−−→ ()- .

For any structural equational system � = (3, !, ') over X , the equational system �̃ induced by �

is the pair !̃, '̃ : Θ∗(→ () .

Notation 5. We often conflate � and the associated equational system �̃. In particular, recalling
Definition 5.5 and Proposition 5.6, we speak of �-algebras, which form a category � - alg � �★ -Alg.

Theorem 5.12. Consider any monad distributive law X :)(→ () in a locally finitely presentable
category C such that) is constant-free. Then for any structural equational system � over X , the quo-

tient morphism () → �̃★ is admissible.

24

A unified treatment of structural definitions on syntax

Proof sketch (see §E for more detail). Let

3-,. : Θ(Σ-,.) → () (Θ(-, ().) + - + .)

denote the given incremental structural law, and ! and ' denote the two structural interpretations.
We first prove that each any structural interpretation induces ΘΔ-algebra structure on any

() -algebra - , given by

Θ(-,-)
 -
−−→ ()- → - ,

and furthermore that this ΘΔ-algebra structure satisfies (d2), hence by Theorem 4.13 makes- into
an (() ⊕) ′)-algebra.
The given structural interpretations ! and ' thus induce two extensions of the () -algebra struc-

ture of (∅ � () ∅ to (() ⊕) ′)-algebra structure. But by Theorem 4.2 and Proposition 2.4, (∅
has a unique compatible ΘΔ-algebra structure making it into a (() ⊕) ′)-algebra structure, so
both algebra structures derived from ! and ' must agree with the canonical one. In particular the
diagram

Θ((∅, (∅) ()(∅ (∅
!(∅

'(∅

commutes, hence (∅ satisfies the induced equational system, and is thus initial in (() ⊕) ′) -Alg.
�

Let us conclude this subsection with the following direct consequence of Theorem 5.12 and
Proposition 5.9.

Corollary 5.13. Consider any monad distributive law X :)(→ () in a locally finitely pre-
sentable category C such that) is constant-free. Then for any family (�8)8 ∈� of structural equational

systems over X , the quotient morphism () → (
∑
8 �̃8)

★ is admissible.

5.4 Application: associativity of substitution

In this section, we continue the development of §3.5. There, we specified the syntax of pure _-
calculus by an endofunctor Σ on [Set, Set] 5 , and substitution by a simple structural law

3-,. : Γ(Σ-,.) → ((Γ(. (-) + - + .),

where Γ(-,.) = - ⊗ . , thus generating an admissible morphism (→ () , where (= Σ
∗ and

) = Γ
∗
(.

We now want to show that the ΓΔ-algebra structure of the syntactic model (∅, a.k.a. capture-
avoiding substitution, is associative. Again, this will be subsumed by §5.5.
We define a structural equational system with the following components:

• the arity functor is Θ(-,.) = (- ⊗ .) ⊗ . ;
• the incremental structural law is defined by

3 ′-,. (G, f, \) = f (G) [\]

3 ′-,. (4 5 , f, \) = (4, f, \) (5 , f, \)

3 ′
-,.
(_(4), f, \) = _(4, f↑, \ ↑),

where
– f : ? → () (.) (@),
– \ : @ → () (.) (=),
– −1 [−2] denotes the formal (= explicit) substitution operation of) , and
– we omit coproduct injections and [() for readability;

25

T. Hirschowitz and A. Lafont

• the structural interpretations are defined by

!- (4, f, \) = 4 [f] [\] and '- (4, f, \) = 4 [f [\]],

where by definition f [\] (G8) := f (G8) [\] (writing G8 for the 8th element of ? to emphasise
that it is thought of as a variable).

Checking the coherence condition of Figure 2 essentially amounts to checking each case of the
usual induction, separately. The most interesting case is that of abstraction, with the right-hand
side ':

• 3 maps any triple (_(4), f, \) to _(4, f↑, \ ↑), which the right-hand composite then maps to
_(4 [f↑ [\ ↑]]), while
• the left-hand composite maps the triple to _(4 [f [\]↑]).

We thus need to prove f↑ [\ ↑] = f [\]↑:

• on G?+1, we directly have f [\]↑(G?+1) = G=+1, and, slightly less directly,

f↑[\ ↑] (G?+1) = f
↑(G?+1) [\

↑] = G@+1 [\
↑] = G=+1;

• on G8 for 8 ∈ ? , we have f [\]
↑(G8) = F= · (f (G8) [\]) = f (G8) [()- (F=) ◦\], whereF= : = ↩→

= + 1 denotes the inclusion, while

f↑ [\ ↑] (G8) = f↑(G8) [\
↑]

= (F@ · f (G8)) [\
↑]

= f (G8) [\
↑ ◦F@] .

But the following square commutes by definition of \ ↑, hence the result.

@ @ + 1

()- (=) ()- (= + 1)

F@

\

()- (F=)

\↑

Theorem 5.12 then tells us that the usual substitution lemma is satisfied in the syntax ((∅).

5.5 Embedding presheaf-based models

In this section, we show how the general framework of pointed strong endofunctors [Fiore et al.
1999; Fiore 2008] embeds into ours. More precisely, for any pointed strong endofunctor Σ on a mo-
noidal, locally finitely presentable category (C, ⊗, � , U, _, d) satisfying standard additional axioms
(see Definition 5.16 below):

• We define a simple structural law, whose initial algebra (∅ = (� +Σ)∗∅ is the desired syntax,
and whose category of algebras is a relaxed variant of Fiore et al.’s;
• We then define two structural equational systems �1 and �2, whose joint algebras in the
sense of Corollary 5.13 are precisely those of Fiore et al.’s.

We thus recover the admissible morphism

(→ () → (�̃1 + �̃2)
★
� Σ

⊛

of Example 2.5.

Remark 18. The motivation for this subsection is one of connecting to other people’s work. In appli-
cations, it will probably be easier to directly define the desired structural laws and equational systems.

We start by recalling the notion of pointed strong endofunctor, and its associated category of
models.

26

A unified treatment of structural definitions on syntax

Definition 5.14. A pointed strength on an endofunctor Σ : C → C on a monoidal category
(C, ⊗, � , U, _, d) is a family of morphisms BC�,(�,E) : Σ(�) ⊗ � → Σ(� ⊗ �), natural in � ∈ C and
(�, E : � → �) ∈ �/C, the coslice category below � , making the following diagrams commute,

Σ(�)

Σ(�) ⊗ � Σ(� ⊗ �)

dΣ (�) Σ(d�)

BC�,(� ,id)

(Σ(�) ⊗ -) ⊗ . Σ(� ⊗ -) ⊗ . Σ((� ⊗ -) ⊗ .)

Σ(�) ⊗ (- ⊗ .) Σ(� ⊗ (- ⊗ .))

BC�,(-,E-) ⊗.

UΣ (�) ,- ,.

BC�⊗-,(.,E.)

Σ(U�,- ,.)

BC�,(-⊗.,E-⊗.)

where E- : � → - and E. : � → . are the given points, and E- ⊗. denotes the composite

�
d−1
�
−−→ � ⊗ �

E- ⊗E.
−−−−−→ - ⊗ . .

Definition 5.15. For any pointed strong endofunctor Σ onC, a Σ-monoid is an object- equipped
with Σ-algebra and monoid structure, say 0 : Σ(-) → - , B : - ⊗ - → - , and E : � → - , such that
the following pentagon commutes.

Σ(-) ⊗ - Σ(- ⊗ -) Σ(-)

- ⊗ - -

BC-,(-,E)

0⊗-

Σ(B)

B

0 (10)

A morphism of Σ-monoids is a morphism in C which is a morphism both of Σ-algebras and of
monoids. We let Σ -Mon denote the category of Σ-monoids and morphisms between them.

Let us now show how any pointed strong endofunctor Σ gives rise to a simple structural law,
and how the coherence laws of Σ-monoids may be enforced by benign equations.
Following [Fiore et al. 1999; Fiore 2008], we assume that our categoryC is leftist, in the following

sense.

Definition 5.16. A monoidal category (C, ⊗, � , U, _, d) is leftist iff ⊗ is cocontinuous in its first
argument, and finitary in its second argument.

Definition 5.17. The simple structural law associated to any pointed strong endofunctor (Σ, BC)
is defined as follows.

• We take as basic functor Σ+(-) = � + Σ(-), and
• as auxiliary bifunctor Γ(-,.) = - ⊗ . .
• We then take as simple structural law 3-,. the composite

Σ
+(-) ⊗ (. � ⊗ (. + Σ(-) ⊗ (. (. + Σ(- ⊗ (.)

Σ
+(-) ⊗ . ((- ⊗ (. + - + .),;

Σ
+ (-) ⊗[(

.

∼
_(. +BC-,((.,E.)

[(8=3,((8=1)◦[Σ+,-⊗(. ◦8=2]

where (= (Σ+)∗ and E denotes the composite � → Σ
+ → (.

27

T. Hirschowitz and A. Lafont

By Theorem 3.5, the initial Σ+-algebra has a unique model structure, which makes it initial,
and furthermore, by Theorem 4.13, models are Σ-algebras 0 : Σ- → - , equipped with morphisms
E : � → - and B : - ⊗ - → - making the pentagon

Σ
+(-) ⊗ - ((- ⊗ (- + - + -)

((- ⊗ - + - + -)

- ⊗ - (-

-

[E,0] ⊗-

3-,-

((- ⊗[E,0]+-+-)

B

([B,-,-]

[E,0]

(11)

commute, where [E, 0] is induced by universal property of ((-).

Proposition 5.18. Commutation of (11) is equivalent to joint commutation of the pentagon (10)
and the diagram below.

� ⊗ - - ⊗ -

-

E⊗-

B_-

(12)

Proof. The domain of (11) is a coproduct, and we claim that the restriction to each term yields
one of the given diagrams. For the first term, we get the following diagram.

� ⊗ - � ⊗ (- (- ((- ⊗ (- + - + -)

- ((- ⊗ - + - + -)

- ⊗ - (-

-

E⊗-

((- ⊗[E,0]+-+-)

B

([B,-,-]

[E,0]

� ⊗[(
- (8=3_(-

_- [(
-

[(
-

For the second term, we verify that both pentagons are equivalent by chasing the following dia-
gram.

Σ(-) ⊗ - Σ(-) ⊗ ((-) Σ(- ⊗ (-) Σ
+(- ⊗ (-) ((- ⊗ (- + - + -)

Σ(-) ⊗ - Σ(- ⊗ -) Σ
+(- ⊗ -) ((- ⊗ - + - + -)

- ⊗ - Σ(-) Σ
+(-) (-

-

0⊗-

((- ⊗[E,0]+-+-)

B

([B,-,-]

[E,0]

Σ(-) ⊗[(
-

BC-,(-,E-) 8=2 [Σ+,8=1

Σ(- ⊗[E,0])

[Σ+,8=18=2

Σ(-) ⊗ [E,0]

BC-,(-,E)

Σ(B)

8=2 [Σ+,-

0

Σ
+ (B)

�

28

A unified treatment of structural definitions on syntax

However, B and E are not yet required to satisfy the remaining monoid equations. In order to
enforce them, relying on Corollary 5.13, we introduce two structural equational systems, one for
each equation. First, we introduce some notation.

Definition 5.19. For any object / , we define 9/ : / ⊗ / →)/ to be the composite

/ ⊗ /
/ ⊗[(

/
−−−−→ / ⊗ (/ = Γ(//

[Γ(Δ,/
−−−−−→)/ .

Definition 5.20. For our first structural equational system �1, we take

• as auxiliary bifunctor Θ1 (-,.) = (- ⊗ .) ⊗ . ;
• as incremental structural law, say 31, we take the left-hand composite of Figure 3;

Σ
+- ⊗ . ⊗ . Σ

+- ⊗ �

� ⊗ . ⊗ . + Σ- ⊗ . ⊗ . � ⊗ � + Σ- ⊗ �

. ⊗ . + Σ- ⊗ (. ⊗ (. � + Σ(- ⊗ �)

). + Σ(- ⊗ (.) ⊗ (. Σ
+(- ⊗ �)

). + Σ(- ⊗ (. ⊗ (.) ((- ⊗ �)

). + Σ+(- ⊗ (. ⊗ (.) () (- ⊗ �)

(). + () (- ⊗ (). ⊗ ().) () (- ⊗ � + - + .)

() (- ⊗ (). ⊗ (). + - + .)

_. ⊗.+- ⊗[
(
.
⊗[(

.

9. +BC-,((.,E.) ⊗(.

).+BC-⊗(. ,((.,E.)

[()8=3,()8=1]

_�+BC-,(� ,83�)

[Σ+

([)
-⊗�

()8=1[(
).
+[Σ+[

) (- ⊗([)
.
⊗([)

.
)

).+8=2

Fig. 3. Two incremental structural laws

• as first structural interpretation, say !1, at any - , we take

- ⊗ - ⊗ -
9- ⊗[

)
-

−−−−−→)- ⊗)-
9)-
−−−→))-

[(`)
-

−−−−→ ()- ;

• as second structural interpretation, say '1, at any - , we take

- ⊗ - ⊗ -
U-,- ,-
−−−−−→ - ⊗ (- ⊗ -)

[)
-
⊗ 9-

−−−−−→)- ⊗)-
9)-
−−−→))-

[(`)
-

−−−−→ ()- .

Definition 5.21. For our second structural equational system �2, we take

• as auxiliary bifunctor Θ2 (-,.) = - ⊗ � ;
• as simple structural law, say 32, we take the right-hand composite of Figure 3;
• as first structural interpretation, say !2, at any - , we take

- ⊗ �
[(
-
⊗E-

−−−−−→ (- ⊗ (-
9(-
−−−→)(-

X-
−−→ ()- ;

29

T. Hirschowitz and A. Lafont

• as second structural interpretation, say '2, at any - , we simply take

- ⊗ �
d-
−−→ -

[()
-
−−−→ ()- .

Theorem 5.22. For any locally finitely presentable, leftist monoidal category (C, ⊗, � , U, _, d) and
pointed strong endofunctor Σ, the above data �1 and �2 indeed form structural equational systems,
and (�1 + �2)-algebras form a category isomorphic to Σ -Mon over C.
Furthermore, there are unique morphisms

B : (0 ⊗ (0→ (0 E : � → (0

rendering the pentagon (10) and triangle (12) commutative.
Finally, these morphisms, together with `(0 , satisfy the remaining Σ-monoid axioms, and make the

initial Σ+-algebra (0 into an initial Σ-monoid.

Proof. We start by reducing to proving the first claim, by observing that

• the second claim has already been stated, right before Proposition 5.18, and,
• assuming the first claim, the last one follows directly by Corollary 5.13.

The first claim is proved in §F. �

6 CONCLUSION AND PERSPECTIVES

We have introduced admissible monad morphisms as a foundation for syntax with auxiliary func-
tions. We have then shown how to generate admissible morphisms from monad distributive laws,
and defined simple structural laws and incremental structural laws as basic notions of signatures
to generate such monad distributive laws, hence admissible morphisms. We have also defined
structural equational systems as a basic format for ensuring that the generated auxiliary functions
satisfy some (hopefully useful) properties. We have used these tools to cover significant examples
of auxiliary functions, from addition and multiplication of natural numbers to binding evaluation
contexts, capture-avoiding substitution, and partial differentiation. We have finally shown that the
standard framework of Fiore et al. [1999] is subsumed by ours.
An important question, already raised in the introduction, remains open: can we devise some

further tools to ensure that the auxiliary functions generated by our signatures are compatible
with severe equations, i.e., equations on the basic syntax?

Finally, our framework is designed to account for auxiliary functions defined on top of an exist-
ing syntax. It would be useful to extend it to settings where the syntax and functions are mutually
dependent, as in induction-recursion [Dybjer and Setzer 2001].

REFERENCES

Beniamino Accattoli. 2019. A Fresh Look at the lambda-Calculus (Invited Talk). In Proc. 4th International Conference on For-

mal Structures for Computation and Deduction (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 131), Herman

Geuvers (Ed.). 1:1–1:20. https://doi.org/10.4230/LIPIcs.FSCD.2019.1

J. Adámek and J. Rosicky. 1994. Locally Presentable and Accessible Categories. Cambridge University Press.

https://doi.org/10.1017/CBO9780511600579

Guillaume Allais, Robert Atkey, James Chapman, Conor McBride, and James McKinna. 2018. A type and scope safe universe

of syntaxes with binding: their semantics and proofs. Proceedings of the ACM on Programming Languages 2, ICFP (2018),

90:1–90:30. https://doi.org/10.1145/3236785

Michael Barr. 1970. Coequalizers and free triples. Mathematische Zeitschrift 116 (1970), 307–322.

Jon M. Beck. 1969. Distributive laws. In Seminar on Triples and Categorical Homology Theory (Lecture Notes in Mathematics,

Vol. 80), Beno Eckmann and Myles Tierney (Eds.). Springer.

Stefan Berghofer and Christian Urban. 2007. A Head-to-Head Comparison of de Bruijn Indices and Names. Electronic Notes

in Theoretical Computer Science 174, 5 (2007), 53–67. https://doi.org/10.1016/j.entcs.2007.01.018

30

https://doi.org/10.4230/LIPIcs.FSCD.2019.1
https://doi.org/10.1017/CBO9780511600579
https://doi.org/10.1145/3236785
https://doi.org/10.1016/j.entcs.2007.01.018

A unified treatment of structural definitions on syntax

Richard S. Bird and Ross Paterson. 1999. De Bruijn notation as a nested datatype. Journal of Functional Programming 9, 1

(1999), 77–91. https://doi.org/10.1017/S0956796899003366

Robert Oswald Blackwell. 1976. Some existence theorems in the theory of doctrines. Ph.D. Dissertation. University of New

South Wales.

Greta Coraglia and Ivan Di Liberti. 2021. Context, judgement, deduction. (2021). arXiv:2111.09438 [math.LO] Preprint.

N. G. De Bruijn. 1972. Lambda-Calculus Notation with Nameless Dummies, a Tool for Automatic Formula Manipulation,

with Application to the Church-Rosser Theorem. Indagationes Mathematicae 34 (1972), 381–392.

Peter Dybjer and Anton Setzer. 2001. Indexed Induction-Recursion. In Proof Theory in Computer Science, International

Seminar (LNCS, Vol. 2183), Reinhard Kahle, Peter Schroeder-Heister, and Robert F. Stärk (Eds.). Springer, 93–113.

https://doi.org/10.1007/3-540-45504-3_7

Thomas Ehrhard and Laurent Regnier. 2003. The differential lambda-calculus. Theoretical Computer Science 309, 1–3 (2003),

1–41. https://doi.org/10.1016/S0304-3975(03)00392-X

Marcelo Fiore and Chung-Kil Hur. 2009. On the construction of free algebras for equational systems. Theoretical Computer

Science 410 (2009), 1704–1729.

Marcelo Fiore, Gordon Plotkin, and Daniele Turi. 1999. Abstract Syntax and Variable Binding. In Proc. 14th Symposium on

Logic in Computer Science IEEE.

Marcelo P. Fiore. 2008. Second-Order and Dependently-Sorted Abstract Syntax. In LICS. IEEE, 57–68.

https://doi.org/10.1109/LICS.2008.38

Murdoch J. Gabbay and Andrew M. Pitts. 1999. A New Approach to Abstract Syntax Involving Binders. In Proc. 14th

Symposium on Logic in Computer Science IEEE.

Daniel Gratzer and Jonathan Sterling. 2021. Syntactic categories for dependent type theories: sketching and adequacy.

(2021). Preprint.

André Hirschowitz, Tom Hirschowitz, and Ambroise Lafont. 2020. Modules over Monads and Operational Semantics. In

Proc. 5th International Conference on Formal Structures for Computation and Deduction (Leibniz International Proceedings

in Informatics (LIPIcs), Vol. 167), Zena M. Ariola (Ed.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 12:1–12:23.

https://doi.org/10.4230/LIPIcs.FSCD.2020.12

André Hirschowitz, Tom Hirschowitz, and Ambroise Lafont. 2022a. Modules over Monads and Operational Semantics.

(2022). Submitted expanded version of [Hirschowitz et al. 2020].

André Hirschowitz, Tom Hirschowitz, Ambroise Lafont, and Marco Maggesi. 2022b. Variable binding and substitution for

(nameless) dummies. In Proc. 25th Foundations of Software Science and Computational Structures (LNCS), Lutz Schröder

and Patricia Bouyer (Eds.). Springer.

Tom Hirschowitz, Xavier Leroy, and J. B. Wells. 2009. Compilation of extended recursion in call-by-value functional lan-

guages. Higher Order and Symbolic Computation 22, 1 (2009), 3–66. https://doi.org/10.1007/s10990-009-9042-z

MartinHofmann. 1999. Semantical Analysis of Higher-OrderAbstract Syntax. In Proc. 14th Symposium on Logic in Computer

Science IEEE.

G. M. Kelly. 1980. A unified treatment of transfinite constructions for free algebras, free monoids, colimits, associated

sheaves, and so on. Bulletin of the Australian Mathematical Society 22 (1980), 1–83.

G. M. Kelly. 1982. Basic concepts of enriched category theory. London Mathematical Society Lecture Note Series, Vol. 64.

Cambridge University Press. Republished as: Reprints in Theory and Applications of Categories 10 (2005).

Stephen Lack. 1997. On the monadicity of finitary monads. Journal of Pure and Applied Algebra 140 (1997), 65–73.

Saunders Mac Lane. 1998. Categories for the Working Mathematician (2nd ed.). Number 5 in Graduate Texts in Mathematics.

Springer.

Michel Parigot. 1992. _`-calculus: an algorithmic interpretation of classical natural deduction. In Proc. 19th International

Colloquium on Automata, Languages and Programming (LNCS, Vol. 624). Springer.

Benjamin C. Pierce (Ed.). 2004. Advanced Topics in Types and Programming Languages. MIT Press.

Jan Reiterman. 1977. A left adjoint construction related to free triples. Journal of Pure and Applied Algebra 10 (1977), 57–71.

Peter Sewell, Gareth Paul Stoyle, Michael Hicks, Gavin M. Bierman, and Keith Wansbrough. 2008. Dynamic rebinding for

marshalling and update, via redex-time and destruct-time reduction. Journal of Functional Programming 18, 4 (2008),

437–502. https://doi.org/10.1017/S0956796807006600

Lionel Vaux. 2007. _-calcul différentiel et logique classique : interactions calculatoires. Ph.D. Dissertation. Université Aix-

Marseille 2.

A PROOF OF PROPOSITION 2.4

First, U- : (- →)- is an (-algebra morphism between (- and sem(U) ()-). Since (∅ is an
initial (-algebra, sem(U) () ∅) is initial if and only if U∅ is an isomorphism. This argument shows
(i)⇔ (ii). Morever, since (∅ is an initial (-algebra, creation implies preservation, so (iii)⇒ (ii).

31

https://doi.org/10.1017/S0956796899003366
https://arxiv.org/abs/2111.09438
https://doi.org/10.1007/3-540-45504-3_7
https://doi.org/10.1016/S0304-3975(03)00392-X
https://doi.org/10.1109/LICS.2008.38
https://doi.org/10.4230/LIPIcs.FSCD.2020.12
https://doi.org/10.1007/s10990-009-9042-z
https://doi.org/10.1017/S0956796807006600

T. Hirschowitz and A. Lafont

Finally, let us show that preservation implies creation, (ii) ⇒ (iii). Let (-
G
−→ - be an initial

algebra. We show that there is a unique) -algebra structure on - that is mapped to G by sem(U),
and moreover that it is initial as a) -algebra. Since, by hypothesis, sem(U) preserves the initial
object, sem(U) () ∅) is also initial, and thus - is isomorphic to) ∅, as (-algebras. Now, sem(U) is
an isofibration: through this isomorphism, - inherits a) -algebra structure which is mapped to
(- → - by sem(U), and this isomorphism lifts to the category of) -algebras. Since this) -algebra
)- → - is isomorphic to) ∅, it is initial. It remains to show uniqueness. Consider an alternative
) -algebra structure on - , that is also mapped to (- → - by sem(U). By initiality of - as a) -
algebra, there is a morphism - → - between these two) -algebras. It is enough to show that its
image by sem(U) is the identity morphism, which follows from initiality of - as a (-algebra.

B COLIMITS OF MONADS AND THEIR ALGEBRAS

In this section, we state a few useful results on colimits of monads, and on limits of the correspond-
ing monadic functors, which notably entail Lemma 4.7.

Definition B.1. For any functor � : A → Mnd(C), let � -Alg denote a (choice of) limit of the
induced diagram

Aop → Mnd(C)op ≃ Monadic/C ↩→ CAT/C.

Thus, an � -algebra is an object - ∈ C, equipped with compatible ��-algebra structures, for all
� ∈ A.

The next proposition, due to Kelly, relates this with the colimit of � , when the latter exists.
For any functor � : A → Mnd(C), if) ∈ Mnd(C) is a colimit of � , then the colimiting cocone

induces a cone over the diagram

Aop → Mnd(C)op ≃ Monadic/C ↩→ CAT/C,

hence a functor< :) -Alg→ � -Alg over C.

Proposition B.2 ([Kelly 1980, Proposition 26.3]). For any functor � : A→ Mnd(C) with col-
imit) , if C is complete (and locally small), then the functor< :) -Alg→ � -Alg is an isomorphism.

Remark 19. Kelly explicitly requires C to be locally small, which is implicit here by the convention
fixed in §1.

This immediately entails Lemma 4.7.

Corollary B.3. Consider two monads (and) on a locally finitely presentable category C, and a
monad distributive law X :)(→ () . For any bifunctor Γ : C×C→ C, letting) ′ := Γ

∗
(, the following

square is a pullback.

() ⊕) ′) -Alg) -Alg

Γ(- alg C

Proof. By Lemma 4.7 and the isomorphism) ′ -Alg � Γ(- alg over C. �

Remark 20. Otherwise said, giving a () ⊕) ′)-algebra structure on - is equivalent to giving a
) -algebra structure and a Γ(-algebra structure.

32

A unified treatment of structural definitions on syntax

C PROOF OF THEOREM 4.10

Definition C.1. A bifunctor Γ : C2 → C on a category C is bipointed if it comes equipped with
natural transformations

-
U Γ

-,.
−−−→ Γ(-,.)

VΓ
-,.
←−−− . .

Definition C.2. For any bifunctor Γ, let Γ•(-,.) := Γ(-,.) + - + . .

Proposition C.3. For any bifunctor Γ, the bifunctor Γ• is bipointed. (It is in fact the free bipointed
bifunctor over Γ.)

Proof. Straightforward. �

Notation 6. When applied to, say, Γ� for some endofunctor � , the notation Γ
•
�
is ambiguous, as it

could denote (Γ•)� or (Γ�)
•. The issue is even worse for, e.g., Γ•�� . In order to resolve the ambiguity,

we write Γ•
� |�

for (Γ�)
•
� , i.e.,

Γ
•
� |�.- := Γ(-,��.) + - + �. .

We now want to show that any incremental structural law

ℎ-,. : Γ. (Σ(-)) → () (Γ(). (-) + - + .),

or using Notation 6

ℎ-,. : Γ.Σ- → () Γ•() |.- ,

induces an incremental lifting of (to) ′ -Alg along X . For this, we extend ℎ to a natural transfor-
mation

ℎ•l-,. : Γ(.(- → () (Γ•() |. (-))

making the following triangle commute

Γ.Σ- Γ(.(-

() Γ•
() |.

- ,

ℎ•l
-,.

Γ
[(
.
[Σ,-

ℎ-,.

and then show how it induces an incremental lifting. This route being slightly long-winded, let us
point to the definition of ℎ•l (Definition C.35) and the proof that it induces an icremental lifting
(Proposition C.38).

The plan is to successively define families

• ℎ•-,. : Γ
•
(|.
(Σ(-)) → () (Γ•

() |.
(-)),

• ℎ◦-,. : Γ
◦
(). Σ- → () Γ•

() |.
- ,

• ℎ̃◦-,. : Σ- → Γ
×
().

()$. Γ
◦
().

- ,

• ℎ̃◦
l

-,. : (- → Γ
×
().

()$. Γ
◦
().

- ,

•
˜̃
ℎ◦
l
-,. : Γ

◦
().

(- → ()$. Γ
◦
().

-

(involving new functors defined along the way), from which we then define ℎ•l and prove that
it satisfies the properties stated in Lemma C.37 below. We then use this to construct the desired
incremental lifting.

33

T. Hirschowitz and A. Lafont

C.1 The family ℎ•

Let us start with ℎ•, which requires the following preliminary definition.

Definition C.4. Consider any pointed endofunctor � .We let↑� denote the natural transformation
defined at any -,. ∈ C by the composite

- + �.
[�
-
+�.

−−−−−→ �- + �.
[�8=1,� 8=2]
−−−−−−−−−→ � (- + .).

Remark 21. In particular, for any � and � with � pointed, we have

↑�
Γ��.-+-,.

: Γ•� |�.- → �Γ•�� |.- .

Lemma C.5. For any bifunctor � : C2 → C, distributive law X :)(→ () , and objects -,. ∈ C,
the following diagram commutes.

�•
|)(.

- �•
|().

- (•
(|).

-

)�•
) |(.

-)(�•
)(|.

- ()�•
() |.

-

↑)

↑(�•
|X.
-

) ↑(X�•
X |.

-

(↑)

Proof. Unfolding the definition, we refine the claim as follows,

�)(.- + - +)(. �().- + - + (). ((�().- + -) + (). ((�().- + - +).)

) (�)(.- + -) +)(.) (�().- + -) + (). () (�().- + -) + (). (() (�().- + -) +).)

() (�)(.- + -) + ().

) (�)(.- + - + (.)) (((�)(.- + -) + (.))((�)(.- + - + .) () (�().- + - + .)

�X. -+-+X.

X (�X.-+-+.)

[) +)(.

[)8=1,) 8=2]

) ([(+(.)) [(8=1,(8=2]

[(+(). [(8=1,(8=2]

(([) +).)

([)8=1,) 8=2]

) (�X. -+-)+X.

[) +().

[(+().

([) +().

[(+)(. () (�X. -+-)+X.

[(8=1,(8=2]

[()8=1,()8=2]

where all subdiagrams easily commute except the top right square and the bottom left polygon.
Both have coproducts as their domains, so we chase them termwise. The first term of the top right
square is chased as follows.

((�().- + -) ((�().- + - +).)

() (�().- + -) (() (�().- + -) +).)

((�().- + -) + (). ((�().- + - +).)

() (�().- + -) + (). (() (�().- + -) +).)

[(8=1,(8=2]

(([) +).)

([) +().

[(8=1,(8=2]

8=1

([)

8=1

(8=1

(8=1

(([) +).)

The second term of the top right square is chased as follows.

34

A unified treatment of structural definitions on syntax

(). ().

(). ().

((�().- + -) + (). ((�().- + - +).)

() (�().- + -) + (). (() (�().- + -) +).)

[(8=1,(8=2]

(([) +).)
([) +().

[(8=1,(8=2]

8=2

8=2

(8=2

(8=2

The first term of the bottom left polygon is chased as follows.

) (�)(.- + -) () (�)(.- + -) () (�().- + -)

) (�)(.- + -))((�)(.- + -) () (�)(.- + -) () (�().- + -)

) (�)(.- + -) +)(. () (�)(.- + -) + (). () (�().- + -) + ().

) (�)(.- + - + (.)) (((�)(.- + -) + (.))((�)(.- + - + .) () (�().- + - + .)
X (�X.-+-+.)

[)8=1,) 8=2]

) ([(+(.)) [(8=1,(8=2]

[(+)(.

() (�X. -+-)+X.

[()8=1,()8=2])8=1

)[(

)8=1
)(8=1

X

() (�X. -+-)

()8=1

8=1

[(

8=1

() (�X. -+-)

8=1

Finally, the second term of the bottom left polygon is chased as follows.

)(.)(. ().

)(.)(.)(. ().

) (�)(.- + -) +)(. () (�)(.- + -) + (). () (�().- + -) + ().

) (�)(.- + - + (.)) (((�)(.- + -) + (.))((�)(.- + - + .) () (�().- + - + .)
X (�X.-+-+.)

[)8=1,) 8=2]

) ([(+(.)) [(8=1,(8=2]

[(+)(.

() (�X. -+-)+X.

[() 8=1,()8=2]

8=2

)8=2)8=2)(8=2

X.

()8=2

8=2

X.

8=2

�

Definition C.6. Let

ℎ•-,. : Γ
•
(|. (Σ(-)) → () (Γ•() |. (-)),

be defined by cotupling the following three composites.

Γ(. Σ-
ℎ-,(.
−−−−→ () Γ•() |(.-

() ↑(

−−−−→ ()(Γ•()(|.-
(X ;`()
−−−−−→ () Γ•()(|.-

() Γ•
((X ;`()) |.

-

−−−−−−−−−−−−→ () Γ•() |.-

Σ-
[
Σ,[) -

−−−−−→ ()-
()U

Γ
•
() |
-,.

−−−−−−→ () (Γ•() |. (-)) .
[()
.
−−−→ ().

() V
Γ
•
() |
-,.

−−−−−−→ () (Γ•() |. (-))

Lemma C.7. For all ℎ, ℎ• satisfies the following coherence laws.

35

T. Hirschowitz and A. Lafont

Σ(-) () (-)

Γ
•
(|.
(Σ(-)) () (Γ•

() |.
(-))

[
Σ,[)
-

U
Γ
•
(|
Σ-,.

ℎ•-,.

()U
Γ
•
() |
-,.

. ().

Γ
•
(|.
(Σ(-)) () (Γ•

() |.
(-))

[()
.

V
Γ
•
(
Σ-,.

ℎ•
-,.

() V
Γ
•
() |
-,.

Γ
•
(|(.

Σ- (Γ•
((|.

Σ- (Γ•
(|.

Σ-

(() Γ•
() |.

-

() Γ•
() |(.

- ()(Γ•
()(|.

- () Γ•
() |.

-

ℎ•
-,(.

() ↑(

↑(
(Γ•
`(|.

Σ-

((X ;`()Γ•
(X ;`(|.

-

(ℎ•
-,.

`(

Γ.Σ- Γ(.Σ- Γ
•
(|.

Σ-

() Γ•
() |.

-

Γ
[(
.
Σ-

ℎ-,.

8=1

ℎ•-,.

Proof. The first two laws hold by construction. For the third law, by universal property of
coproduct, it suffices to verify it on each term of the coproduct Γ•((.Σ- = Γ((.Σ- + Σ- + . .
The result follows straightforwardly by diagram chasing in each case. The first term is chased as
follows, using the coherence properties of monad distributive laws.

Γ((.Σ- (Γ((.Σ- (Γ(.Σ-

() Γ•
() |((.

- (() Γ•
() |((.

- (() Γ•
() |(.

-

() Γ•
() |(.

-

()(Γ•
()(|(.

- ()((Γ•
()((|.

- ()(Γ•
()(|.

- (()(Γ•
()(|.

-

Γ
•
(|(.

Σ- (Γ•
((|.

Σ- (Γ•
(|.

Σ- ()(Γ•
()(|.

-

(() Γ•
() |.

-

() Γ•
() |(.

- ()(Γ•
()(|.

- () Γ•
() |.

-

↑(
(Γ•
`(|.

Σ-

(ℎ•
-,.

`(
ℎ•
-,(.

() ↑(((X ;`())Γ•
(X ;`() |.

-

8=1

ℎ-,((.

() ↑(

[(
(Γ
`(
.
Σ-

(8=1

(ℎ-,(.

((X ;`()Γ•
(X ;`(|(.

-

(() ↑(

(((X ;`())Γ•
(X ;`() |.

-

()(↑(

((X ;`())(Γ•
(X(;`()(|.

-

[(
(() Γ•

() |`(
.

-
(ℎ-,((.

() Γ•
() |`(

.

- [(

`()(Γ•
()(|.

-

((X ;`())Γ•
(X ;`() |.

-

() ↑(

[(
() `(Γ•

() `(|.
-

The second term is chased as follows.

Σ- (Σ- (Σ-

()- (()-

()(- ()-

Γ
•
(|(.

Σ- (Γ•
((|.

Σ- (Γ•
(|.

Σ-

(() Γ•
() |.

-

() Γ•
() |(.

- ()(Γ•
()(|.

- () Γ•
() |.

-

↑(
(Γ•
`(|.

Σ-

(ℎ•
-,.

`(
ℎ•
-,(.

() ↑(((X ;`())Γ•
(X ;`() |.

-

8=2

[
Σ,[)
-

()8=2

()[(

()(8=2

[(
Σ-

(8=2
(8=2

([
Σ,[)
-

(()8=2

`(

()8=2

(X ;`()

[(
()-

36

A unified treatment of structural definitions on syntax

The third and final term is chased as follows.

(. (. (.

()(. ()(. ((). ().

(().

Γ
•
(|(.

Σ- (Γ•
((|.

Σ- (Γ•
(|.

Σ- () Γ•
() |.

-

(() Γ•
() |.

-

() Γ•
() |(.

- ()(Γ•
()(|.

- () Γ•
() |.

-

↑(
(Γ•
`(|.

Σ-

(ℎ•-,.

`(
ℎ•-,(.

() ↑(((X ;`())Γ•
(X ;`() |.

-

8=3

[()(.

()8=3 ()(8=3

(8=3 (8=3

([).

(X

`().
[(([).

([().

(()8=3

([().

()8=3

([(
) Γ
•
() |.

-

Finally, for the fourth law, ℎ•-,. ◦8=1 yields the first composite of Definition C.6. But precomposing

the latter with Γ[(
.
Σ- , we obtain by naturality of ℎ the composite

Γ. Σ-
ℎ-,.
−−−→ () Γ•() |.-

() Γ•
() |[(

.

-

−−−−−−−−→ () Γ•() |(.-
() ↑(

−−−−→ ()(Γ•()(|.-
((X ;`())Γ•

((X ;`()) |.
-

−−−−−−−−−−−−−−−−→ () Γ•() |.- ,

which we now prove equal to ℎ-,. , i.e., that the last three morphisms compose to the identity.

() Γ•
() |.

- () (Γ()(.- + - + (.) () (((Γ()(.- + -) + (.)

() (Γ()(.- + - + .) ()((Γ()(.- + - + .)

() Γ•
()(|.

-

() Γ•
() |.

-

() Γ•
() |[(

.

-
() ([(+(.)

() [(8=1,(8=2]() (Γ
()[(

.
-+-+.)

()[(

((X ;`())Γ•
()(|.

-

() Γ•
(X ;`() |.

-

�

C.2 The family ℎ◦

We now want to make the Σ in the domain of ℎ• into an (. For this, as an intermediate step, we
emphasise the less pointed variant of Γ defined as follows.

Definition C.8. A bifunctor Γ : C2 → C is main-pointed iff it comes equipped with a natural
transformation UΓ-,. : - → Γ(-,.).

Definition C.9. For any C with binary coproducts and bifunctor Γ : C2 → C, let Γ◦(-,.) :=
Γ(-,.) + - .

Proposition C.10. For any C with binary coproducts and Γ : C2 → C, the bifunctor Γ◦ is main-
pointed.

By construction, we have:

Lemma C.11. For any C with binary coproducts, �,� : C→ C, and Γ : C2 → C, we have Γ•
� |�.

=

$�. Γ
◦
��. .

37

T. Hirschowitz and A. Lafont

By the last lemma, ℎ•-,. equivalently has type

Γ
•
(|. Σ- → ()$. Γ

◦
().- .

Definition C.12. Let ℎ◦
-,.

denote the natural transformation with components

Γ
◦
(). Σ-

[8=1,8=2]
−−−−−−→ Γ

•
(|). Σ-

ℎ•
-,).
−−−−→ () Γ•() |).-

() ↑)

−−−−→ ()) Γ•()) |.-
(`) Γ•

(`) |.
-

−−−−−−−−−→ () Γ•() |.- .

Lemma C.13. For all ℎ, ℎ◦ satisfies the following coherence laws.

Σ(-) () (-)

Γ
◦
(). (Σ(-)) () (Γ•

() |.
(-))

[
Σ,[)
-

U Γ
◦

Σ-,().

ℎ◦-,.

()U
Γ
•
() |
-,.

Γ
◦
()(. Σ- Γ

◦
(). Σ-

() Γ•
() |(.

- ()(Γ•
()(|.

- () Γ•
() |.

-

ℎ◦
-,(.

() ↑(
- ,.

Γ
◦

((X ;`()).
Σ-

((X ;`())Γ•
(X ;`() |.

-

ℎ◦
-,.

Γ.Σ- Γ().Σ- Γ
◦
(). Σ-

() Γ•
() |.

-

Γ
[()
.

Σ-

ℎ-,.

8=1

ℎ◦
-,.

Γ
◦
()).Σ- Γ

◦
(). Σ-

()$). Γ
◦
()).- ())$. Γ

◦
()).- ()$. Γ

◦
()).- ()$. Γ

◦
().-

ℎ◦-,).

() ↑) (`)$. Γ
◦
()).

- ()$. Γ
◦

(`)
.

ℎ◦-,.

Γ
◦

(`)
.

Σ-

Proof. The first law holds by chasing the following diagram.

Σ- ()- ()-

())-

Γ
◦
().

Σ- Γ
•
(|).

Σ- () Γ•
() |).

- ()) Γ•
()) |.

- () Γ•
() |.

-
[8=1,8=2] ℎ•

-,). () ↑) (`) Γ•
(`) |.

-

8=2
8=2

[Σ[
)
-

()8=2

()[)

())8=2

(`)
-

()8=2

For the second one, we proceed by diagram chasing, as follows.

38

A unified treatment of structural definitions on syntax

Γ
◦
()(.

Σ- Γ
◦
().

Σ-

Γ
•
(|)(.

Σ- Γ
•
(|().

Σ- (Γ•
((|).

Σ- Γ
•
(|).

Σ.

(Γ•
(|).

Σ- () Γ•
() |).

-

(() Γ•
() |).

-

() Γ•
() |)(.

- () Γ•
() |().

- ()(Γ•
()(|).

- () Γ•
() |).

-

()) Γ•
()) |(.

- ())(Γ•
())(|.

- ()() Γ•
()() |.

- ()) Γ•
()) |.

-

() Γ•
() |(.

- ()(Γ•
()(|.

- () Γ•
() |.

-

[8=1,8=2]

ℎ•
-,)(.

() ↑)

(`) Γ•
(`) |(.

-

Γ
◦

((X ;`()).
Σ-

[8=1,8=2]

() ↑)

(`) Γ•
(`) |.

-

() ↑(((X ;`())Γ•
(X ;`() |.

-

Γ
•
(|X.

Σ- ↑(

(Γ•
`(|.

Σ-

[(

(ℎ•
-,).

`(

ℎ•
-,).

[(
ℎ•
-,().

() ↑(
((X ;`())Γ•

(X ;`() |).
-() Γ•

() |X.
-

()(↑)

()) ↑(()XΓ•
()X |.

-

(Lemma C.5)

(`)(Γ•
(`) (|.

-

((X ;`())) Γ•
(X ;`()) |.

-

(Lemma C.7)

Let us now consider the third claim. It follows by chasing the following diagram,

Γ.Σ- Γ(). Σ- Γ
◦
(). Σ-

Γ(.Σ- Γ
•
(|.

Σ- Γ
•
(|).

Σ-

() Γ•
() |).

-

()) Γ•
()) |.

-

() Γ•
() |.

- () Γ•
() |.

-

Γ
[()
.

Σ-
8=1

[8=1,8=2]

ℎ•
-,).

() ↑)

ℎ-,.

Γ
[(
.
Σ-

Γ
[)
(.

Σ-

8=1

ℎ•
-,.

8=1

Γ
•

(|[)
.

Σ-

(`) Γ•
(`) |.

-

() Γ•
() |[)

.

-

(Lemma C.7)

whose bottom right triangle commutes by chasing the following diagram.

39

T. Hirschowitz and A. Lafont

) (Γ().- + - + .)) (Γ()).- + - +).)

) (Γ()).- + - + .)) () (Γ()).- + -) +).)

)) Γ•
()) |.

-

) Γ•
()) |.

-

) Γ•
() |.

-

) Γ•
() |[)

.

-

) ([) +).)

) [)8=1,) 8=2]

`) Γ•
()) |.

-

) Γ•
(`) |.

-

)[)

) ([) +[)
.
)

) (Γ
()[)

.
-+-+.)

Finally, we prove the last claim by diagram chasing as follows,

Γ
◦
()).Σ- Γ

◦
(). Σ-

Γ
•
()).

Σ- Γ
•
().

Σ-

()$)). Γ
◦
())).- ()$). Γ

◦
()).-

())$). Γ
◦
())).- ()))$. Γ

◦
())).- ())$. Γ

◦
()).-

()$). Γ
◦
()).- ())$. Γ

◦
()).- ()$. Γ

◦
()).- ()$. Γ

◦
().-() ↑) (`)$. Γ

◦
()).

- ()$. Γ
◦

(`)
.

Γ
◦

(`)
.

Σ-

[8=1,8=2]

ℎ•
-,).

() ↑)

(`)$. Γ
◦

(`)
.

-

[8=1,8=2]

ℎ•
-,)).

() ↑)

(`)$). Γ
◦

(`)
).

-

Γ
•

(`)
.

Σ-

()$
`)
.
Γ
◦

() `)
.

-

()) ↑)

(`))$. Γ
◦

(`)
).

-

() `)$. Γ
◦

() `)
.

-

where

• both top rectangles, as well as the bottom left and bottom right rectangles, commute by
naturality, and
• the third rectangle commutes by naturality and Lemma C.14 below. �

Lemma C.14. For any monad) on a category with binary coproducts, for all objects - and . , the
following diagram commutes.

$)).- $).-

)$).-))$.-)$.-

↑)↑)

$
`)
.
-

) ↑) `)$.-

Proof. This hold by diagram chasing, as follows.

40

A unified treatment of structural definitions on syntax

- +)). - +).

)- +)).

))- +)).)- +).

) (- +).)) ()- +).))) (- + .)) (- + .)

-+`)
.

`)

[)
-
+).

[)8=1,) 8=2]

[)
-
+)).

[)8=1,) 8=2]

) ([)
-
+).)) [)8=1,) 8=2]

)[)
-
+)).

[)8=1,) 8=2] [))8=1,))8=2]

`)
-
+`)
.

)-+`)
.

�

C.3 The family ℎ̃◦

We now turn to defining our next family of morphisms, ℎ̃◦. For this, we need to exploit the cocon-
tinuity hypothesis in the first argument of Γ.
Because we have assumed C to be locally finitely presentable, each Γ. has a right adjoint, which

we denote by Γ. . Furthermore, we have:

Lemma C.15. Each Γ
◦
. has as right adjoint the functor Γ

×
. defined by Γ

×
. (-) = Γ. (-) × - .

Proof. We have

C(Γ◦
.
(-), /) = C(Γ. (-) + -,/)

� C(Γ. (-), /) × C(-, /)

� C(-, Γ./) × C(-, /)

� C(-, Γ. (/) × /)

� C(-, Γ
×
. (/)). �

Furthermore, by [Mac Lane 1998, Theorem IV.7.3], we readily get:

Proposition C.16. For all bifunctors ! : C2 → C such that each !. has a right adjoint '. , the
functors '. assemble into a bifunctor C × Cop → C making the bijection

C(!. (-), /) � C(-, '. (/))

natural in all variables.

Here, naturality in . means that, e.g., for all morphisms 5 : . → . ′ and D : !. ′- → / , the
transpose of

!.-
!5 -
−−−→ !. ′-

D
−→ / is -

D̃
−→ '. ′/

'5 /
−−−→ './ ,

where D̃ denotes the transpose of D.

Corollary C.17. For all 5 : . → / , 6 : � → � , D : � → '.�, and E : � → '/� , letting D̃ and Ẽ
denote the transposed morphisms, the square below left commutes iff the one below right does.

� '.�

'/� '.�

D

E

'5 �

'.6

!.� �

!/� �

D̃

!5 �

Ẽ

6

In particular, for all � and 5 : � → � , the following diagrams commute.

!�'�� !�'��

!�'�� �

!5 '��

!�'5 �

Y��

Y��

� '�!��

'�!�� '�!��

[��

[��

'�!5 �

'5 !��

41

T. Hirschowitz and A. Lafont

Let us return to the construction of the next family.

Definition C.18. Let ℎ̃◦-,. denote the transpose

ℎ̃◦-,. : Σ- → Γ
×
().()$. Γ

◦
().-

of ℎ◦-,. .

Lemma C.19. The family ℎ̃◦ is natural in - , i.e., for all . and 5 : - → / , the following square
commutes.

Σ- Σ/

Γ
×
().

()$. Γ
◦
().- Γ

×
().

()$. Γ
◦
()./

Σ5

ℎ̃◦-,.

Γ
×
().

()$. Γ
◦
().

5

ℎ̃◦/,.

Proof. By naturality and bijectivity of transposition. �

Lemma C.20. The family ℎ̃◦ is extranatural [Kelly 1982] in . , i.e., for all - and 5 : . → / , the
following square commutes.

Σ- Γ
×
().()$. Γ

◦
().-

Γ
×
()/()$/ Γ

◦
()/- Γ

×
().()$/ Γ

◦
()/-

ℎ̃◦-,.

ℎ̃◦-,/

Γ
×
() 5

()$/ Γ
◦
()/

-

Γ
×
().

()$5 Γ
◦
() 5

-

Proof. By naturality of ℎ◦ and Corollary C.17. �

Lemma C.21. The family ℎ̃◦ satisfies the following laws.

Σ- ()-

Γ
×
().

() Γ•
() |.

- () Γ•
() |.

-

[
Σ,[)
-

ℎ̃◦-,.

c2

()U
Γ
•
() |
-,.

Σ- Γ
×
().

() Γ•
() |.

-

Γ
×
(().() Γ

•
().-

Γ
×
()(.() Γ

•
() |(.

- Γ
×
()(.()(Γ

•
()(|.

- Γ
×
()(.() Γ

•
() |.

-

ℎ̃◦-,.

ℎ̃◦-,(.

Γ
×
()(.() ↑

(
- ,. Γ

×
()(. ((X ;`

())Γ•
(X ;`() |.

-

Γ
×

`(
).

() Γ•().-

Γ
×
(X.

() Γ•().-

Σ- Γ
×
().

() Γ•
() |.

-

Γ().() Γ
•
() |.

-

Γ.() Γ
•
() |.

-

ℎ̃-,.

ℎ̃◦-,.

c1

Γ
[()
.
() Γ•

() |.
-

42

A unified treatment of structural definitions on syntax

Σ� Γ
×
().()$. Γ

◦
().�

Γ
×
()).

()$). Γ
◦
()).

� Γ
×
()).

())$. Γ
◦
()).

� Γ
×
()).

()$. Γ
◦
().

�

ℎ̃◦
Γ
×
().

() Γ
•
() |.

-,.

Γ
×

(`)
.

()$. Γ
◦
().

�ℎ̃◦
Γ
×
().

() Γ
•
() |.

-,).

Γ
×
()).

() ↑) Γ
×
()).

(`)$. Γ
◦

(`)
.

�

Proof. The first diagram holds by Lemma C.13 and construction of Γ
×
(). . The second one holds

by Lemma C.13 and Corollary C.17. The third diagram holds by Lemma C.13, observing that by

construction of the adjunction of Lemma C.15, c1 ◦ ℎ̃◦-,. is the transpose of

Γ().Σ-
8=1
−−→ Γ

◦
().Σ-

ℎ◦
-,.
−−−→ () Γ•().- ,

hence, by Proposition C.16, Γ[()
.
() Γ•

() |.
- ◦ c1 ◦ ℎ̃◦-,. is the transpose of

Γ. Σ-
Γ
[()
.

Σ-

−−−−−−→ Γ(). Σ-
8=1
−−→ Γ

◦
().

Σ-
ℎ◦-,.
−−−→ () Γ•

().
- .

Finally, the last diagram is precisely the transpose of the last diagram of Lemma C.13. �

C.4 The family ℎ̃◦
l

We nowwant to define the next family, ℎ̃◦
l
. For this, we start by observing the following: We have:

Lemma C.22. For all . , the composite functor Γ
×
().

()$. Γ
◦
(). is a monad.

Proof. We already know that () is a monad. Furthermore, precomposing any monad by any
option functor $/ again yields a monad, by the following (folklore) lemma. We conclude by the
adjunction Γ

×
(). ⊢ Γ

◦
(). . �

Furthermore, the following result is folklore.

Lemma C.23. For all monads) on a category with binary coproducts, and for all objects � therein,
the natural transformation)↑� : $�) →)$� defined at any - by

)- + �
[)-,[)

�
]

−−−−−−→) (-) +) (�)
[) (8=1),) (8=2)]
−−−−−−−−−−−−→) (- + �)

forms a monad distributive law, thus equipping)$� with monad structure.

We may now define ℎ̃◦
l
.

Definition C.24. For all -,. ∈ C, let ℎ̃◦
l

-,. : (- → Γ
×
().()$. Γ

◦
().- denote the unique monad

morphism making the triangle

Σ- (-

Γ
×
().

() Γ•
() |.

-

[Σ,-

ℎ̃◦
l

-,.ℎ̃◦-,.

commute, obtained by universal property of (.

By construction, we have:

Lemma C.25. The family ℎ̃◦
l

-,. is natural in - .

43

T. Hirschowitz and A. Lafont

Notation 7. Let ! = Γ
◦
() : C

2 → C, ' = Γ
×
() : C × Cop → C, and . (-) = ()$.- (hence

 : C2 → C). We thus have for all . that !. is left adjoint to '. , and that . is a monad.

Furthermore, we observe the following:

Lemma C.26. For any � ∈ C and � ∈ � - alg, '�� has a canonical Σ-algebra structure given by

Σ'��
ℎ̃◦'��,�
−−−−−−→ '� �!�'��

'� �Y��
−−−−−−−→ '� ��→ '��.

This defines a functor � - alg→ Σ - alg over '� , for all �.

Proof. Functoriality is straightforward. �

Unfolding the definition, the family ℎ̃◦
l

-,. is in fact constructed in this way, with � = .!.- ,

whose . -algebra structure is given by ` .
!.-

.

Let us prove that the functorial assignment of Lemma C.26 is in fact also functorial in �, in the
following sense.

Lemma C.27. For any morphism 5 : � → � and object / , equipping �/ with the �-algebra

structure � �/
 5 �/
−−−−−→ � �/

`
 �
/
−−−→ �/ ,the morphism

'� �/
'5 �/
−−−−−→ '� �/

is a Σ-algebra morphism.

Proof. By commutativity of the following diagram

Σ'� �/

Σ'� �/ '� �!�'� �/ '� �!�'� �/

'� �!�'� �/ '� �!�'� �/ '� � �/

'� � �/

'� �/ '� �/

ℎ̃◦'� �/,�

Σ'5 �/

'� �!�'5 �/

ℎ̃◦'� �/,�

ℎ̃◦'� �/,�

'5 �!�'� �/

'� 5 !5 '� �/

'� �Y� �/

'� 5 Y� �/

'� �Y� �/
'5 � �/

'�`
 �
/

'�`
 �
/

'5 �/

(interchange)

(Lemma C.20)

(Lemma C.19)

(interchange)

(Corollary C.17)

�

Moreover, we have:

Lemma C.28. The family ℎ̃◦
l

-,. is extranatural in . , i.e., the following square commutes for all -
and 5 : . → / .

(- Γ
×
().()$. Γ

◦
().-

Γ
×
()/()$/ Γ

◦
()/- Γ

×
().()$/ Γ

◦
()/-

ℎ̃◦
l

-,.

ℎ̃◦
l

-,/

Γ
×
() 5

()$/ Γ
◦
()/

-

Γ
×
().

()$5 Γ
◦
() 5

-

44

A unified treatment of structural definitions on syntax

For proving this, we will need the following result.

Lemma C.29. For any monad (on a category with binary coproducts, the following diagram com-
mutes for all objects � and � .

(� + (�

(((� + �) ((� + (�)

(((� + �) (((� + �)

((� + �)
`(`(

↑(

(((↑)

(↑

(↑(

Proof. By diagram chasing, termwise, but doing only one term as the other follows by symme-
try.

(� (� + (� (� + ((�

((� + (�)

(� + (� ((� ((� (((� + (�)

((� + (� (� (((� + �)

(((� + �) (((� + (�) (((� + �) ((� + �)

[(8=1,(8=2]

(([(
�
+(�)

([(8=1,(8=2]

`(

[(
(�
+(�

[(8=1,(8=2]

(((�+[(
�
) ([(8=1,(8=2] `(

[(

`(

(8=1

([(

(8=1

((8=1
`(

8=1

8=1

(�+[(
(�

(8=1
((8=1

�

Proof of Lemma C.28. Using the notation, we want to prove that the following square com-
mutes.

(- '. . !.-

'/ /!/- '. /!/-

ℎ̃◦
l

-,.

ℎ̃◦
l

-,/

'5 /!/-

'. 5 !5 -

We first observe that both morphisms have the same restriction to Σ- , by definition of ℎ̃◦
l
and

Lemma C.20. Thus, by

• universal property of (- as a free Σ-algebra over - , and
• the fact that for any morphism U :)1 →)2 of monads, any U- :)1- →)2- is a)1-algebra
morphism, equipping)2- with the)1-algebra structure given by

)1)2-
U)2-
−−−−→)2)2-

`)2-
−−−−→)2- ,

so that each ℎ̃◦
l

-,. is an (-algebra morphism, or equivalently a Σ-algebra morphism,

45

T. Hirschowitz and A. Lafont

it suffices to equip '. /!/- with Σ-algebra structure and show that the bottom and right mor-
phisms above, i.e., '5 /!/- and '. 5 !5- , are Σ-algebra morphisms. For the Σ-algebra structure
on '. /!/- , we apply Lemma C.26 with the following . -algebra structure on /!/- :

 . /!/-
 5 /!/-
−−−−−−−−→ / /!/-

` /
−−−→ /!/- .

The bottom morphism then lifts to Σ - alg by Lemma C.27. Finally, the fact that the right-hand
morphism '. 5 !5- is a Σ-algebra morphism will thus follow from 5 !5- being a . -algebra
morphism, which in turn follows by chasing the following diagram.

 . .!.- . /!/-

 / /!/-

 . !.- /!.- /!/-

` .

 5 !.- /!5 -

 5 /!/-

` /

 . 5 !5 -

�

Lemma C.30. The family ℎ̃◦
l
satisfies the following laws.

(- ()-

Γ
×
().()$. Γ

◦
().- ()$. Γ

◦
().-

([)-

ℎ̃◦
l

-,.

c2

()U
Γ
•
() |
-,.

(- Γ
×
().

() Γ•
() |.

-

Γ
×
(().() Γ

•
() |.

-

Γ
×
()(.() Γ

•
() |(.

- Γ
×
()(.()(Γ

•
()(|.

- Γ
×
()(.() Γ

•
() |.

-

ℎ̃◦
l

-,.

ℎ̃◦
l

-,(.

Γ
×
()(. ↑

(
- ,.

Γ
×
()(. ((X ;`

())Γ•
(X ;`() |.

-

Γ
×

`(
).

() Γ•
() |.

-

Γ
×
(X.

() Γ•
() |.

-

Σ- (-

Γ
×
().() Γ

•
() |.

-

Γ().() Γ
•
() |.

-

Γ.() Γ
•
() |.

-

ℎ̃-,.

c1

Γ
[()
.
() Γ•

() |.
-

ℎ̃◦
l

-,.

[Σ,-

46

A unified treatment of structural definitions on syntax

(- Γ
×
()).

() Γ•
() |).

-

Γ
×
()).

()) Γ•
()) |.

-

Γ
×
().

() Γ•
() |.

- Γ
×
()).

() Γ•
() |.

-

ℎ̃◦
l

-,).

Γ
×
()).

() ↑)

Γ
×
()).

(`) Γ•
(`) |.

-

ℎ̃◦
l

-,.

Γ
×

(`)
.

() Γ•
() |.

-

Proof. The third law is direct by Lemma C.21. For the first two, we proceed similarly to the
proof of Lemma C.28, by showing that all the needed morphisms are Σ-algebra morphisms. For
the first diagram, the top and right-hand morphisms are free Σ-algebra morphisms, so we reduce
to proving that c2 is a Σ-algebra morphism. This holds by commutativity of the diagram in Fig-
ure 4 (recalling Notation 7), where the question-marked polygon commutes because the following
diagram does, for all �.

'.� �

!.'.�

$.!.'.� $.�

c2

8=2

U
$.!.
'.�

$. Y.�

8=1

Y.�

8=1

The top triangle commutes by construction of

Y.� : Γ
◦
(). Γ

×
().�→ �:

the domain Γ
◦
(). Γ

×
().

� is the coproduct

Γ(). (Γ(). (�) ×�) + Γ(). (�) ×�,

and the second component of Y.� is c2 : Γ(). (�) ×�→ �.

Let us now turn to the second diagram. We start by equipping the codomain with Σ-algebra
structure, by applying Lemma C.26 with � = (. and � = () Γ•

() |.
- = . Γ

◦
().

- , whose (. -

algebra structure is given by either of the following three equal composites.

47

T
.H

irsch
o
w
itz

a
n
d
A
.L
a
fo
n
t

Σ'. . !.- Σ .!.-

'. .!.'. .!.- ()'. . !.- (.!.- = (()$.!.-

'. . .!.- .!.'. .!.- () . !.-

'. . !.- . . !.- (())$.!.- (()$.!.-

 . !.-

ℎ̃◦'. . !. -,.
[Σ[

)'. .!.-

c2 ()U$.!. '. . !.-
'. . Y. .!.-

'. `
 . !.-

Σc2

[Σ .!.-

([) .!.-
()c2

 . Y. . !.-

` . !.-

(X)$. !. -

((`)
$.!. -

(([))$. !.-

c2

`()$. !.-

`()$. !.-

()8=1

(Lemma C.21)

(naturality of c2)

(dist. law axiom)

(monad law)

(definition of `())

(interchange)

(defn of ` .)

(?)

F
ig
.
4.

D
ia
g
ra
m

fo
r
p
ro
o
f
o
f
L
em

m
a
C
.30,

first
sta

tem
en
t

48

A unified treatment of structural definitions on syntax

 (. .!.- (. . !.- (. .!.-

() (()$.!.- + (.) () (()$.!.- + (.) () (()$. !.- + (.)

()($.()$.!.- ()() ($.!.- + (.) ()() ($. !.- + (.)

()$.()$.!.- ()()(($.!.- + .) () ($.!.- + (.)

()$.!.- ())((!.- + . + .) ()((!.- + . + .)

 .!.- ()((!.- + . + .) () (!.- + .)

(() (!.- + .) . !.-

() (!.- + .)

 .!.-

() (() ↑)

()() ↑(

(X ;`(

(`)

() ↑(

((X ;`())

` .

() (() ↑)

`()

() ↑(

((X ;`()) (!.-+[.,.]

(X (!.-+[.,.])

`(

Lemma C.31. The above (. -algebra structures are indeed equal.

Proof. The latter equivalence is clear. For the former, we proceed by diagram chasing as in
Figure 5, where � = !.- . �

Returning to the second law of LemmaC.30, the bottom row is the image by Γ
×
()(.

of amorphism
that lifts to (. - alg, by commutation of the diagram in Figure 6. It thus itself lifts to Σ - alg by
Lemma C.26.
Finally, we prove that the right-hand composite is a Σ-algebra morphism by diagram chasing as

follows.

49

T
.H

irsch
o
w
itz

a
n
d
A
.L
a
fo
n
t

() (() (� + .) + (.) () (() (� + .) + ()(.) ()() (� + . + (.) ()() (((� + .) + (.)

() (� + . + (.) ()()((� + . + .)

() (() (� + .) + ().) () (() (� + .) + ()().) ()() (� + . + ().) () (� + . + ().) () (((� + .) + (.) (())((� + . + .)

() ((() (� + .) + (.) () (()() (� + .) + ().) () (() (� + .) + ().) ()((� + . + .) ())((� + . + .)

()((() (� + .) + .) ()() (() (� + .) + .) (Lemma C.29) ()() (� + . + .) ()((� + . + .)

(() (() (� + .) + .) (() (� + .)

() (() (� + .) + .) () (() (� + .) + ().) ()() (� + . + .) () (� + . + .) () (� + .)

(X (�+[.,.])

`() (�+.)

(X

`() (() (�+.)+.)

() [() 8=1,()8=2] ()() ([(
�+.
+(.)

(X

() [(8=1,(8=2]

() ([(
() (�+.)

+(.)

`(

(`)

() (() (�+.)+([)
.
)

() ([() +().)

() [() 8=1,()8=2]

`()

() (() (�+.)+[()
.
) () [() 8=1,()8=2] `()

() (() (�+.)+[()
.
) () [() 8=1,()8=2] `()

() ([() +().)

() [() 8=1,()8=2]

`()

`()

() (�+.+([)
.
)

() (�+[.,.])

`()

() (([)
�+.
+([)

.
)

() ([(
�+.
+(.)

`()

()([)
�+.+.

() [(8=1,(8=2]

`(

() (() (�+.)+()([)
.
)

()() (�+.+([)
.
)

() (([) +([)
.
)

()([)

() (() (�+.)+[())

()() [(8=1,(8=2]

F
ig
.5.

P
ro
o
f
o
f
L
em

m
a
C
.31

50

A
u
n
ified

trea
tm

en
t
o
f
stru

ctu
ra
l
d
efin

itio
n
s
o
n
sy
n
ta
x

 (. (.!()(.- (.() ((!()(.- + (.) (.()((!()(.- + .) (.() (!()(.- + .) (. .!().-

 (.()((!().- + .)

()()$(.$(.!()(.- ()()$(.$(.(!()(.- ()()$(.(($.!()(.-) ()()$(.$.!().- ()($. .!().-

()()($.$.!()(.- ()()$(.($.!().- ()()($.$.!().-

()()($.$.!().- ()($.!().- ()$. .!().-

()($.!().-

 (.!()(.- () ((!()(.- + (.) ()((!()(.- + .) () (!()(.- + .) () (!().- + .)

 (.() ([
(+(.) (.() [(8=1,(8=2] (. ((X ;`

()) (.() (!(X ;`()-+.)

() [(8=1,(8=2] (X ;`() () (!
(X ;`()-+.)

() ↑(

(X ;`()

` .

() (() ↑(.)

()() ↑(

`()(`$.

(X ;`()

() (() ↑(.)

() ([(+(.)

`() `$(.

()()$(.$(. [
(

() (() ↑(.)

()()$(. [(8=1,(8=2]

`() `$(.

()() [(8=1,(8=2]

`()(`$.

 (.()($. !(X ;`()-

 (. ((X ;`
())

() (() ↑(.)

()() [(8=1,(8=2]

`()(`$.

()((!
(X ;`()-+.) (X ;`()

(termwise)

(proved in Coq)

F
ig
.6.

L
em

m
a
C
.30:b

o
�
o
m

m
o
rp
h
ism

li�
s
to

Σ
-
a
lg

51

T. Hirschowitz and A. Lafont

Σ'. ./ Σ'(. ./

'(. (. !(.'. ./ '(. (.!(.'(. ./

'(. (. !.'. ./ '(. (. ./

'(.()($.!.'. ./ '(.()($. ./

'. .!.'. ./ '(.()$.!.'. ./ '(.()$. ./

'. . ./

'. ./ '(. ./

ℎ̃◦'. . /,.

'. . n.

'. `
 .

ℎ̃◦'(. . /,(.

'(. (. n(.

'(.() ↑
(

'(. ((X ;`
())

'(. `
 .

ℎ̃◦'. . /,(. '(. (.!(. Γ
×

(X ;`()
 ./

Σ Γ
×

(X ;`()
 ./

Γ
×

(X ;`()
 ./

'(. (. Γ
◦

(X ;`()
'. ./

'(. (. n. ./

'(.() ↑
(

'(. ((X ;`
())

'(.()$. n. ./
Γ
×

(X ;`()
 .!.'. ./

Γ
×

(X ;`()
 . ./

(Lemma C.21)

(Corollary C.17)

We then consider the fourth law, for which we proceed similarly: it suffices to show that the
bottom morphism and right-hand composite are Σ-algebra morphisms. We first prove that the
bottom morphism is a Σ-algebra morphism by diagram chasing as in Figure 7. Finally, we show
that the right-hand composite is a Σ-algebra morphism, by Lemma C.26: we verify that it applies
by proving that the composite is a morphism of). -algebras, as we show by diagram chasing in
Figure 8, where the bottom left heptagon commutes by Lemma C.32 below. �

Lemma C.32. For all objects � and . , the following diagram commutes.

$).$).� $).)$.�)$.)$.�))$.$.�

)$.$.�

$).�)$.�
↑)

`$).

$). ↑
) ↑)) () ↑)

`)

) `$.

Proof. The domain is a coproduct, so we proceed termwise, by diagram chasing. The first term
is chased as follows.

)�) (� + .))) (� + .)

� +). +).)� +). +).) (� + .) +).)) (� + .) +).) () (� + .) + .)) () (� + .) +).))) (� + . + .)

) (� + .)

) (� + .)) (� + . + .)

� +).)� +).) (� + .)

�+[).,).]

`)

) (�+[.,.])

[) +). [)8=1,) 8=2][)
�
+).+). [)8=1,) 8=2]+).) () (�+.)+[)

.
)

) [)8=1,) 8=2]

[)
�
+). [)8=1,) 8=2]

)�+[).,).]

8=1

)8=1

8=1

[)

8=1)8=1

8=1

)8=1

))8=1

`)

)8=1

The second term is chased as follows.

52

A
u
n
ified

trea
tm

en
t
o
f
stru

ctu
ra
l
d
efin

itio
n
s
o
n
sy
n
ta
x

Σ Γ

×
().

() Γ•
() |.

- Σ Γ

×
()).

() Γ•
() |.

-

Γ

×
().

()$. Γ
◦
().

Γ

×
().

() Γ•
() |.

- Γ

×
()).

()$). Γ
◦
()).

Γ

×
().

() Γ•
() |.

- Γ

×
()).

()$). Γ
◦
()).

Γ

×
()).

() Γ•
() |.

-

Γ

×
()).

())$. Γ
◦
()).

Γ

×
().

() Γ•
() |.

- Γ

×
()).

()$).()$. Γ
◦
().

-

Γ

×
()).

()$. Γ
◦
()).

Γ

×
().

() Γ•
() |.

- Γ

×
()).

())$. Γ
◦
()).

Γ

×
()).

() Γ•
() |.

- Γ

×
()).

())$.()$. Γ
◦
().

-

Γ

×
()).

()$. Γ
◦
().

Γ

×
().

() Γ•
() |.

- Γ

×
()).

()$. Γ
◦
()).

Γ

×
()).

() Γ•
() |.

-

Γ

×
()).

()$.()$. Γ
◦
().

- Γ

×
()).

()$.()$. Γ
◦
().

-

Γ

×
().() Γ

•
() |.

- Γ

×
()).() Γ

•
() |.

-

Γ

×
()).

() ↑)

Γ

×
()).

(`)

Γ

×
()).

` .

ℎ̃◦

Γ

×
()).

() Γ
•
() |.

-,).

Γ

×
()).

()$). n()). () Γ
•
() |.

-

Γ

×
()).

` .

ℎ̃◦

Γ

×
().

() Γ
•
() |.

-,.

Γ

×
().

()$. n().() Γ
•
() |.

-

Γ

×

(`)
.

() Γ•
() |.

-

Γ

×

(`)
.

()$. ()$. Γ
◦
().-

Σ Γ

×

(`)
.

() Γ•
() |.

-

Γ

×

(`)
.

()$. Γ
◦
(). Γ

×
().

() Γ•
() |.

-

ℎ̃◦

Γ

×
().

() Γ
•
() |.

-,).

Γ

×
()).

() ↑)

Γ

×
()).

()$). Γ
◦
()). Γ

×

(`)
.

() Γ•
() |.

-

Γ

×
()).

()$. n().

Γ

×
()).

() ↑)
Γ

×
()).

())$. n()).() Γ
•
() |.

-

Γ
×
()).

(`)

Γ

×
()).

()$. n()).

Γ

×
()).

(`)$. Γ
◦
()). Γ

×
().

() Γ•
() |.

-

Γ

×
()).

()$. Γ
◦

(`)
. Γ

×
()).

()$. Γ
◦
()). Γ

×

(`)
).

() Γ•
() |.

-

F
ig
.7.

P
ro
o
f
o
f
L
em

m
a
C
.34,

fo
u
rth

la
w
,b
o
�
o
m

m
o
rp
h
ism

53

T
.H

irsch
o
w
itz

a
n
d
A
.L
a
fo
n
t

()$).()$). Γ
◦
()).- ()$).())$. Γ

◦
()).- ()$).()$. Γ

◦
().-

()()$).$). Γ
◦
()).- ()()$).)$. Γ

◦
()).- ()())$).$. Γ

◦
()).- ()()$).$. Γ

◦
().- ())$.()$. Γ

◦
().-

()$).$. Γ
◦
().- ()())$.$. Γ

◦
().- ())()$.$. Γ

◦
().-

()$).$). Γ
◦
()).

- ()$).)$. Γ
◦
()).

- ())$).$. Γ
◦
()).

- ())$.$. Γ
◦
().

- ()())$.$. Γ
◦
().

- ()$.()$. Γ
◦
().

-

())$.)$. Γ
◦
()).- ()))$.$. Γ

◦
()).- ()()$.$. Γ

◦
().- (()))$.$. Γ

◦
().- ()()$.$. Γ

◦
().-

()))$.$. Γ
◦
()).- ())$.$. Γ

◦
()).- (())$.$. Γ

◦
().- (())$.$. Γ

◦
().-

(()$.$. Γ
◦
().-

()$.$. Γ
◦
().

-

()$). Γ
◦
()).- ()) Γ•

()) |.
- () Γ•

() |.
-

() ↑)
(`) Γ•

(`) |.
-

() ↑)

(`)

` .

`()$).

()$).(`
)$. Γ

◦

(`)
.

-
()$).() ↑

)

() (() ↑)
() (() ↑)

()()$). ↑
)

() (() ↑)

()() ↑)

()) (() ↑)

()X

() (() ↑)

(`)

()(`)

(X

((`)

(X(() `)

(X

((`)

((`)

()(`)

()() () ↑)
()(`)$).$. Γ

◦

(`)
.

-

`() `$).

`()

() `$).

`()

()$). ↑
)

`()

() () ↑)

`()

() ↑)

`()

(`)

() `$.

(`)$).$. Γ
◦

(`)
.

-

()) ↑)
(`))$.$. Γ

◦

(`)
.

-

() `)

() ↑)

()) () ↑)

() `)

(`)$.$. Γ
◦

(`)
.

-

()) `$. `(

F
ig
.8.

L
em

m
a
C
.30,fo

u
rth

d
ia
g
ra
m
,first

tw
o
m
o
rp
h
ism

s

54

A unified treatment of structural definitions on syntax

).).)).

) (� + .))) (� + .)

)� +). +).) (� + .) +).)) (� + .) +).) () (� + .) + .)) () (� + .) +).))) (� + . + .)

).) (� + . + .)

)� +).) (� + .)

`)

) (�+[.,.])

[) +).

[)8=1,) 8=2]

[)8=1,) 8=2]+).

) () (�+.)+[)
.
)) [)8=1,) 8=2]

[)8=1,) 8=2]

)�+[).,).]

8=2

8=2

[)
).

)8=2

8=1

))8=2

[)

8=1)8=1

))8=1

))8=2

`)
.

)8=2

)8=2

Finally, the third term is chased as follows.

).).)).

)� +). +).) (� + .) +).)) (� + .) +).) () (� + .) + .)) () (� + .) +).))) (� + . + .)

).

) (� + . + .)

)� +).) (� + .)

`)

) (�+[.,.])

[) +). [)8=1,) 8=2][)8=1,) 8=2]+).) () (�+.)+[)
.
)) [)8=1,) 8=2]

[)8=1,) 8=2]

)�+[).,).]

8=3 8=2
)8=2

)[)
.

)8=2
))8=3

`)
.

)8=3

)8=2

�

C.5 The family
˜̃
ℎ◦
l

Transposing back, we obtain a family

˜̃
ℎ◦
l
-,. : Γ

◦
().(- → ()$. Γ

◦
().-

of morphisms.

By extranaturality of ℎ̃◦
l
in . , naturality in - , and Corollary C.17, we get:

Lemma C.33. The family
˜̃
ℎ◦
l
is natural in both variables.

55

T. Hirschowitz and A. Lafont

Lemma C.34. The family
˜̃
ℎ◦
l
satisfies the following coherence laws.

((-) () (-)

Γ
◦
(). (((-)) () (Γ•

() |.
(-))

(([)
-
)

U Γ
◦

(- ,().

˜̃
ℎ◦
l
-,.

()U
Γ
•
() |
-,.

Γ
◦
()(.(- Γ

◦
(().(- Γ

◦
().(-

() Γ•
() |(.

- ()(Γ•
()(|.

- () Γ•
() |.

-

˜̃
ℎ◦
l
-,(.

() ↑(- ,.

Γ
◦
(X.

(- Γ
◦

`(
).

(-

((X ;`())Γ•
(X ;`() |.

-

˜̃
ℎ◦
l
-,.

Γ
◦
().- () Γ◦().-

Γ
◦
().(- () Γ•

() |.
-

[()
Γ
◦
().

-

Γ
◦
().

[(
-

˜̃
ℎ◦
l

()8=1

Γ
◦
()).

(- () Γ•
() |).

-

()) Γ•
()) |.

-

Γ
◦
().(- () Γ•

() |.
-

Γ
◦

(`)
.

(-

˜̃
ℎ◦
l
-,).

() ↑)

(`) Γ•
(`) |.

-

˜̃
ℎ◦
l
-,.

Γ
◦
().((- ()$. Γ

◦
().(- ()$.()$. Γ

◦
().-

Γ
◦
().(- ()$. Γ

◦
().-

˜̃
ℎ◦
l
(-,.

Γ
◦
(). `

(
-

˜̃
ℎ◦
l
-,.

()$.
˜̃
ℎ◦
l
-,.

`
()$.
Γ
◦
().

-

Γ.Σ- Γ().(- Γ
◦
().(-

() Γ•
() |.

-

Γ
[()
.
[Σ,-

8=1

˜̃
ℎ◦
l
-,.

ℎ-,.

Proof. By Lemma C.30, Corollary C.17, and the fact that ℎ̃◦
l

-,. is a monad morphism by con-
truction. E.g., the third law holds iff the transposed morphisms coincide. This gives the following
diagram,

- '.!.- '.()!.-

(- '. .!.-

[(
-

ℎ̃◦
l

-,.

[.-
'. [

()
!. -

'. ()8=1

which is precisely commutation of ℎ̃◦
l
with unit. Similarly, the penultimate law holds iff the trans-

posed morphisms coincide. This gives the following diagram,

56

A unified treatment of structural definitions on syntax

((- '. . !.(- '. .!.'. . !.-

'. . . !.-

(- '. .!.-

`(-

ℎ̃◦
l

-,.

ℎ̃◦
l

(-,. '. .!. ℎ̃◦
l

-,.

'. . n.

'. `
 .

which precisely commutation of ℎ̃◦
l
with multiplication. �

C.6 The family ℎ•l

Definition C.35. Let ℎ•l
-,.

: Γ(.(- → () Γ•
() |.

- denote the composite

Γ(.(-
Γ
([)
.
(-

−−−−−−→ Γ().(-
8=1
−−→ Γ

◦
().(-

˜̃
ℎ◦
l
-,.

−−−−−→ () Γ•() |.- .

Lemma C.36. The natural transformation ℎ•l
-,.

: Γ•
(.
(- → () Γ•

() |.
- is natural in both variables.

Proof. This follows straightforwardly from Lemma C.33. �

Lemma C.37. The natural transformation ℎ•l makes all diagrams below commute, for all-,. ∈ C.

Γ((.(- Γ(.(-

() Γ•
() |(.

- ()(Γ•
()(|.

- (() Γ•
(() |.

- () Γ•
() |.

-

ℎ•l
-,(.

() ↑((XΓ•
(X |.

- `() Γ•
`() |.

-

Γ`(.(-

ℎ•l
-,.

Γ(.((- () (Γ().(- + (- + .) () (() Γ•
() |).

- + ()- + ().)

() (() (Γ()).- + - +).) + ()- + ().)

() (()) (Γ()).- + - + .) + ()- + ().)

() (() (Γ().- + - + .) + ()- + ().)

()() (Γ().- + - + . + - + .)

() (Γ().- + - + .)

Γ(.(- () Γ•
() |.

-

() (ℎ•l
-,).

+([)- +[
()
.)

() (() ↑) +()-+().)

() ((`) (Γ(`) .-+-+.)+()-+().)

() [() 8=1,()8=2,()8=3]

`() [8=1,8=2,8=3,8=2,8=3]

Γ(. `
(
-

ℎ•l
-,.

ℎ•l
(-,.

57

T. Hirschowitz and A. Lafont

Γ(.- Γ().- Γ
•
() |.

-

Γ(.(- () Γ•
() |.

-
ℎ•l
-,.

Γ(.[
(
-

Γ
([)
-
-

8=1

[()

Γ.Σ- Γ(.(-

() Γ•
() |.

-

ℎ•l
-,.

Γ
[(
.
[Σ,-

ℎ-,.

Proof. The last diagram is direct by Lemma C.34. The third one follows by chasing as follows,

Γ(.- Γ().- Γ
◦
().- Γ

•
() |.

-

() Γ◦
().

-

Γ(.(- Γ().(- Γ
◦
().(- () Γ•

() |.
-

Γ(.[
(
-

Γ
([)
-
-

[()

Γ
([)
.
(- 8=1 ˜̃

ℎ◦
l
-,.

Γ().[
(
-

8=1 8=1

Γ
◦
().[

(
-

[()

()8=1

using Lemma C.34. The first statement follows by chasing the next diagram.

Γ((.(- Γ(.(-

Γ()(.(- Γ(().(- Γ().(-

Γ
◦
()(.

(- Γ
◦
(().

(- Γ
◦
().

(-

() Γ•
() |(.

- ()(Γ•
()(|.

- (() Γ•
(() |.

- () Γ•
() |.

-
() ↑((XΓ•

(X |.
- `() Γ•

`() |.
-

Γ
`(
.
(-

˜̃
ℎ◦
l
-,(.

Γ
([)
(.
(-

8=1

˜̃
ℎ◦
l
-,.

8=1

Γ
([)
.
(-

Γ(X.
(- Γ

`(
).
(-

Γ
(([)

.
(-

Γ
◦
(X.

(- Γ
◦

`().
(-

(Lemma C.34)

For the second statement, we first reduce to the rightmost subdiagram in Figure 9, which further
reduces as in Figure 10. �

C.7 The incremental li�ing

Proposition C.38. For any object - and () ⊕) ′)-algebra structure

)-
a
−→ -

b
←− Γ(-- ,

the Γ(-algebra structure on (- given by

Γ((-(-
Γ
`(
-
(-

−−−−−→ Γ(-(-
ℎ•l
-,-
−−−−→ () Γ•() |--

() (Γ(a-+[-,-])
−−−−−−−−−−−−−→ () (Γ(-- + -)

() [b,-]
−−−−−−→ ()-

(a
−−→ (-

defines an incremental lifting of (to) ′ -Alg along X .

58

A
u
n
ified

trea
tm

en
t
o
f
stru

ctu
ra
l
d
efin

itio
n
s
o
n
sy
n
ta
x

Γ(.((- Γ().((- Γ
◦
().((- () (Γ().(- + (- + .) () (() Γ•

() |).
- + ()- + ().)

() (() (Γ()).- + - +).) + ()- + ().)

() (()) (Γ()).- + - + .) + ()- + ().)

() (() (Γ().- + - + .) + ()- + ().)

() (() Γ•
() |.

- + .) ()() (Γ().- + - + . + - + .)

()$.()$. Γ
◦
().- () (Γ().- + - + .)

Γ(.(- Γ().(- Γ
◦
().(- () Γ•

() |.
-

() (ℎ•l
-,).

+([)
-
+[()
.
)

() (() ↑) +()-+().)

() ((`) (Γ
(`) .

-+-+.)+()-+().)

() [() 8=1,() 8=2,()8=3]

`() [8=1,8=2,8=3,8=2,8=3]

Γ(. `
(
-

˜̃
ℎ◦
l
(-,.

Γ
([)
.
((-

8=1

˜̃
ℎ◦
l
-,.

Γ
([)
.
(- 8=1

Γ
◦
().

`(
-

() (
˜̃
ℎ◦
l
-,.+.)

`
()$.
Γ
◦
().

-

(interchange)

(Lemma C.34)

F
ig
.9.

P
ro
o
f
o
f
L
em

m
a
C
.37

59

T
.H

irsch
o
w
itz

a
n
d
A
.L
a
fo
n
t

() (Γ().(- + (- + .) () (Γ()).(- + (- + .) () (Γ◦
()).

(- + (- + .) () (() Γ•
() |).

- + ()- + ().)

() (Γ◦
().

(- + (- + .) () (() (Γ()).- + - +).) + ()- + ().)

() (Γ◦().(- + (- + .) () (()) (Γ()).- + - + .) + ()- + ().)

() (() (Γ().- + - + .) + ()- + ().)

() (()$. Γ
◦
().- + ()- + .) ()() (Γ().- + - + . + - + .)

() (()$. Γ
◦
().

- + .) () (()$. Γ
◦
().

- + ().) ()() ($. Γ
◦
().

- + .) ()() (Γ().- + - + .)

() (() (Γ◦().- + .) + .) () Γ•
() |.

-

() (ℎ•l
-,).

+([)
-
+[()
.
)

() ((`) (Γ
(`) .

-+-+.)+()-+().)

() [()8=1,()8=2,() 8=3]

()() [8=1,8=2,8=3,8=2,8=3]

`()

() (Γ
([)
).
(-+(-+.)

() (8=1+(-+.)

() (
˜̃
ℎ◦
l
-,). +([

)
-
+[()
.
.)

() (() ↑) +()-+().)

() (8=1+(-+.) () (Γ◦
([)
).

+(-+.)

() (Γ◦
(`)
.

(-+(-+.)

() (
˜̃
ℎ◦
l
-,.+([

)
-
+.)

()$. (()$. Γ
◦
().

-+()-+[()
.
)

() ([()$. Γ
◦
().

-,() 8=2]+.)

() (()$. Γ
◦
().

-+[()
.
) () [()8=1,()8=2] ()() (Γ◦

().
-+[.,.])

() (
˜̃
ℎ◦
l
-,.+.)

`()$.

(Lemma C.34)

F
ig
.10.

P
ro
o
f
o
f
L
em

m
a
C
.37,p

a
rt
2

60

A unified treatment of structural definitions on syntax

Proof. The given composite readily equips (- with () ⊕) ′)-algebra structure by Lemma 4.7
and the isomorphism Γ(- alg �)

′ -Alg. It remains to verify that the unit and multiplication are Γ(-
algebra morphisms. The former follows easily by Lemma C.37, and the latter by Figure 11. There,
the middle, unlabelled polygon is chased as follows,

()$(-$(-()� ()$(-($(-()� ()($-$(-()� (()$()-$()-()� ()$()-$()-()� ()()$-$-�

(()()$-$-�

()$()-($()-()� ()$(()-($()-()� ()($()-$()-()� ()($()-()$-� ()(()$-$-� ((())$-$-� (())$-$-�

()$()-$()-()� ()$()-()$-� ()()$-$-� (())$-$-� ()$-$-�

(X$
[()
-
$
([)
- `(() [() 8=1,()8=2,()8=3]

()$
([)
-
$
([)
-

()$(-[
(() [(8=1,(8=2]

()$
([)
-
($

([)
-
()$- Γ

◦
()-

-

()$()-[
(

()$()- [() 8=1,() 8=2] () [() 8=1,()8=2]

()$
([(
)-

($()-()�
() [(8=1,(8=2]

(X

(X

`(

() `(

()($()- [() 8=1,() 8=2] ()([() 8=1,()8=2]

(X

`(`)

(X `(`)

((X

`(

where the middle, bottom polygon is the image by () of a diagram whose domain is a coproduct,
and whose commutativity may be checked termwise. E.g., the second term is chased as follows.

()- (()- (() (� + -)

((()� + ()-) ((()� + ()-)

$()-$()-()� $()-($()-()� $(()-($()-()� ($()-$()-()� ($()-()$-� (()$-$-�

() (� + -) ()-

$()-()$-� ()$-$-�

$()-[
(

$()- [()8=1,()8=2]

[()8=1,() 8=2]

$
([(
)-

($()- ()�
[(8=1,(8=2]

`(

($()- [()8=1,()8=2] ([()8=1,() 8=2]

8=2

[(

(8=2

8=1 8=1

(8=2

(8=1

(()8=2

(8=1

([()8=1,() 8=2]
(()8=1

`(

()8=2

()8=2

8=1

�

It remains to show:

Proposition C.39. The distributive law 3/X : () ⊕)
′)(→ (() ⊕) ′) satisfies (5), which we repeat

here for convenience.

Γ-Σ- () (Γ()-- + - + -)

() (Γ()-)- + -)

Γ(-(- () () ′)- + -)

Γ((-(- () (() ⊕) ′) () ⊕) ′)- + -)

) ′(- (() ⊕) ′) () ⊕) ′)-

() ⊕) ′)(- (() ⊕) ′)-

3-,-

Γ
[(
-
[Σ,-

Γ
[(
(-
(-

3/X-

(`)⊕)
′

-

[Γ(,(-

8=2(-

(8=1 [`
)⊕) ′

-
,[)⊕)

′
-]

() (8=28=1-+-)

() (Γ()-[
)
-
+[-,-])

() ([Γ(,)- +-)

We need the following intermediate result.

Lemma C.40. For any object . , the following diagram commutes.

61

T
.H

irsch
o
w
itz

a
n
d
A
.L
a
fo
n
t

Γ(((-((- Γ((-((- Γ((-(-

Γ((-((- Γ(-((- Γ(-(-

() Γ•
() |(-

(- ()(Γ•
()(|-

(- ()(Γ•
(() |-

(- (() Γ•
(() |-

(-

() (Γ()(-(- + 2 · (-)

() (Γ(()-(- + 2 · (-) () (Γ()-(- + 2 · (-) ()(Γ•
() |-

(- (() Γ•
() |-

(- () Γ•
() |-

(-

() (Γ((-(- + 2 · (-)

() (Γ(-(- + 2 · (-) () (() Γ•
() |)-

- + 2 · (-) ()((() Γ•
() |)-

- + (- + -) (() (() Γ•
() |)-

- + ()- + ()-) () (() Γ•
() |)-

- + ()- + ()-) () (()) Γ•
()) |-

- + 2 · ()-) () (() Γ•
() |-

- + 2 · ()-) ()() (Γ•
() |-

- + - + -)

() (() (Γ()-- + - +)-) + 2 · (-) () (()) (Γ()-- + 2 · -) + 2 · (-) () (() (Γ()-- + 2 · -) + 2 · ()-) ()() (Γ()-- + 2 · - + 2 · -) () (Γ•
() |-

- + - + -) () Γ•
() |-

-

() (() Γ•
() |-

- + 2 · (-) () (() (Γ(-- + - +)-) + 2 · (-) () (()) (Γ(-- + 2 · -) + 2 · (-) () (() (Γ(-- + 2 · -) + 2 · ()-) ()() (Γ(-- + 2 · - + 2 · -) () Γ•
(|-

-

() (() (- + - +)-) + 2 · (-) () (()) (2 · - + -) + 2 · (-) () (() (2 · - + -) + 2 · ()-) ()() (2 · - + - + 2 · -) ()-

() (() Γ•
(|-

- + 2 · (-)

() (()- + 2 · (-) ()(() (2 · - +)-) + 2 · -) ()(() (- + 2 · -) + 2 ·)-) (()) (2 · - + - + 2 · -)

() ((- + 2 · (-) ()(()- + 2 · -) (() () (2 · - +)-) + 2 · -) (() () (- + 2 · -) + 2 ·)-)

()((- + 2 · -) () () (2 · - +)-) + 2 · -) () ()) (2 · - + -) + 2 · -) () () (2 · - + -) + 2 ·)-) ()) (2 · - + - + 2 · -) ())-

() () (2 · - + -) + 2 · -) () ()- + 2 · -)

()(-

(()- ()-

((- (-

Γ
(`(
-
((-

Γ((- `
(
-

Γ
`(
-
(-

ℎ̄-,-

() (Γ(a-+2·-)

() [b,-,-]

(a

Γ
`(
(-
((-

ℎ̄(- ,(-

() (Γ(X- (-+2·(-)

() (Γ((a(-+2·(-)

() (Γ
`(
-
(-+2·(-)

() (ℎ̄-,- +2·(-)

() (() (Γ(a-+2·-+2·(-))

() (() [b,-,-]+2·(-)

() ((a+2·(-)

() [(-,(-,(-]

(X-

((a

`(
-

Γ
`(
-
((-

Γ
`(
-
((-

Γ(- `
(
-

(XΓ•
(() |-

(-

`() Γ•
`() |-

(-

ℎ̄(- ,-

() (ℎ̄-,)- +([
)-+[()-)

() (() ↑) +2·()-)
() ((`) Γ•

(`) |-
-+2·()-)

() [() 8=1,()8=2,()8=3]

() (Γ
`(
)-

(-+2·(-)

() (Γ(a(-+2·(-) () (ℎ̄-,)- +2·(-)

() (() Γ•
() |a

-+2·(-)

() (↑()

(XΓ•
() |-

(- `() Γ•
() |-

(-

() (↑() (X (() Γ•
() |)-

-+([)
-
+[()-) `() (() Γ•

() |)-
-+)-+()-)

() (() (Γ
(`) -

-+-+)-)+2·(-)

() (() ↑) +2·(-) () ((`) (Γ()--+2·-)+2·([
)-) () [() 8=1,()8=2,()8=3]

() (() (Γ(a-+-+)-)+2·(-)

() (() ↑) +2·(-) () ((`) (Γ(--+2·-)+2·([
)-) () [() 8=1,()8=2,()8=3] `() (Γ(--+∇)

() (() (b+-+)-)+2·(-)

() (() ↑) +2·(-)

() ((`) (2·-+-)+2·([)-)

() [() 8=1,()8=2,()8=3]

`() [-,-,-,-,-]

() (() (Γ(--+-+a)+2·(-)

() (() [-,-,a]+2·(-)
() [(8=1,(8=2,(8=3]

(X

`(

() () (2·-+a)+2·-)

() () [-,-,-]+2·-)

() [a,-,-]

(a

() () ↑) +2·-) () (`) (2·-+-)+2·[)
-
) ()) [-,-,-,-,-]

()(() [-,-,a]+2·-)

()((a+2·-)

() [(8=1,(8=2,(8=3]

() [(8=1,(8=2,(8=3]

()([-,-,-]

`(
)-

() [)8=1,) 8=2,) 8=3]

() [(8=1,(8=2,(8=3]

(X

`(

()([)8=1,) 8=2,) 8=3] (X

`(

(`)
-

(proved in Coq)

(() Γ•
`() |-

(-

() ↑(()(Γ•
(X |-

(-

()(Γ•
`() |-

(-(easy)

()() (b+2·-+2·-)

(proved in coq)

(easy)

(easy)

`()

[Γ•
() |-

,U,V]`()

(easy)
(easy)

(easy)

(easy)

(easy)

(easy)

(easy)

(easy)

(naturality of (X ;`()

(naturality of `()

(easy)
(naturality of X)

(Lemma C.37)

(associativity of `() (functoriality of Γ)

(Lemma C.37)

(easy)

(easy)

(easy)

(naturality of (X ;`()

F
ig
.11.

M
u
ltip

lica
tio

n
is
a
n
a
lg
eb
ra

m
o
rp
h
ism

62

A unified treatment of structural definitions on syntax

Γ((.(. Γ(.(. () (Γ().. + . + .)

) ′(. () (Γ().). + .)

() () ′). + .)

(() ⊕) ′) () ⊕) ′).

() ⊕) ′)(. (() ⊕) ′).

3•l
.,.

() (Γ().[
)
.
+[.,.])

8=2(.

3/X.

Γ
`(.

(.

[Γ(,(.

() ([Γ(,). +.)

(`)⊕)
′

.

(8=1 [(`
)⊕) ′

.
◦8=28=1),[

)⊕) ′

.
]

Proof. Up to some easy rewriting of the right-hand composite, this is proved in Figure 12. �

Proof of Proposition C.39. By diagram chasing, as follows.

Γ-Σ- () (Γ()-- + - + -)

Γ(-(- () () ′)- + -)

Γ((-(- Γ(-(- () (() ⊕) ′) () ⊕) ′)- + -)

) ′(- (() ⊕) ′) () ⊕) ′)-

() ⊕) ′)(- (() ⊕) ′)-

Γ
[(
[Σ,-

Γ
[(
(-
(-

[Γ(,(-

8=2

3-,-

3•l
-,- () ([Γ([

)
-
+[-,-])

() (8=28=1+-)

(8=1 [`
)⊕) ′

-
,[) ⊕)

′

-
]

(`)⊕)
′

-

3/X-

Γ
`(
-
(-

3•l
-,-

(Lemma C.40)

�

D PROOF OF THEOREM 4.13

We fix a given incremental structural law

3 : Γ. (Σ(-)) → () (Γ(). (-) + - + .)

over X :)(→ () , and let) ′ = Γ
∗
(.

Given any distributive law, algebras for the composite monad admit the following well-known
characterisation.

63

T
.H

irsch
o
w
itz

a
n
d
A
.L
a
fo
n
t

Γ((.(. Γ(.(. () (Γ().. + . + .)

) ′(.

Γ(() ⊕) ′)(. () ⊕)
′)(. Γ((() ⊕) ′).(() ⊕)

′). Γ(() ⊕) ′).(() ⊕)
′).

) ′() ⊕) ′)(. () (Γ() () ⊕) ′). () ⊕)
′). + () ⊕) ′). + () ⊕) ′).) () (Γ(() ⊕) ′). () ⊕)

′). + .)

() ⊕) ′) () ⊕) ′)(. () (Γ(() ⊕) ′). () ⊕)
′). + () ⊕) ′).)

() () ′() ⊕) ′). + () ⊕) ′).) () () ′() ⊕) ′). + .)

() (() ⊕) ′) () ⊕) ′). + () ⊕) ′).)

() () ⊕) ′). (() ⊕) ′) () ⊕) ′).

(() ⊕) ′) () ⊕) ′).

() ⊕) ′)(. (() ⊕) ′).

3•l
.,.

() (Γ(8=1[
)⊕) ′

.
+[.,.])

8=2(.

[Γ

8=2

`

Γ(3/X.
3/X.

Γ̀

3•l

() (Γ((8=1;`). () ⊕)
′).+[() ⊕) ′).,() ⊕) ′).])

(8=1

[

[

[

[

3/X.

Γ
`(.

(.

[Γ(,(.

[

[

() [`)⊕)
′

.
,() ⊕) ′).]

() ([Γ(+() ⊕)
′).)

() (8=2+() ⊕)
′).)

(`

() ([Γ(,() ⊕) ′). +.)

(`)⊕)
′

.

(8=1 [(`
)⊕) ′

.
◦8=2),[

)⊕) ′

.
]

(3/X. is a Γ(-algebra morphism)

(easy)

F
ig
.
12.

P
ro
o
f
o
f
L
em

m
a
C
.40

64

A unified treatment of structural definitions on syntax

Definition D.1. Given any monad distributive law X : '(→ (', a X-algebra is an object - ∈
C of the underlying category, equipped with (- and '-algebra structures, say a : (- → - and
b : '- → - , satisfying the following law.

'(- ('-

'- (-

-

X-

'a (b

b a

(13)

A X-algebra morphism - → . is a morphism between underlying objects which is both an (-
and '-algebra morphism.
We let X -Alg denote the category of X-algebras and morphisms between them.

Lemma D.2 ([Beck 1969, §2]). Given any monad distributive law X : '(→ (', and ('-algebra
x : ('- → - , the derived (- and '-algebra structures

(-
([)
-
−−−→ ('-

x
−→ - '-

[(
'-
−−−→ ('-

x
−→ -

equip - with X-algebra structure. Furthermore, this underlies an isomorphism (' -Alg→ X -Alg of
categories over C.

In our situation, applying this to the distributive law 3/X : () ⊕)
′)(→ (() ⊕) ′) from Theo-

rem 4.10, we obtain:

Corollary D.3. An (() ⊕) ′)-algebra is equivalently an (-algebra a : (- → - , equipped with
() ⊕) ′)-algebra structure satisfying the pentagon (13) with ' =) ⊕) ′.

But we can say more, by Corollary B.3:

Lemma D.4. An (() ⊕) ′)-algebra is equivalently an objet - , equipped with morphisms

a : (- → - b :)- → - c : Γ(-, (-) → - ,

the first two of which are monad algebra structures, satisfying the pentagon (13) with ' =) , together
with the following diagram,

Γ((-(- Γ(--

Γ(-(-

() Γ•
() |-

- ()- (- -

Γ(aa

Γ
`(
-
(-

3•l
-,-

() (b⊲c) (b a

c(d2′)

recalling b ⊲ c from Definition 4.11.

Proof. The pentagon (13) with ' =) ⊕) ′ equivalently states that the (-algebra structure
a : (- → - is a morphism of () ⊕) ′)-algebras. But by Lemma 4.7 this is equivalent to being both
a) - and Γ(Δ-algebra morphism. The former is taken care of by (13) with ' =) , the latter by the
given diagram. �

It remains to show that, given an object- equippedwith (- and) -algebra structures a : (- → -

and b :)- → - satisfying (d1), the following are equivalent:

• a morphism c : Γ(-,-) → - satisfying (d2), and

65

T. Hirschowitz and A. Lafont

• a morphism c : Γ(-, (-) → - satisfying (d2′);

and furthermore the notions of morphisms agree.
For any c : Γ(-,-) → - satisfying (d2), we define č to be the following composite

Γ(-, (-)
Γ (-,a)
−−−−−→ Γ(-,-)

c
−→ - ,

and conversely for any c : Γ(-, (-) → - satisfying (d2′), we define ĉ to be

Γ(-,-)
Γ (-,[(

-
)

−−−−−−→ Γ(-, (-)
c
−→ - .

It thus suffices to prove:

(a) the assignments c ↦→ č and c ↦→ 2̂ are mutually inverse,
(b) for any c : Γ(-,-) → - satisfying (d2), č satisfies (d2′), and conversely
(c) for any c : Γ(-, (-) → - satisfying (d2′), ĉ satisfies (d2);
(d) for any (3, X)-algebras - and . , a morphism 5 : - → . which is both a) -algebra mor-

phism, an (-algebra morphism, and a Γ-algebra morphism is a morphism between the cor-
responding Γ(-algebras, and

(e) conversely for any 3/X -algebras- and . , a morphism 5 : - → . which is both a) -algebra
morphism, an (-algebra morphism, and a Γ(-algebra morphism is a morphism between the
corresponding Γ-algebras.

Statements (d) and (e) follow easily by naturality of [(and the fact that the considered morphism
is an algebra morphism.
Statement (b) follows from commutation of the diagram in Figure 13, and 3•l

-,.
as in Defini-

tion C.35. Subdiagram (A) commutes by chasing as in Figure 14. Subdiagram (A’) commutes as

Γ((-(- Γ(-(- Γ(--

Γ(-(- Γ-(- Γ--

() Γ•
() |-

- Γ(-(-

() (Γ(- + -) () (Γ•
() |-

-)

() (Γ- + -) () (Γ(-- + 2 · -)

() (Γ-- + -)

()- (-

() (-) (- -

Γ(a(- Γ(- a

Γa(- Γ- a

Γ
`(
-
(- Γa(- Γa-

3•l
-,-

() (b⊲č)

() (Γ(b-+[-,-])

() (Γa-+-)

() [c,-]

Γ
[(
-
(-

3•l
-,-

() (Γ(b-+[-,-])

() (Γa-+-)

() [c,-]

(b

a

(b a

c

(A, Figure 14)

(B)

Fig. 13. Main diagram for proving (d2′) for č

shown in Figure 15. Subdiagram (B) commutes by Lemma D.7 below.
Statement (c) follows from commutation of the diagram in Figure 16, where

66

A
u
n
ified

trea
tm

en
t
o
f
stru

ctu
ra
l
d
efin

itio
n
s
o
n
sy
n
ta
x

Γ(-(- Γ(-(- () Γ•
() |-

-

Γ((-(- () Γ•
() |(-

- ()(Γ•
()(|-

- (() Γ•
(() |-

- () (Γ(-- + -)

() (Γ- + -)

()-

(-

Γ-(- Γ(-(- () Γ•
() |-

- () (Γ(-- + -) () (Γ- + -) ()- (- -

Γ
[(
(-
(-

3•l
-,-

3•l
-,-

3•l
-,(-

Γ
`(
-
(-

() ↑((XΓ•
(X |-

-

`() Γ•
`() |-

-

Γ(a(-

Γa(-

Γ
[(
-
(-

() Γ•
() |a

-

3•l
-,-

() (Γ(b-+[-,-]) () (Γa-+-)

() (Γ(b-+[-,-])

() (Γa-+-)

() [c,-]

() [c,-]

(b

(b a

a

(A’, Figure 15)

(Lemma C.37)F
ig
.14.

C
h
a
sin

g
su
b
d
ia
g
ra
m

A

67

T
.H

irsch
o
w
itz

a
n
d
A
.L
a
fo
n
t

() Γ•
() |(-

- () ((Γ◦()(-- + (-) ()(Γ•
()(|-

- (() Γ•
(() |-

- () Γ•
() |-

-

() ((Γ◦()-- + (-) ()(Γ•
() |-

- ()(Γ•
(() |-

- ()(Γ•
() |-

-

() (Γ◦
()-

- + (-) ()(Γ•
((|-

- ()((Γ(-- + -) () (Γ(- + -)

() (((Γ◦
()-

-) + -) () ((Γ◦
(-
- + (-) ()(Γ•

(|-
-

() (((Γ◦
(-
-) + -) () ((Γ◦

-
- + (-) ()((Γ-- + -) () (Γ-- + -)

() (((- + -) + (-) () ((- + (-) ()(- (()- ()-

((- (-

() (((Γ◦--) + -) () (((- + -) + -) () ((- + -) ()- (-

() (Γ(-- + - + -) () (Γ-- + - + -) () (- + - + -) () (- + -)

() Γ•
() |-

- () (Γ(-- + -) () (Γ-- + -) ()- (- -

(XΓ•
(X |-

- `() Γ•
`() |-

-

() Γ•
() |a

-

() (Γ(b-+[-,-])

() ([(+(-) () [(8=1,(8=2]

()(Γ•
(X |-

-

()(Γ•
`() |-

-

()((Γ(b-+[-,-])

() (Γ(b-+[-,-])

()((Γa+-)

()(Γ•
() a|-

-

()(Γ•
(b|-

-

()(Γ•
((b|-

-

()((Γ
`(|-

-+[-,-])

()(Γ•
(a|-

-

(13)

()((Γa-+[-,-])

() ((Γ◦
() a

-+(-)

() [(8=1,(8=2]

() ((Γ◦
(b
-+(-)

() [(8=1,(8=2]

() ((Γ◦a-+(-)

() [(Γ◦
-
-,(8=2]

() (Γ◦
() a

-+(-)

() (Γ◦
()-

-+a)

() ([(+(-)

() [c,-] (b a() (Γa-+-)

() (Γa+-)

(X ;`(

() [c,-]

(b

a

() (((Γ◦
()-

-)+a)

() ((Γ◦
(b
-+-)

() (((Γ◦a-)+-)

() (((c+-)+-)

() (Γ(b-+-+-)

() (Γa-+-+-) () (c+-+-)

() [-,-,-]

() ([(+-)

() (((c+-)+(-)

() (((-+-)+a)

() (([-,-]+(-)

()([c,-]

() [(-,(-]

() a

(X `(

((b

`(
-

(a

a

(b() (([-,-]+-)

() ([-,-]+-)

() ([(
-
+-)

() [-,-]

() [a,-]

() [-,-]

(interchange)

(naturality of `)

(monad algebra law)

(naturality of [)

(easy)

(easy)

F
ig
.
15.

C
h
a
sin

g
su
b
su
b
d
ia
g
ra
m

(A
’)

68

A unified treatment of structural definitions on syntax

• the top part commutes by Lemma C.37 and
• the bottom right part commutes by Lemma D.6 below.

Γ-Σ- Γ(-(- Γ((-(- Γ(-(- () (Γ()-- + - + -)

Γ-(- ()- () (Γ-- + -)

Γ-- () (Γ(-- + -)

Γ(-- (- ()-

-

Γ
[(
-
[Σ,- Γ

([(
-
(- Γ

`(
-
(- 3•l

-,-

Γ-[Σ,-

Γ- a

Γ
[(
-
-

c

Γ(aa
Γ(- a

() (Γa◦(b-+[-,-]
() (b⊲c)

() (Γ
[(
-
-+-)

(b

() [c,-]

a◦(b
a

3-,-

(d2′)

Fig. 16. Diagram for (c)

Finally, (a) follows from Lemma D.5 and D.6 below.

Lemma D.5. Given an algebra (-
a
−→ - , precomposition with morphisms Γ(a and Γ[(induces a

bijection (natural in the algebra) between morphisms Γ-- → - and morphisms Γ(-- → - making
the following diagram commute.

Γ(-- Γ-- Γ(--

-

Γa-

c c

Γ
[(
-
-

(14)

Proof. Straightforward. �

Lemma D.6. Given an algebra for (() ⊕) ′) presented as in Lemma D.4 by compatible algebra
structures

a : (- → - b :)- → - c : Γ(-- → - ,

the diagram (14) commutes.

Proof. We show commutation of the diagram by precomposing both sides by the split epimor-
phism Γ(aa, and observing that they both are equal to the left bottom composite in (d2′). For c,
we readily get the top right part of (d2′), hence the result. For the top right part of (14), the result
follows by chasing the diagram below.

69

T. Hirschowitz and A. Lafont

Γ((-(- Γ(-(- Γ(--

Γ(-(- Γ-(- Γ--

Γ((-(- Γ(-(- Γ(--

Γ(-(-

() Γ•
() |-

- ()- (- -

Γ(a(- Γ(- a

Γ
`(
-
(- Γa(- Γa-

Γa(- Γ- a

Γ(a(- Γ(- a

Γ
[(
(-
(- Γ

[(
-
(- Γ

[(
-
-

Γ
`(
-
(-

3•l
-,-

() (b⊲c) (b a

c

�

Lemma D.7. For any (X, 3)-algebra - with structure induced by

a : (- → - b :)- → - c : Γ-- → - ,

the following diagram commutes

Γ-(- Γ(-(- () Γ•
() |-

-

() Γ◦
-
-

Γ-- ()-

-

Γ
[(
-
(-

Γ- a

3•l
-,-

() [c,-]

c a◦(b

() (Γa◦(b-+[-,-])

Proof. We start by reducing to Subdiagram (C) as below.

Γ(-(-

Γ-(- Γ
◦
()-

(- () Γ•
() |-

-

Γ-- Γ
◦
()-- () Γ◦--

Γ
◦
-- ()-

-

Γ
[(
-
(-

Γ- a

8=1◦(Γ[()
-
(-) ˜̃

3◦
l
-,-

3•l
-,-

Γ
◦
()-

a

() [c,-]
8=1

c

8=1◦(Γ[()
-
-)

Γa◦(b-+-

a◦(b

() (Γa◦(b-+[-,-])

[c,-]

(C)

Commutation of (C) is then equivalent to commutation of the transposed diagram below.

70

A unified treatment of structural definitions on syntax

(- Γ
×
()-

() Γ•
() |-

- Γ
×
()-

() Γ◦
-
-

- Γ
×
()-

()-

Γ
×
()- Γ

◦
()-- Γ

×
()- Γ

◦
-- Γ

×
()--

3̃◦
l Γ

×
()-() (Γa◦(b-+[-,-])

a Γ
×
()-() [c,-]

Γ
×
()- (a◦(b)[()-,-

Γ
×
()- Γ

◦
a◦(b

- Γ
×
()- [c,-]

Because 3̃◦
l

-,- is a monad morphism by construction, one easily proves that both sides have the

same restriction along [(- : - → (- , so it suffices to prove that both sides are (-algebramorphisms.

By construction, a and 3̃◦
l

-,- are, so we focus on other morphisms.

• We first recall Lemma C.26, which says that Γ
×
()- lifts to a functor ()$- -Alg → Σ - alg,

by considering, for any ()$- -algebra e : ()$-�→ �, the following Σ-algebra structure:

Σ Γ
×
()-

�

Γ
×
()-

()$- Γ
◦
()- Γ

×
()-

�

Γ
×
()-()$-�

Γ
×
()-�.

3̃◦-,- Γ
×
()-�

Γ
×
()-()$- Y()-�

Γ
×
()- e

• For proving that the top right composite is a morphism of Σ-algebras, it thus suffices to
prove that the underlying composite () Γ•()-- → - is a morphism of ()$- -algebras. But
this is in turn equivalent to being both a morphism of () - and $- -algebras. This easy to
see for $- , and the given composite is a morphism of () -algebras as a composite of two
free () -algebra morphisms, and the () -algebra structure ()- → - .
• For the bottom left composite, we show that it is a Σ-algebra morphism by chasing the
diagram in Figure 17, where the bottom right subdiagram commutes by Lemma D.8 below.

�

Lemma D.8. For any (X, 3)-algebra - with structure induced by

a : (- → - b :)- → - c : Γ-- → - ,

the following diagram commutes.

Γ
◦
()- Σ- () Γ•

() |-
-

Γ
◦
()-- () Γ◦--

Γ
◦
-
- ()-

-

3◦
-,-

Γ
◦
()-
(a◦[Σ,-) () (Γa◦(b-+[-,-])

Γ
◦
a◦(b

- () [c,-]

[c,-] a◦(b

Proof. Since the domain is a coproduct, we proceed termwise. On Σ- , the result is straight-
forward. On Γ()- Σ- , we observe that the diagram in Figure 18 commutes for all -,. , so that the

71

T
.H

irsch
o
w
itz

a
n
d
A
.L
a
fo
n
t

Σ- Σ Γ

×
()- Γ

◦
()-- Σ Γ

×
()- Γ

◦
-- Σ Γ

×
()--

Γ

×
()-

()$- Γ
◦
()-- Γ

×
()-

()$- Γ
◦
()- Γ

×
()-

Γ
◦
()-- Γ

×
()-

()$- Γ
◦
()- Γ

×
()-

-

Γ

×
()- Γ

◦
()- Σ- Γ

×
()-()$- Γ

◦
()-- Γ

×
()-()$- Γ

◦
-- Γ

×
()-()$--

Γ

×
()-()-

- Γ

×
()-

Γ
◦
()-- Γ

×
()-

Γ
◦
-- Γ

×
()-

-

Σ[()-,-

3̃◦-,-

Σ Γ

×
()-

Γ
◦
a◦(b

-

Γ

×
()-

Γ
◦
()-
(a◦[Σ,-)

Γ

×
()-

3◦
-,-

[()-,-

Γ

×
()-

()$- Γ
◦
()-

[()-,-

3̃◦

Γ

×
()-

Γ
◦
()-

-,-

Σ Γ

×
()-
[c,-]

3̃◦
Γ

×
()-

-,-

Γ

×
()-

()$- Y()- Γ
◦
()-

- Γ

×
()-

()$- Y()--

Γ

×
()-

()$- Γ
◦
a◦(b

- Γ

×
()-

()$- [c,-]

Γ

×
()-
[c,-,-]

Γ

×
()-

Γ
◦
a◦(b

- Γ

×
()-
[c,-]

Γ

×
()-

() [-,-]

Γ

×
()-
(a◦(b)

[()-,Σ-

a◦[Σ,-

F
ig
.
17.

D
ia
g
ra
m

fo
r
L
em

m
a
D
.7

lem
m
a
red

u
ces

(u
sin

g
in
terch

an
g
e)
to

co
m
m
u
tatio

n
o
f
th
e
fo
llo

w
in
g
d
iag

ram
,

72

A unified treatment of structural definitions on syntax

Γ().Σ- Γ
◦
().Σ-

() Γ•
() |().

- Γ
•
(|).

Σ-

()(Γ•
()(|).

- () Γ•
() |).

-

()) Γ•
()) |.

-

()() Γ•
()() |.

- () Γ•
() |.

-

8=1

[8=1,8=2]

3•-,).

() ↑)

(`) Γ•
(`) |.

-

3-,().

() ↑(

((X ;`())Γ(X ;`() |).-

()(↑)

`() Γ•
`() |.

-

() ↑()

3◦-,.

Fig. 18. Proof of Lemma D.8, first step

Γ()- Σ- () Γ•
() |()-

- ()() Γ•
()() |-

- () Γ•
() |-

-

Γ-Σ- () Γ•
() |-

- () Γ◦--

Γ-- () Γ◦-- ()-

()-

-

3-,()-
`() Γ•

`() |-
-

() ↑()

() [c,-]

a◦(b

Γa◦(bΣ-

Γ- (a◦[Σ,-)

[c,-]

() Γ•
() |a◦(b

-

3-,-

() (Γa◦(b-+[-,-])

() (Γa◦(b-+[-,-])

() [c,-]

a◦(b

whose bottom left polygon commutes by (d2). The right-hand part is chased as in Figure 19. �

E PROOF OF THEOREM 5.12

Lemma E.1. For any structural interpretation : Θ(-,-) → ()- of an incremental structural
law 3-,. : Θ(Σ-,.) → () (Θ().- +- +.) over a monad distributive X :)(→ () , with (= Σ

∗, the
Θ-algebra structure defined on any () -algebra - with structure maps a : (- → - and b :)- → -

by the composite

Θ(-,-)
 -
−−→ ()-

(b
−−→ (-

a
−→ -

satisfies (d2).

Proof. By coherence of , this reduces to commutativity of both of the following diagrams.

73

T
.H

irsch
o
w
itz

a
n
d
A
.L
a
fo
n
t

() (Γ()()-- + - + ()-) ()() Γ•
()() |-

- () Γ•
() |-

-

() (Γ-- + - + ()-) () Γ◦--

() Γ•
() |-

- () (- + ()-) () (()- + ()-) ()() (- + -) () (- + -) ()-

() (- + ()-) ()()-

() Γ◦
-
- () (- + -) () (- + -)

()- ()- -

`() Γ•
`() |-

-
() ↑()

() [c,-]

() Γ•
() |a◦(b

-

() (Γa◦(b-+[-,-])

() (Γa◦(b-+[-,-])

() [c,-]

a◦(b

() (Γa◦(b◦()a◦()(b-+-+()-)

() ([c,-]+()-)
() ↑()

`() () [-,-]

() (-+a◦(b)

() [-,-]

() ([()- +()-)

() [() 8=1,() 8=2]

()() [-,-]
`()-

() (a◦(b)

a◦(b

() [()-,()-]
() (a◦(b+()-)

() (-+a◦(b)

() [-,-]

F
ig
.
19.

P
ro
o
f
o
f
L
em

m
a
D
.8,seco

n
d
step

74

A unified treatment of structural definitions on syntax

Θ(Σ-,-) Θ((-, (-) ()(- (()- ()-

((- (-

Θ((-, -) Θ(-,-) ()- ()- (- -

Θ([Σ,- ,[
(
-
) (- (X- `(

)-

(b

a

Θ([Σ,- ,-)

(b a -Θ(a,-)

Θ(a,a) () a

(a

((b

`(
-

() (Θ(-, ()-) + - + -) () (Θ(()-, ()-) + -) () (()()- + -)

() (Θ(-, (-) + -) () (Θ((-, (-) + -) ()()-

() (Θ(-,-) + -) () (()(- + -) ()-

() (()- + -) (-

() ((- + -) ()- (- -

() (Θ([()
-
,()-)+[-,-]) () (()- +-)

() [`()
-
,[()
-
]

`()
-

(b

a

() (Θ(-,(b)+[-,-])

() (Θ(-,a)+-)

() (- +-)

() ((b+-)

() [a,-] (b a

() (()(b+-)

() (Θ((b,(b)+-)

() (Θ(a,a)+-)

() (() a+-)

�

Corollary E.2. The assignment of the previous lemma lifts to a section ̄ : () -Alg → (() ⊕

) ′) -Alg of the forgetful functor (() ⊕) ′) -Alg→ () -Alg, where) ′ = Θ
∗
(
.

Let us now prove Theorem 5.12. Suppose given a structural equational system over a distributive
law X :)(→ () , i.e., an incremental structural law

3-,. : Θ. (Σ(-)) → () (Θ() (.) (-) + - + .)

and a pair of structural interpretations !, ' : ΘΔ → () . In this section, we show that the initial
() -algebra ()() ∅ → () ∅ coequalises !() ∅ and '() ∅.

To this end, we exploit admissibility of the monadmorphism () → (() ⊕) ′) (Remark 12) which
entails that the () -algebra structure on () ∅ uniquely extends to an (() ⊕) ′)-algebra structure.
By Theorem 4.13, we obtain that there is a unique ΘΔ-algebra structure on () ∅ satisfying (d2).
But by the corollary ! and ' both induceΘΔ-algebra stucture on () ∅which satisfy (d2), namely

the composites

Θ() ∅() ∅ ()() ∅ () ∅.
!() ∅

'() ∅

`()
∅

We thus conclude by uniqueness.

F PROOFS OF §5.5

We need to check coherence (Figure 2) for all of !1, '1, !2, and '2.

F.1 Coherence of !1

We first check coherence of !1 in Figure 20, which uses the following lemma.

Lemma F.1. For all objects - , the following diagram commutes.

75

T. Hirschowitz and A. Lafont

Γ(-- Γ((-- Γ((-(-

)-)(-

()-

[Γ(,- [Γ(,(-

X-[(
)-

Γ(-[
(
-

Γ
[(
(-
(-

Proof. By diagram chasing, as follows.

Γ(-- Γ(-(- Γ((-(-

Γ((--

((Γ(--) ((Γ((--) ((Γ((-- + - + (-)

((((Γ((-- + -) + (-) Γ(-(-

(((Γ((-- + - + -)

)- ((Γ(-- + - + -))(-

()-

[Γ(,- [Γ(,(-

X-[(
)-

3•l
-,(-

[(Γ(--

(8=1

(([(+(-)

([(8=1,(8=2]

`((Γ
`(
-
-+-+-)

([[Γ(,- ,[
)
-
,[)
-
]

Γ̀

3•l
-,- (Lemma C.40)

Γ
[(
(-
- Γ((-[

(
-

Γ(-[
(
-

Γ
[(
(-
(-

[(8=1

((Γ
[(
(-
-)

(8=1

(Lemma C.37)

(Lemma C.37)

�

In Figure 20, the subdiagram marked (3/X ⊗ X) commutes by chasing as follows.

Σ
+- ⊗ - ⊗ - ((- ⊗ (- + - + -) ⊗ -

(- ⊗ (- ⊗ (- (- ⊗ (- ⊗ -

(- ⊗ ((- ⊗ (- (- ⊗ ((- ⊗ -

)(- ⊗ - ()- ⊗ -

)(- ⊗)(- ()- ⊗ ()-

[Σ+,- ⊗[
(
-
⊗[(

-

3-,- ⊗-

([[Γ(Δ,- ,[
)
-
,[)
-
]) ⊗[()

-

(- ⊗[(
(-
⊗(-

[Γ((- ⊗[
)
(-

[Σ+,- ⊗[
(
-
⊗-

(- ⊗[(
(-
⊗-

[Γ(,(- ⊗-

X- ⊗-

([[Γ(Δ,- ,[
)
-
,[)
-
]) ⊗-

()- ⊗[()
-

)(- ⊗[) [(-

X- ⊗X-

(3)

The subdiagram marked (BC/X) has a coproduct as domain, so we check its commutation termwise
in Figure 21.
The subdiagram (Γ; Γ) commutes as in Figure 22.

F.2 Coherence of '1

We now check coherence of '1, in Figure 23.

76

A
u
n
ified

trea
tm

en
t
o
f
stru

ctu
ra
l
d
efin

itio
n
s
o
n
sy
n
ta
x

Σ
+- ⊗ - ⊗ - � ⊗ - ⊗ - + Σ- ⊗ - ⊗ - - ⊗ - + Σ- ⊗ (- ⊗ (-)- + Σ(- ⊗ (-) ⊗ (-)- + Σ(- ⊗ (- ⊗ (-))- + Σ+(- ⊗ (- ⊗ (-) ()- + () (- ⊗ ()- ⊗ ()-) () (- ⊗ ()- ⊗ ()- + - + -)

- ⊗ - + Σ- ⊗ (- ⊗ - - ⊗ - + Σ(- ⊗ (-) ⊗ -

(- + Σ(- ⊗ (-)) ⊗ -

(- ⊗ (- ⊗ (- ((- ⊗ (- + - + -) ⊗ - () (()- ⊗ ()- ⊗ ()- + -)

)(- ⊗)(- ()- ⊗ ()- () ()()- ⊗)()- + -)

() ())()- + -)

))(-)()- ())- () (()()- + -)

)(- ()()-

()(- ()-

(()-

()-

_- ⊗-+- ⊗[
(
-
⊗[(

-
9- +BC-,((- ,E-) ⊗(-)-+BC-⊗(- ,((- ,E-) [() 8=3,()8=1]

() ([()
-
⊗()- ⊗()-+[-,-])

() (9()- ⊗[
)
()-
+-)

() (9)()- +-)

() ([(`)()-+-)

() [`()
-
,[()
-
]

`()
-

[Σ+,- ⊗[
(
-
⊗[(

-

9(- ⊗[
)
(-

9)(-

[(`)
(-

(X-

`(
)-

`)
(-

X-

[(
)(-

X-

[(
()-

)X- X)-

(`)
-

3-,- ⊗-

([[Γ(Δ,- ,[
)
-
,[)
-
]) ⊗[()

-

9()-

_- ⊗-+- ⊗[
(
-
⊗-

- ⊗-+BC-,((- ,E-) ⊗-

9- +Σ(- ⊗(-) ⊗[
(
-

(Definition of 3)

[[(8=3,([Σ+◦8=2)8=1] ⊗-

X- ⊗X-

[(
)-
+[Σ+[

) (- ⊗([)
-
⊗([)

-
))-+8=2

(3/X ⊗ X)

(BC/X)

F
ig
.20.

C
o
h
eren

ce
o
f
!
1

77

T
.H

irsch
o
w
itz

a
n
d
A
.L
a
fo
n
t

- ⊗ -)-

(- ⊗ - (- ⊗ (-)(- ()-

((- ⊗ (- + - + -) ⊗ - ()- ⊗ ()-)()- ())- ()-

9-

[(
)-

[(
-
⊗-

(8=3⊗-

([[Γ(Δ,- ,[
)
-
,[)
-
] ⊗[()

-
9()- X)- (`)

-

([)
-
⊗[()

-

(- ⊗[
(
-

9(-

)([)
-

X-

()[)
-

)[(
-

Σ(- ⊗ (-) ⊗ - Σ(- ⊗ (-) ⊗ (- Σ(- ⊗ (- ⊗ (-) Σ
+(- ⊗ (- ⊗ (-) () (- ⊗ ()- ⊗ ()-) () (- ⊗ ()- ⊗ ()- + - + -)

Σ
+(- ⊗ (-) ⊗ - ((- ⊗ (- ⊗ (-) () ()- ⊗ ()- ⊗ ()-) () (()- ⊗ (()- ⊗)()-) () (()- ⊗ ()- ⊗ ()- + -)

((- ⊗ (- + - + -) ⊗ - ((- ⊗ (- ⊗ (- + - ⊗ (- + -) () ()()- ⊗)()-) () (()- ⊗ (()- ⊗)()- + -)

(()- ⊗ ()-) () ())- ⊗ ())-) () ()()- ⊗ ()()-)

()- ⊗ ()- Σ
+()-) ⊗)- (()- ⊗ ()- +)- +)-) ())))- (Γ; Γ) ()))()- () ()()- ⊗)()- + -)

()- ⊗ ()- ()()()- () ())()- + -)

()- ⊗ (()- ()))- ()()- () (()()- + -)

())- ()()-

)()- ())- ()-

BC-⊗(- ,((- ,E-) () 8=1

() ([()
-
⊗()- ⊗()-+[-,-])

() (9)()- +-)

() ([(`)()-+-)

() [`()
-
,[()
-
]

`()
-

X)-

(`)
-

([[Γ(Δ,- ,[
)
-
,[)
-
] ⊗[()

-

Σ(- ⊗(-) ⊗[(
-

([Σ+◦8=2)8=1 ⊗- ([Σ+◦8=2)8=1

8=2⊗-

3-⊗(- ,-

()- ⊗[(
()-

[Γ(

Σ
+ ([Γ(,-) ⊗[

)
-

(([Γ(,- ⊗([
)
-
+[Γ(,- +[

)
-
)

3)-,)-

[Σ+,)- ⊗[
(
)-

()- ⊗[(
()-

([[Γ(,)- ,[
)
)-
,[)
)-
]

[Σ+[
) (- ⊗([)

-
⊗([)

-
)8=2

() ([)
-
⊗()- ⊗()-)

() ([Γ(,)- ⊗([
)
)-
)

() ([Γ(,))-)

() (()- ⊗[(
()-
⊗[)

()-
+-)

() ([Γ(,()- ⊗)()-+-)

() ([(
)-
⊗[(

()-
⊗[)

()-
)

() ([Γ(,()- ⊗)()-)

() ()()- ⊗[(
)()-

)

() ([Γ(,)()-)

()[(`)()-

() `()
-

`()
-

(`)
-

[Σ+◦8=2

(([Γ(,- ⊗([
)
-
)

(8=1

([) ([)
-
⊗([)

-
⊗([)

-
)

([) ()[)
-
⊗()[)

-
)

([Γ(,)-

([)))[)
-

()) `)
-

() `)
-

([)
))-

() 8=1

() (8=1)

() 8=1

(3)

(naturality of 3)

F
ig
.
21.

S
u
b
d
ia
g
ra
m

(BC/X
)
o
f
F
ig
u
re

20

78

A unified treatment of structural definitions on syntax

() ()- ⊗ ()- ⊗ ()-) () (()- ⊗ (()- ⊗)()-)

() ()()- ⊗)()-)

() ())- ⊗ ())-) () (())- ⊗)()-) () ()()- ⊗ ()()-)

() (())- ⊗ ())-) ()))()-

() (())- ⊗ (())-)

())())- ())()- ()()()-

())))- ()()))- ()())- ()(())-

()))- (()))- ()())-

()))- ()))- ()()-

(())-

())-

())- ()-

() ([Γ(,)- ⊗([
)
)-)

() ([()- ⊗[
(
()- ⊗[

)
()-)

() ([Γ(,()- ⊗)()-)

() ()()- ⊗[()()-)

() ([Γ(,)()-)

()[(`) ()-

() `)-

(`)-

() `)()

()X)-

(X))-

() (X)- ⊗)()-)

() (())- ⊗X)-)
() ([())- ⊗())-)

() (())- ⊗[(())-)

() (X)- ⊗(X)-)

() ([Γ(,())-)

())X)-

()X))-
()(`))-

() ([Γ(,))-)

()) `)-

()[()))-

`()))-

() `))- ()[())-

([()))-

() `)-

()[()()-

()(X)-

() `(

()[(())-

()(`)-

(X)-

`())-

(`)-

() `)-

(Lemma F.1)

(Lemma F.1)

Fig. 22. Subdiagram (Γ; Γ)

There, the top subdiagram with red arrows is the associativity axiom for pointed strengths. We
then use naturality of BC three times easily, and a fourth time much less easily. The point is that
we use naturality at the pair of morphisms

-
83-
−−−→ - ((- ⊗ -)

((- ⊗[(-)
−−−−−−−→ ((- ⊗ (-)

([Γ(,-
−−−−−→ ()- ,

which requires us to prove that the second morphism is a morphism of pointed objects. We do this
by chasing the following diagram,

� Σ
+(- ⊗ -) ((- ⊗ -)

Σ
+∅ (∅

� ⊗ � � Σ
+- (- ((- ⊗ (-)

(- ⊗ ((-)(- ()-

Σ
+- ⊗ Σ

+- (- ⊗ (- (((- ⊗ (-) (((- ⊗ ((-) ()(- (()- ()-

d−1�

8=1 [Σ+,-⊗-

[Σ+,- ⊗[Σ+,- [(
(-⊗(-

8=1

8=1 [Σ+,-

(- ⊗[(
(-

[Γ(,(-

[(
)(-

X-

[(
()-

((- ⊗[(
-
)

8=1

8=1⊗8=1

?

whose question marked subdiagram commutes as follows.

79

T
.H

irsch
o
w
itz

a
n
d
A
.L
a
fo
n
t

Σ
+- ⊗ - ⊗ - � ⊗ - ⊗ - + Σ- ⊗ - ⊗ - - ⊗ - + Σ- ⊗ (- ⊗ (-)- + Σ(- ⊗ (-) ⊗ (-)- + Σ(- ⊗ (- ⊗ (-))- + Σ+(- ⊗ (- ⊗ (-) ()- + () (- ⊗ ()- ⊗ ()-) () (- ⊗ ()- ⊗ ()- + - + -)

(- ⊗ (- ⊗ (- Σ
+- ⊗ (- ⊗ -) � ⊗ (- ⊗ -) + Σ- ⊗ (- ⊗ -) (- ⊗ -) + Σ- ⊗ ((- ⊗ (-))- + Σ(- ⊗ ((- ⊗ (-))

(- ⊗ ((- ⊗ (-) (- ⊗ (- ⊗ (-) � ⊗ ((- ⊗ -) + Σ- ⊗ ((- ⊗ -) ((- ⊗ -) + Σ- ⊗ (((- ⊗ (-) () (()- ⊗ ()- ⊗ ()- + -)

)(- ⊗ ((- ⊗ ((-) (- ⊗)- Σ
+()-) ⊗)- ((- ⊗ -) + Σ(- ⊗ ((- ⊗ -)) ((- ⊗ -) + Σ- ⊗ ((- ⊗ (-) ()- + Σ- ⊗ ()(- () (()- ⊗ (()- ⊗ ()-) + -)

)(- ⊗)(- ()- ⊗ ()- ()- + Σ(- ⊗ ((- ⊗ (-)) ()- + Σ- ⊗ (()- ()- + Σ(- ⊗ (((- ⊗ (-)) () ()()- ⊗)()- + -)

)(- ⊗ ()(- ()- ⊗ (()- ()- + Σ(- ⊗ ()(-) () ())()- + -)

))(-)()- ((- ⊗ ((- ⊗ -) + - + - ⊗ -) ()- + Σ- ⊗ ()- ()- + Σ(- ⊗ (()-) () (()()- + -)

(()- ⊗ ()- +)- +)-) ()()-

())- ()- + Σ(- ⊗ ()-)

)(- ()- + Σ+(- ⊗ ()-)

()(- ()- + ((- ⊗ ()-)

()- ()- + (()- ⊗ ()-)

(()- ()- + ())-

()-

_- ⊗-+- ⊗[
(
-
⊗[(

-
9- +BC-,((- ,E-) ⊗(-)-+BC-⊗(- ,((- ,E-) [() 8=3,() 8=1]

() ([)
()-
⊗ 9()- +-)

() (9)()- +-)

() ([(`)()-+-)

() [`()
-
,[()
-
]

`()
-

[(`)
(-

(X-

`(
)-

[(
)-
+[Σ+[

) (- ⊗([)
-
⊗([)

-
))-+8=2

[Σ+,- ⊗[
(
-
⊗[(

-

U

() ([()
-
⊗()- ⊗()-+[-,-])

() (U+-)

U⊗U

_-⊗- +Σ- ⊗([
(
-
⊗[(

-
)

- ⊗-+U
9- +BC-,((-⊗(- ,(E- ⊗E-)◦d

−1
�
)

)-+ΣU

� ⊗[(
-⊗-
+Σ- ⊗[(

-⊗-

_((-⊗-)+BC-,(((-⊗-) ,E-⊗-)

[(8=3,((8=1)◦[Σ+,-⊗((-⊗-)◦8=2]

3-,-⊗-

[(
-⊗-
+Σ- ⊗[(

(-⊗(-
_((-⊗-)+Σ- ⊗(([

(
-
⊗[(

-
)

(9- +BC-,((((-⊗(-) ,((E- ⊗E-)◦[
(
�⊗�
◦d−1
�
)

[(
)-
+Σ(- ⊗[(

(-⊗(-
)

(9- +BC-,((((-⊗(-) ,(X- ◦(9(- ◦((E- ⊗E-)◦[
(
�⊗�
◦d−1
�
)

()- ⊗BC
-,(()-,`(

)-
◦(X- ◦(9(- ◦((E- ⊗E-)◦[

(
�⊗�
◦d−1
�
)

3)-,)-

X)-

(`)
-

(5)

`)
(-

X-

)X-

[(
)(-

X-

[(
()-

)(- ⊗[(

[Γ(,)(-

X- ⊗(X-

[Γ(,()-

X- ⊗X-

()- ⊗[(

[)
(-
⊗((- ⊗[(

(-
)

)(- ⊗[Γ(,(- [)
(-
⊗)[(

-

[Σ+,- ⊗(- ⊗[
(
-
)

[)
(-
⊗([(

-
⊗([(

-
)

[Σ+,- ⊗([
(
-
⊗[(

-
)

(- ⊗[Γ(,-

([)
-
⊗[(

)-

_((-⊗-)+Σ- ⊗((- ⊗[
(
-
)

(9- +Σ- ⊗([Γ(,-
(9- +Σ(- ⊗((- ⊗[

(
-
))

()-+Σ(- ⊗(([Γ(,-))

()-+8=2

()-+[Σ+,-⊗()-

()-+(([)
-
⊗()-)

()-+([Γ(,)-

[()-,(`)
-
]

F
ig
.
23.

C
o
h
eren

ce
o
f
'
1

80

A unified treatment of structural definitions on syntax

� ⊗ � Σ
+- ⊗ Σ

+- (- ⊗ (-

� ⊗ (- (- ⊗ ((-

� � ⊗ ((-)((-)(-

Σ
+- (- ((-

(- ⊗ ((- + (- + (- (((- ⊗ ((- + (- + (-)

)(- ()(-

()- (()-

(- ()-

8=1⊗8=1 [Σ+,- ⊗[Σ+,-

(- ⊗[((-

[Γ(,(-

X-

_�

8=1

[Σ+,-

([)
-

_

(8=3
X(-

[(
(-

) `(
-

8=3

[(

(X-

`(
)-

X-

[(

[)
(-

??

(3)

The double question marked subdiagram of the latter diagram in turn commutes as follows.

� ⊗ � Σ
+- ⊗ Σ

+- (- ⊗ (-

(- ⊗ ((-

� ⊗ Σ
+- Σ

+- ⊗ (- (- ⊗ ((-

� ⊗ (- Σ
+(- ⊗ (- ((- ⊗ ((- ((- ⊗ (((-)((-)(-

8=1⊗8=1 [Σ+,- ⊗[Σ+,-

(- ⊗[((-

) `(-8=1⊗(- [Σ+,(- ⊗[
(
(- ((- ⊗[(((-

[Γ(,((-

� ⊗8=1

� ⊗[Σ+,-

8=1⊗Σ
+-

8=1⊗(-

Σ
+- ⊗[Σ+,-

Σ
+[(- ⊗(-

[Σ+,- ⊗[
(
(-

([(- ⊗((-

[Γ(,(-
`(- ⊗(`

(
-

It remains to prove that both large subdiagrams at the bottom of Figure 23 commute. For the left-
hand one, the first term is almost trivial, and the second term is easy:

Σ(- ⊗ ((- ⊗ -)) Σ(- ⊗ ((- ⊗ (-)) Σ(- ⊗ ()-)

Σ
+(- ⊗ ((- ⊗ -)) Σ

+(- ⊗ ()-)

((- ⊗ ((- ⊗ -)) ((- ⊗ ((- ⊗ (-)) ((- ⊗ ()-)

((- ⊗ ((- ⊗ -) + - + - ⊗ -) ((- ⊗ ((- ⊗ (-)) (()- ⊗ ()-)

(()- ⊗ ()-) ())-

(()- ⊗ ()- +)- +)-)

())- ()-

((8=1)◦[Σ+,-⊗((-⊗-)◦8=2

(`)
-

8=2

[Σ+,-⊗((-⊗-)

((- ⊗((- ⊗[(
-
))

(([)
-
⊗([Γ(,-)

([Γ(,)-

8=2

[Σ+,-⊗()-

(([)
-
⊗()-)

([Γ(,)-

(`)
-

([Γ(,)-

(([)
-
⊗([Γ(,-)

((- ⊗((- ⊗[(
-
))

Σ(- ⊗((- ⊗[(
-
)) Σ(- ⊗([Γ(,-)

((- ⊗([Γ(,-)

In order to prove the right-hand one, we need the following lemma.

81

T. Hirschowitz and A. Lafont

Lemma F.2. For any object - , the following diagram commutes.

(- ⊗ ((- (- ⊗ (- (- ⊗ ((-

)(-)(-

()-

(- ⊗`(
-

(- ⊗([(
-

[Γ(,(-

X-

[Γ(,(-

X-

Proof. We resort to the definition of X from 3 , and proceed by diagram chasing, as follows.

(- ⊗ ((- (- ⊗ (- (- ⊗ ((-)(-

((- ⊗ (- + - + -) (- ⊗ (-

(()- + - + -) ((- ⊗ (- + - + -)

(()- + -) (()- + - + -)

)(- (()- + -)

()-

(- ⊗`(
-

(- ⊗([(
-

[Γ(,(-

X-

[Γ(,(-

X-

3•l
-,-

([)-,[)
-
]

(- ⊗`(
-

3•l
-,-

([)-,[)
-
]

(([Γ(,- +-+-)

(()-+[-,-])

(([Γ(,- +-+-)

(()-+[-,-])

(Lemma C.40)

(Lemma C.40)

�

We may now prove that the bottom right subdiagram of Figure 23 commutes.

Σ(- ⊗ (- ⊗ (-) Σ
+(- ⊗ (- ⊗ (-) () (- ⊗ ()- ⊗ ()-) () (- ⊗ ()- ⊗ ()- + - + -)

Σ(- ⊗ ((- ⊗ (-)) Σ
+(- ⊗ ((- ⊗ (-)) () (()- ⊗ ()- ⊗ ()- + -)

Σ(- ⊗ (((- ⊗ (-)) Σ
+(- ⊗ (((- ⊗ (-)) () (- ⊗ (()- ⊗ ()-))

() (- ⊗ ((()- ⊗ ()-)) () (()- ⊗ (()- ⊗ (()-)) () (()- ⊗ (()- ⊗ ()-) + -)

Σ(- ⊗ ()(-) Σ
+(- ⊗ ()(-) () (- ⊗ ((()- ⊗ (()-)) () (()- ⊗)()-) () (()- ⊗ (()- ⊗ (()-) + -)

() (- ⊗ ()()-) () ()()- ⊗)()-) () (()- ⊗)()- + -)

Σ(- ⊗ (()-) Σ
+(- ⊗ (()-) () (()- ⊗ ()()-) () ()()- ⊗)()- + -)

Σ(- ⊗ ()-) () (- ⊗ (())-) () ()()- ⊗ ()()-) () ()()- ⊗ ()()- + -)

Σ
+(- ⊗ ()-) () (()- ⊗ (())-) () ())()-) () ())()- + -)

() (())- ⊗ (())-) ()()()- () (()()- + -)

())())-

((- ⊗ ()-) () (- ⊗ ())-)

(()- ⊗ ()-) () ()- ⊗ ())-) () (()- ⊗ ())-) () (())- ⊗ ())-)

())- () (())- ⊗ (())-) ())())- ()()))- ()())- ()(())-

() (()))- ⊗ (()))-) ()()-

())()))-

()-

()8=1

() ([(`) ()-+-)

() [`()
-
,[()
-
]

`()
-

[Σ+[
) (- ⊗([)

-
⊗([)

-
)8=2

() ([()
-
⊗()- ⊗()-+[-,-])

() (U+-)

ΣU

Σ(- ⊗[(
(-⊗(-

)

8=2

8=2

[Σ+,-⊗()-

(([)
-
⊗()-)

([Γ(,)-

(`)
-

[Σ+[
) (- ⊗(([)

-
⊗([)

-
))

() (U-,()- ,()-)

() (()- ⊗(()- ⊗[(
()-
)+-)

() (()- ⊗[Γ(,()- +-)

() ([)
()-
⊗)()-+-)

() ()()- ⊗[(
)()-

+-)

() ([Γ(,)()- +-)

() `()
-

() ([(`) ()-)

() ([Γ(,)()-)

() ()()- ⊗[(
)()-

)

() ([)
()-
⊗)()-)

() (()- ⊗[Γ(,()-)

() ([()
-
⊗(()- ⊗[(

()-
))() (- ⊗[(

()-⊗()-
)

() (- ⊗((()- ⊗[(
()-
))

() (- ⊗(([Γ(,()-))

() (- ⊗(X)-)

() (- ⊗`(
))-
)

([) (- ⊗()[)
-
)

() ([()
-
⊗()()-)
() (()- ⊗[(

)()-
)

() ([)
()-
⊗()()-)

()(X)-

() `(`)
-

() (X)- ⊗(X)-)

() ([()
-
⊗(())-)

() (([)
)-
⊗(())-)

() (([)
)-
⊗(X)-)

() (())- ⊗`(
))-
)

() ([()
-
⊗())-)

() (([)
)-
⊗())-)

() (())- ⊗([(
))-
)

([) ()- ⊗()[)
-
)

() ([)
-
⊗())-)

() ([(
)-
⊗())-)

() ([Γ(,())-)

())X)-

() (())[)
-
⊗(([)

))-
)

()[Γ(,()))-

([))[([))[)
-

()X))-

()(`)
)-

()[(
())-

()8=1

()8=1

()8=1

()8=1

()8=1

()8=1

8=2

[Σ+[
) (- ⊗((([)

-
⊗([)

-
))

8=2

[Σ+[
) (- ⊗()([)

-
)

8=2

[Σ+[
) (- ⊗(()[)

-
)

() ([Γ(,())-) ()X))-

(Lemma F.2)

82

A unified treatment of structural definitions on syntax

There the bottom right subdiagram commutes as follows.

() (())- ⊗ (())-) ())())- ()()))-

() (()))- ⊗ (()))-) ()())-

())()))- ()(())-

())())- ())())- ()()))- ()())-

()()-

())()- ()())- ()()- ()-

`()
-

() (())[)
-
⊗(([)

))-
)

()[Γ(,()))-

()(`)
)-

()[(
())-

() ([Γ(,())-) ()X))-

())(`)
)-

())(`)
-

()X)- ()(`)
-

`()
-

())())[)
-

())() `)
-

())(`)
-

()X))-

()() `)
-

() `(

()(`)
-

()(`)
)-

F.3 Coherence of !2

We then check coherence of !2 in Figure 24, where, in the middle triangle which unfolds 3(-,(- ,
we use [(

(-
◦ [Σ+,- ◦ 8=1 instead of E(- as a point. This is justified because these morphisms are in

fact equal, as the diagram below shows.

� Σ
+-

Σ
+∅

Σ
+(- (∅ (-

((-

8=1

[Σ+,(-

8=1

[Σ+,-

([(
-

8=1 Σ
+!

Σ
+!

[Σ+,∅

(!

(!

The left-hand, question-marked subdiagram of Figure 24 only commutes when postcomposed
with X- ◦) `

(
-
= `(

)-
◦ (X- ◦ X(- , as follows.

83

T
.H

irsch
o
w
itz

a
n
d
A
.L
a
fo
n
t

Σ
+- ⊗ � � ⊗ � + Σ- ⊗ � � + Σ(- ⊗ �) Σ

+(- ⊗ �) ((- ⊗ �) () (- ⊗ �) () (- ⊗ � + - + -)

(- ⊗ � Σ
+(- ⊗ Σ

+- Σ
+- + Σ((- ⊗ Σ

+-) () (()- ⊗ � + -)

((- ⊗ Σ
+(- (- + Σ((- ⊗ (-) () ((()- ⊗ Σ

+()- + -)

((- ⊗ ((- Σ
+(- ⊗ (- Σ

+(- ⊗ ((- � ⊗ ((- + Σ(- ⊗ ((- ((- + Σ((- ⊗ ((-) () ((()- ⊗ (()- + -)

((- ⊗ (((- () ((()- ⊗ ((()- + -)

)((-)(((-)((- (((- ⊗ ((- + (- + (-) () ()(()- + -)

()(- ()((- () (()()- + -)

(()- (()(- ()(- ()()-

(()-

()-

_� +BC-,(� ,83�) [Σ+ ([)
-⊗� ()8=1

[Σ+,- ⊗�

[(
(-
⊗8=1

((- ⊗[Σ+,(-

((- ⊗[(
((-

[Γ(,((-

X(-

(X-

`(
)-

() ([()
-
⊗�+[-,-])

() ([(
()-
⊗8=1+-)

() ((()- ⊗[Σ+,()- +-)

() ((()- ⊗[(
(()-

+-)

() ([Γ(,(()- +-)

() (X()- +-)

() [`()
-
,[()
-
]

`()
-

Σ
+[(
-
⊗8=1

Σ
+(- ⊗[Σ+,-

Σ
+(- ⊗[(

(-

_((- +BC(- ,(((- ,[(
(-
◦[

Σ+,- ◦8=1)

8=1+Σ([
(
-
⊗8=1)

[(
(-
+Σ((- ⊗[(

(-
)

[(8=3,(8=1◦[Σ+,(-⊗((- ◦8=2]3(- ,(-

()([(
-

(X(-

(()[(
-

)(([(
-

X((-

) `(
(-

X(-

`(
)(-

(X-

`(
)-

(?)

(??)

(3)

F
ig
.24.

C
o
h
eren

ce
o
f
!
2

84

A unified treatment of structural definitions on syntax

Σ
+- ⊗ � Σ

+- ⊗ Σ
+- Σ

+(- ⊗ Σ
+-

(- ⊗ � Σ
+- ⊗ Σ

+(- Σ
+(- ⊗ (-

((- ⊗ Σ
+(- (- ⊗ Σ

+(- (- ⊗ (- ((- ⊗ ((-

((- ⊗ ((- (- ⊗ ((-

((- ⊗ (((- (- ⊗ (- ((- ⊗ ((- ((- ⊗ (((-

)((-

)((- (- ⊗ ((-

)(-)(-

)((-)(((-)((-)(- ()-

[Σ+,- ⊗�

[(
(-
⊗8=1

((- ⊗[Σ+,(-

((- ⊗[(
((-

[Γ(,((-

Σ
+(- ⊗[Σ+,-

[Σ+,(- ⊗[
(
(-

) `(
(-

) `(
-

)(([(
-

X-

[Γ(,((-

((- ⊗[(
((-

) `(
-

X-

`(
-
⊗(`(

-
`(
-
⊗(`(

-

`(
-
⊗`(

-

(- ⊗[(
(-

(- ⊗8=1

(- ⊗[Σ+,(-

(- ⊗`(
-

Σ
+- ⊗8=1 Σ

+[(
-
⊗Σ+-

[Σ+,- ⊗[Σ+,-

([(
-
⊗[(

(-

(- ⊗[(
(-

([(
-
⊗[(

(-

((- ⊗([(
(-

`(
-
⊗((-

Σ
+- ⊗8=1

[Σ+,- ⊗Σ
+(-

Σ
+- ⊗Σ+[(

-

(- ⊗([(
-

[Γ(,(-) `(
-

)([(
-

The right-hand, double question-marked subdiagram has a coproduct as its domain, so we pro-
ceed termwise. The second term is chased as follows.

Σ(- ⊗ �) Σ
+(- ⊗ �) ((- ⊗ �) () (- ⊗ �) () (- ⊗ � + - + -)

Σ((- ⊗ Σ
+-) () (()- ⊗ �) () (()- ⊗ � + -)

Σ((- ⊗ (-) (((- ⊗ Σ
+-) () ((()- ⊗ Σ

+()-) () ((()- ⊗ Σ
+()- + -)

Σ((- ⊗ ((-) (((- ⊗ (-) () ((()- ⊗ (()-) () ((()- ⊗ (()- + -)

Σ
+((- ⊗ ((-) () ((()- ⊗ ((()- + -)

(((- ⊗ ((-) () ((()- ⊗ ((()-)

())(()- () ()(()- + -)

(((- ⊗ ((- + (- + (-) ()(- ()()()- () (()()- + -)

(()- ()()-

()-

[Σ+ ([)-⊗� ()8=1

() ([()- ⊗�+[-,-])

() ([(()- ⊗8=1+-)

() ((()- ⊗[Σ+,()- +-)

() ((()- ⊗[((()- +-)

() ([Γ(,(()- +-)

() (X()- +-)

() [`()- ,[()-]

`()-

Σ([(- ⊗8=1)

Σ((- ⊗[((-)

(X-

`()-

[Σ+,(-⊗((-

8=2

(8=1

() `()-

() ([()- ⊗�)

() ([(()- ⊗8=1)

() ((()- ⊗[Σ+,()-)

() ((()- ⊗[((()-)

() ([Γ(,(()-)

()X()-

8=2

(((- ⊗[((-)

(([(- ⊗8=1)

([) (([()- ⊗Σ
+[()-)

([) (([()- ⊗([
()
-)

([) (([()- ⊗(([
()
-)

([Γ(,(-

([))([()-

([) ()[()-

([)()-

The first term is chased as follows.

85

T. Hirschowitz and A. Lafont

� Σ
+(- ⊗ �) ((- ⊗ �) () (- ⊗ �) () (- ⊗ � + - + -)

Σ
+∅

Σ
+- (∅ ((()- ⊗ �) () (()- ⊗ �) () (()- ⊗ � + -)

(((()- ⊗ Σ
+()-) () ((()- ⊗ Σ

+()-) () ((()- ⊗ Σ
+()- + -)

(((()- ⊗ (()-) () ((()- ⊗ (()-) () ((()- ⊗ (()- + -)

((∅ (((()- ⊗ ((()-) () ((()- ⊗ ((()-) () ((()- ⊗ ((()- + -)

(- ()(()- ())(()- () ()(()- + -)

()- (∅ (()()- ()()()- () (()()- + -)

((- (()- ()()-

(((- ⊗ ((- + (- + (-) ()(- (()- ()-

8=1 [Σ+ ([)
-⊗� ()8=1

() ([()
-
⊗�+[-,-])

() ([(
()-
⊗8=1+-)

() ((()- ⊗[Σ+,()- +-)

() ((()- ⊗[(
(()-

+-)

() ([Γ(,(()- +-)

() (X()- +-)

() [`()
-
,[()
-
]

`()
-

8=1

[(
(-

(X- `(
)-

() `()
-

()X()-

()[Γ(,(()-

() ((()- ⊗[(
(()-

)

() ((()- ⊗[Σ+,()-)

() ([(
()-
⊗8=1)

() ([()
-
⊗�)(([()

-
⊗�)

(([(
()-
⊗8=1)

(((()- ⊗[Σ+,()-)

(((()- ⊗[(
(()-

)

([Γ(,(()-

(X()-

([)
()()-

8=1

(!

(!

`(
)-

([)
()-

(`()
-

(8=3

([)
-

([)
(- (([)

-

[(
()-

(!

((!

`(
∅

(!

([(
∅

F.4 Coherence of '2

We finally check the coherence of '2, namely commutation of the following diagram.

Σ
+- ⊗ � � ⊗ � + Σ- ⊗ � � + Σ(- ⊗ �) Σ

+(- ⊗ �) ((- ⊗ �) () (- ⊗ �) () (- ⊗ � + - + -)

(- ⊗ � () (()- ⊗ � + -)

(- () (()- + -)

()(- () (()()- + -)

(()- ()()-

()-

_�+BC-,(� ,83�) [Σ+ ([)
-⊗� ()8=1

[Σ+,- ⊗�

(X-

`(
)-

() ([()
-
⊗�+[-,-])

() [`()
-
,[()
-
]

`()
-

d(-

[()
(-

() (d()- +-)

() ([()
()-
+-)

Again, the domain is a coproduct, so we proceed termwise.
The first term is chased as follows.

86

A unified treatment of structural definitions on syntax

� ⊗ � � Σ
+(- ⊗ �) ((- ⊗ �) () (- ⊗ �) () (- ⊗ � + - + -)

Σ
+- ⊗ � � Σ

+∅ ((()- ⊗ �) () (()- ⊗ � + -)

(- ⊗ � Σ
+- (∅

((∅ (()- () (()- + -)

(- ((-

((- (()()-

()(- (∅ ()()()- () (()()- + -)

(- ()()- ()()-

(()-

()-

8=1⊗�

_� 8=1 [Σ+ ([)
-⊗� ()8=1

[Σ+,- ⊗�

(X-

`(
)-

() ([()
-
⊗�+[-,-])

() [`()
-
,[()
-
]

`()
-

d(-

[()
(-

() (d()- +-)

() ([()
()-
+-)

(([()
-
⊗�)

(d()-

([()
()-

([)

() `()

`()

`()
-

`(
)()-

`(
)-

d�

8=1

[Σ+,-

8=1

Σ
+!

Σ
+!

[Σ+,∅

(!

(!

((!

`(
∅

(!

([(
∅

[(
(-

([)
(-

(([)
-

`(
-

([)
-

(!

((!

([(
-

`(
-

The second term is chased as follows.

Σ- ⊗ � Σ(- ⊗ �) Σ
+(- ⊗ �) ((- ⊗ �) () (- ⊗ �) () (- ⊗ � + - + -)

Σ
+- ⊗ � Σ- ((()- ⊗ �) () (()- ⊗ � + -)

(- ⊗ � Σ
+-

() (()- + -)

(- (()-

(()()- ()()()-

()(- ()()- () (()()- + -)

(()- ()()-

()-

8=2

BC-,(� ,83�) [Σ+ ([)
-⊗� ()8=1

[Σ+,- ⊗�

(X-

`(
)-

() ([()
-
⊗�+[-,-])

() [`()
-
,[()
-
]

`()
-

d(-

[()
(-

() (d()- +-)

() ([()
()-
+-)

dΣ-

8=2

[Σ+,-

8=2

Σd-

Σ
+d-

(d-

(([()
-
⊗�)

(d()-

([()
()-

`()
-

([()
-

([)
()()-

() `()
-

`()
()()-

`(
)()-

([)
-

87

	Abstract
	1 Introduction
	2 Admissible monad morphisms and distributive laws
	2.1 Admissible monad morphisms
	2.2 From distributive laws

	3 Simple structural laws
	3.1 On a simple example
	3.2 The abstract case
	3.3 Augmented algebras
	3.4 Application: evaluation contexts
	3.5 Application: capture-avoiding substitution
	3.6 Application: binding contexts
	3.7 Application: named substitution

	4 Incremental structural laws
	4.1 On a simple example
	4.2 The abstract case
	4.3 Augmented algebras
	4.4 Independent extensions
	4.5 Application: differential λ-calculus
	4.6 Application: capture-avoiding substitution, De Bruijn style

	5 Benign equations
	5.1 On a simple example
	5.2 Equations
	5.3 Structural equational systems
	5.4 Application: associativity of substitution
	5.5 Embedding presheaf-based models

	6 Conclusion and perspectives
	References
	A Proof of Proposition 2.4
	B Colimits of monads and their algebras
	C Proof of Theorem 4.10
	C.1 The family h•
	C.2 The family h∘
	C.3 The family "0365h∘
	C.4 The family "0365h∘ω
	C.5 The family "0365"0365h∘ω
	C.6 The family h•ω
	C.7 The incremental lifting

	D Proof of Theorem 4.13
	E Proof of Theorem 5.12
	F Proofs of §5.5
	F.1 Coherence of L₁
	F.2 Coherence of R₁
	F.3 Coherence of L₂
	F.4 Coherence of R₂

