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A unified treatment of structural definitions on syntax
for capture-avoiding substitution, context application,
named substitution, partial differentiation, and so on

TOM HIRSCHOWITZ, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LAMA, 73000, France
AMBROISE LAFONT, University of Cambridge, United Kingdom

We introduce a category-theoretic abstraction of a syntax with auxiliary functions, called an admissible
monad morphism. Relying on an abstract form of structural recursion, we then design generic tools to con-
struct admissible monad morphisms from basic data. These tools automate ubiquitous standard patterns like
(1) defining auxiliary functions in successive, potentially dependent layers, and (2) proving properties of
auxiliary functions by induction on syntax. We cover significant examples from the literature, including the
standard lambda-calculus with capture-avoiding substitution, a lambda-calculus with binding evaluation con-
texts, the lambda-mu-calculus with named substitution, and the differential lambda-calculus.

Additional Key Words and Phrases: syntax ; variable binding ; substitution ; category theory

1 INTRODUCTION

Motivation. The literature offers several initial-algebra semantics frameworks for generating
and reasoning about syntax with variable binding (e.g., [Fiore and Hur 2009; Fiore et al. 1999;
Gabbay and Pitts 1999; Hofmann 1999)). Still, even state-of-the-art frameworks lack some expres-
siveness to suit the working operational semanticist’s needs. One typical limitation, which is the
topic of active research [Coraglia and Di Liberti 2021; Gratzer and Sterling 2021], concerns some
complex typing features like dependent types.

In this paper, we are concerned with a different limitation: although existing frameworks do
explain capture-avoiding substitution satisfactorily, they largely ignore the numerous similar aux-
iliary operations on syntax, like context application (e.g., in ML [Pierce 2004, Chapter 10]), named
substitution in the Au-calculus [Parigot 1992] (a.k.a. named application [Vaux 2007]), partial differ-
entiation in the differential A-calculus [Ehrhard and Regnier 2003], and so on.

One way of dealing with such auxiliary operations is to build them into the syntax, and view
their defining equations as an equational theory, by which to quotient the initial model (see, e.g.,
[Fiore and Hur 2009; Gratzer and Sterling 2021]). The problem with this approach is that it lacks
the basic, inductive construction of the initial model. Or in other words, it misses the fact that
auxiliary operations are... auxiliary, i.e., that they are admissible (= encodable) in the initial model.

Contributions. In this paper, we propose a categorical foundation for such admissible operations,
called admissible monad morphisms, together with a general framework for constructing them
and reasoning about them. In particular, the framework offers tools to

(a) define successive layers of auxiliary operations, each layer potentially depending on previ-
ous ones (as, e.g., in the differential A-calculus [Ehrhard and Regnier 2003]),

(b) automatically derive benign equations, i.e., equations involving auxiliary operations that
are satisfied by the syntax (such as, e.g., associativity of substitution e[c][0] = e[c[0]]).

Remark 1. The framework does not yet allow the user to automatically prove that auxiliary op-
erations are compatible with severe equations, i.e., equations not involving auxiliary operations (as,
again, in the differential A-calculus), whose initial model thus may be a proper quotient of the syntax.
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France; Ambroise Lafont, University of Cambridge, Cambridge, United Kingdom.
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We illustrate the expressiveness of the framework by reconstructing (1) Fiore et al’s [1999] ap-
proach as a special case, and (2) a few concrete examples from the literature, notably a A-calculus
with explicit substitution [Accattoli 2019] (which involves variable capture by evaluation con-
texts) and the differential A-calculus [Ehrhard and Regnier 2003] (without quotienting by struc-
tural equations). We also demonstrate that our framework is not tied to any particular setting for
modelling variable binding, by reconstructing pure A-calculus with capture-avoiding substitution
in De Bruijn representation (§4.6).

The framework consists of the following components.

1. First, we offer a fundamental, very easy construction of admissible monad morphisms from
suitable monad distributive laws in the sense of Beck [1969]. A monad distributive law is a natural
transformation TS — ST, where we think of S as the monad of basic operations, hence call it
the basic monad, and of T as the one of auxiliary operations, hence call it the auxiliary monad.
We show that, whenever T preserves the initial object, any monad distributive law induces an
admissible monad morphism S — ST to the composite monad.

2. Then, we design a toolbox for constructing such distributive laws from more basic data:

(i) We first introduce a simple notion of signature for distributive laws. A signature consists of
an endofunctor ¥, equipped with an abstract analogue of a structurally recursive definition,
called a simple structural law. From such a signature, we generate a distributive law of
the desired form, whose basic monad is the free monad =* on X. We also establish a simple
characterisation of augmented algebras, i.e., X-algebras featuring the specified auxiliary
operations in a compatible way.

Simple structural laws are expressive enough to equip (potentially binding) syntax with capture-
avoiding substitution, but not to tackle Features (a) and (b) above.

(i) We then introduce a second notion of signature, which is an incremental form of the first. A
signature consists of a distributive law §: TS — ST whose basic monad S is free on some
endofunctor X, equipped with a so-called incremental structural law over it. The idea is
that we have already specified a few auxiliary operations over S, bundled as the monad T, and
an incremental structural law is like a structurally recursive definition by pattern-matching
on basic operations, whose body may use all auxiliary operations. From this, we construct a
new distributive law with the same basic monad, but whose auxiliary monad contains new
operations. We again present a simple explicit description of augmented algebras.
Incremental structural laws are expressive enough to equip syntax with incremental layers of
auxiliary operations, hence implement Feature (a) above.

(iii) We finally address the benign equations feature (b). For this, we again start from a distributive
law with a free basic monad, and introduce structural equational systems, which, roughly,
consist of:

e (an abstract form of) equations on terms, potentially using auxiliary operations, and
o data that ensures that the equations will be satisfied by the syntax.
From this, we construct a distributive law with the same basic monad.

Plan. We start in §2 by introducing admissible monad morphisms and showing how they may
be derived from suitable monad distributive laws. We then study simple structural laws in §3,
incremental structural laws in §4, and benign equations in §5, giving applications along the way.
Finally, we conclude and give some perspectives in §6.

Related work. Our framework abstracts over the idea of a definition by structural recursion, to
categories other than sets. The abstraction emphasises the idea that the syntax equipped with aux-
iliary functions is initial in a category of augmented algebras. Our framework is directly inspired
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by (and abstracts over) Fiore et al’s [Fiore et al. 1999; Fiore 2008]. A notable difference is that Fiore
et al. rely on a technical notion called pointed strong endofunctors, which intuitively amounts to
assuming that the argument of the endofunctor already has part of the desired structure - in this
case, variables. The corresponding instance of our abstract framework avoids this astute trick by
taking the free structure. Technically, this is visible in the presence of X ® S(Y) in the codomain
of our simple structural law in §3.5. Indeed, taking S(Y) instead of merely Y is what allows us to
use o in the definition.

Our work is related to the idea of traversals [Allais et al. 2018]. The latter are however limited to
categories of families of sets indexed by some fixed set of types, and tailored for capture-avoiding
substitution.

Notation and prerequisites. We often conflate natural numbers with the corresponding finite
ordinals, or some choice of equipotent set, hopefully made clear by the context.

We assume basic knowledge of category theory [Mac Lane 1998] and locally finitely presentable
categories [Adamek and Rosicky 1994] (although the latter may be ignored on a superficial read-
ing). By default, our categories are locally small, although we occasionally repeat it for emphasis.
We let CAT denote the category of (locally small) categories.

We generally denote initial objects by 0, relying on context to infer the corresponding category.
For any category C and object ¢ € C, we denote by C/c the slice category over c.

On any category C with binary coproducts, for any object E € C, we denote the corresponding
option functor by Og, i.e., Og(C) = C + E, for some choice of coproducts.

For any endofunctor F, we denote its category of algebras by F -alg. For any monad T, we
denote its category of monad algebras by T - Alg; it is then a full subcategory of T - alg. We denote
the coproduct of two monads T and T’ by T & T’, to distinguish it from the coproduct T + T of
underlying endofunctors.

Any finitary endofunctor F on a locally finitely presentable category C generates a free monad,
that we denote by F*. In particular, the initial algebra is denoted by F*0. As is well-known, this
may often be computed as a directed colimit which we denote by pE.F(E). We furthermore denote
the unit F — F* by np. Please also note that F* - Alg is isomorphic to F - alg: the isomorphism
maps an algebra F*c — ¢ to Fc — F*¢ — c.

We write A for the diagonal functor C — C x C mapping an object ¢ of a category C to (c,c).
We use the letters I and © to denote bifunctors C x C — C. We sometimes write I' instead of T'A.
E.g., we talk about I'-algebras instead of I'A-algebras, and denote (I'A)* by T'*. We furthermore
sometimes denote T'(X, Y) by Iy X. If F is a functor to C, the bifunctor mapping (X, Y) to I'(X, FY)
is denoted by IF.

Moreover, for denoting the components of a natural transformation a: F — G, we freely switch
between a¢ and aC, and we denote horizontal composition in CAT by mere juxtaposition. E.g.,.
given any f: C — D in the domain category, we also write ay, or af, for either composite ap o
F(f) = G(f) e ac.

The middle dot - is overloaded: it may have the followin three meanings, depending on context:

e for any presheaf F: C% — Set, morphism f: ¢ — d in C, and element x € F(d), we define
x- f=F(f)(x);

o for any set X and object c of any category with enough coproducts, we denote by X - c the
X-fold coproduct },.cx ¢; and finally,

o the middle dot is used in the syntax of differential A-calculus.

Definition 1.1. A monad morphism S — T between monads S and T on a given category C
is a natural transformation «: S — T commuting with multiplication and unit, i.e., making the
following diagrams commute.
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We let Mnd(C) denote the category of monads in C and monad morphisms between them, and
Mnd¢(C) denote its full subcategory spanned by finitary monads.

2 ADMISSIBLE MONAD MORPHISMS AND DISTRIBUTIVE LAWS

In this section, we introduce admissible monad morphisms, and show how to construct them from
monad distributive laws.

2.1 Admissible monad morphisms

Definition 2.1. Let C have an initial object. A morphism a: R — S of monads on C is admissible
iff its component ap: RO — SO at the initial object is an isomorphism.

Remark 2. Intuitively, thinking of R and S as algebraic structures, or families of operations, R(0)
and S(0) are the initial algebras, i.e., morally the syntaxes of both languages. The monad morphism
translates each operation from R to some (derived) operation from S. Admissibility then amounts to
the translation being an isomorphism.

We will give the paradigmatic example of admissible morphism just below, but before that, let
us mention a different point of view on admissible morphisms.

Definition 2.2 ([Mac Lane 1998, §V1.3]). We call monadic (over C) any functor isomorphic in
CAT/C to some forgetful functor T - Alg — C, and let Monadic/C denote the full subcategory of
CAT/C spanned by monadic functors.

Given a category C, the assignment mapping any monad T on C to the forgetful functor U7 : T - Alg —
C extends to a functor sem: Mnd(C)*” — Monadic/C, and we have:

LeMMA 2.3. The functor sem is an equivalence of categories.

Proor. The functor sem is essentially surjective by definition of monadic functors. It is also full
and faithful by [Barr 1970, Proposition 5.3]. m]

PrRoOPOSITION 2.4. Given a category C with initial object, monads S and T on C, and a monad
morphism a: S — T, the following are equivalent:
(i) « is admissible;
(ii) sem(a): T - Alg — S- Alg preserves the initial object;
(iii) sem(a): T - Alg — S - Alg creates the initial object in the sense of [Mac Lane 1998, §V.1], which
in this case means that the initial S-algebra SO possesses a unique T-algebra structure a: TS0 — SO
making the triangle

commute, which furthermore makes it initial in T - Alg.

ProoOF. See §A. |
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Example 2.5. Our motivating example is in fact a class of examples. For any finitary, pointed
strong endofunctor ¥ on any nice monoidal category (C,®,1, a, A, p) (the impatient reader may
consult Definitions 5.14 and 5.16 below for details, but these are not yet needed), Fiore et al. [1999]
introduce a category X - Mon of X-monoids, which are objects X € C with both X-algebra struc-
ture XX — X and monoid structure I — X « X ® X, satisfying a standard coherence condition
(Definition 5.15 below).

They then show that the initial (I +X)-algebra, or equivalently the free X-algebra on I, admits a
unique 2-monoid structure, which makes it initial in ¥ - Mon. Furthermore, both forgetful functors
from (I+ZX) - alg and ¥ - Mon to C are monadic, and there is an obvious forgetful functor ¥ - Mon —
(I+3)-alg.

Thus, denoting by (I+3)* and 3® the corresponding monads, their result may be read as proving
that the induced monad morphism

T+ —>=®
is admissible.

2.2 From distributive laws

Let us now show how to construct admissible monad morphisms from distributive laws. We first
recall from [Beck 1969] that

(i) a monad distributive law of S over T is a natural transformation §: TS — ST, commuting
with unit and multiplication of both monads S and T, and that

(ii) any such distributive law equips the composite functor ST with monad structure, which in
particular makes the natural transformation Sy’ : § — ST into a monad morphism.

The idea is to start from a distributive law with a suitable constraint on T, namely that T(0) = 0.
Intuitively, T may have many operations, but no constants to feed them with. We name such
monads accordingly:

Definition 2.6. A monad T on a category with an initial object 0 is constant-free iff its unit at
0, 176: 0 — T(0), is an isomorphism.

PRrRoOPOSITION 2.7. Forany distributive lawd: TS — ST with T constant-free, the monad morphism
SpT: S — ST is admissible.

Proor. Immediate. O

This result might seem purely academic, but in fact all of our applications arise in this way. The
technical core of the paper thus consists in designing tools to construct such distributive laws over
constant-free monads.

3 SIMPLE STRUCTURAL LAWS

In this section, we introduce our first construction of distributive laws with constant-free auxiliary
monad, from what we call simple structural laws. Let us start by working on a simple (perhaps
surprising) example, and abstract over it in the following subsection.

3.1 On asimple example

We consider the unary (Peano) natural numbers, viewed as the initial algebra of the endofunctor >
on sets defined by 3(X) = 1+X. We use standard syntax, i.e., 0 for the constant and s for successor.
Let us now consider the category, say X - alg“dd, of -algebras X equipped with a binary operation,
denoted by (x,y) — x + y, satisfying the following equations.

s(x) +y =s(x+y) O+y=y
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We call such an operation an addition.

ProposITION 3.1. The initial algebra *(0) is equipped with a unique addition, which makes it
initial in the category of E-algebras with addition.

PrOOF. An easy induction. O

Furthermore, the forgetful functor U%%: 3 - alg“dd — Set is monadic, and the corresponding

monad, say $%* maps any set X of variables to terms generated from 0 and all x € X by s and +,
modulo the above equations.

Now, for each set X, there is an obvious inclusion SX < $%4X. This family of inclusions
induces a monad morphism S — $%, and it is admissible by Propositions 3.1 and 2.4.

Let us now describe the monad $%%¢ and its relation to S more carefully, which will lead us to
distributive laws.

Orienting equations, terms generated by 0, s, and + from a given set of variables, quotiented by
the equations, have a normal form in which the first argument of an addition is either a variable, or
a further addition. Otherwise said, normal forms with variables in X are generated by the following
grammar:

e == 0|s(e)]a
a == x|a+e. (1)
Clearly, if no variable is available, only the first two cases can occur in a term e, which together
correspond precisely to the syntax generated by S. We thus recover the fact that SO — $%%Q is an
isomorphism.

Let us replay this reasoning, at a slightly more abstract level. The starting point is to refine the
arity of the auxiliary function (addition), here the endofunctor X — X 2 into a bifunctor

I':Set? — Set
(X,Y) — XxY.

Intuitively, this allows us to distinguish the “decreasing” occurrence of the argument.

By mimicking the recursive definition of addition on S0, we then define the following natural

transformation
dx)y: F(Z(X), Y) i S(F(X, Y) + Y)
0.y) = 7°(in(y)) ()
(s(x)y) = sr(ini(xy)),

where we write elements of 3(Z) as terms of depth 1 in S(Z), for any set Z. (We will use a slightly
more general codomain in the abstract case.) Elements of the domain are thought of as patterns
in the first argument, and the natural transformation maps them to “definition bodies”, which
are basic terms generated from the auxiliary arguments in Y, and potentially a “recursive call” in
I'(X,Y) — hence with “strictly smaller” main argument.

We furthermore define a monad T := FS* , which, we recall from §1, denotes (IsA)*. Concretely,
T(X) := pA.(X+AXS(A)) corresponds to the syntactic category a above: terms consist of additions
in normal form, i.e., additions whose first argument may be a variable or some further addition,
inductively, and whose second argument is an arbitrary expression. We thus have $%¢ =~ S o T.

Finally, we construct a distributive law TS — ST, by induction from the natural transforma-
tion (2), which repeatedly applies oriented equations until some normal form is reached. We will
be done if we prove T(0) = 0, for then

S99 () = ST(0) = S(0),

as desired. But T(0) = 0 follows from the next lemma with © = Tj.

6
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LEMMA 3.2. For any category C and functor ®: C* — C, if © is cocontinuous in its first argument
and finitary in its second argument, then the initial object possesses a unique ©A-algebra structure,
which furthermore makes it initial in ©A - alg.

Proor. By cocontinuity, ©¢0 is initial, hence there is a unique morphism ©¢0 — 0. The rest
follows easily. ]

It may not be entirely obvious that I's is cocontinuous in its first argument, but X X Y is iso-
morphic to the coproduct 3}, ey X, which is cocontinuous by interchange of colimits. Most of our
examples below follow the same pattern.

3.2 The abstract case

In this subsection, we introduce the general notion of simple structural law, and construct, from
any such law, a monad distributive law with constant-free auxiliary monad.

Definition 3.3. A simple structural law on a given locally finitely presentable category C con-
sists of

e a basic finitary endofunctor X: C — C,

e an auxiliary functor I': C2 — C which is cocontinuous in its first argument and finitary
in its second argument, and

e a natural transformation

dx,y: Iy (2(X)) = S(Ts(r) (X) + X +Y),
where S := 3* denotes the free monad generated by X.

Remark 3. Comparing with the example (2) of the previous section, we have added a new base case
X, and replaced Y with the more general S(Y) in the recursive call.

Let us now state the construction result, relying on the following lemma.

LEMMA 3.4. For any finitary bifunctor B: C2 — C which is cocontinuous in its first argument, B*
is constant-free.

ProoF. More generally, if an endofunctor F preserves the initial object 0, then 0 equipped with
the isomorphism F(0) — 0 is easily seen to be the initial F-algebra, hence is isomorphic to F*0. O

THEOREM 3.5. Any simple structural law
dxy: Iy (2(X)) = STs(r) (X) + X +Y)
(with again S = ¥*) induces a monad distributive law
TS — ST,

where T := I¢, making the following diagram commute.

dx x
IxIX ————— S(IsxX + X + X)

Ls I]z‘Xl
I[sxSX
Ls. sxl Shnrgxnlnl ] 3)
IssxSX
Urs,sxl
TSX > S;X

Sx
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Furthermore, T being constant-free by Lemma 3.4, the monad morphism S — ST is admissible.

Proor. This is a special case of Theorem 4.10 below, instantiating T with the identity monad.
m]

Remark 4. By the usual characterisation of free algebras for finitary endofunctors [Reiterman 1977],

we have
T(X) = pA.(X +Tsa(A)).

3.3 Augmented algebras

As a bonus, we may characterise algebras for the generated monad ST, which we call augmented
algebras.

Definition 3.6.
e An algebra for a simple structural law L = (3,T,d) on C consists of an object X € C,
equipped with
— X-algebra structure a: %(X) — X and
— TI'A-algebra structure b: Ty (X) — X,
making the following diagram commute,
d

Ix(Z(X)) ——2% s §(Tsx(X) + X + X)
lS(F;,(X)+X+X)

Ix (a) S(Tx(X) + X +X)
ls[b,x,x]

Ix (X) SX
X‘ /
X

where a: S(X) — X is freely induced by a.

e A morphism X — Y of algebras for L = (3, T, d) is a morphism between underlying objects
which is both a morphism of X- and I"’A-algebras.

e Let L - alg denote the category of algebras for L, or L-algebras.

ProrosITION 3.7. Let L = (2,T,d) be any simple structural law on C, and let T = FS*. Then we
have

L-alg = ST-Alg
over C, where we recall from the basic notations of §1 that capital Alg denotes monad algebras.

Proor. This is a special case of Theorem 4.13 below, instantiating T with the identity monad.
m]

3.4 Application: evaluation contexts

Let us present a first application of Theorem 3.5, to generate a simple language with context ap-
plication. The language is generated by the following grammar

e,f == xl|ef]|Axe
E == 0O|Ee

and context application is defined inductively by

Ole] = e

(Ee)[f] E[f]e.
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We now define a simple structural law, whose basic monad is the term monad, including con-
texts, and whose associated auxiliary monad will account for context application.

e Following Fiore et al. [1999], at least in spirit, we first choose as ambient category the cate-
gory [Set, Set®] ¢ of finitary functors Set — Set?, or equivalently [F, Set?], where [ denotes
the category of finite ordinals and all maps between them.

We call p and c the two elements of 2, respectively for “program” and “context”.
For any object X € [F,Set’] and n € [, X(n) is a pair of sets, which we denote by
(X(n)p, X(n).). We think of
- X(n)p as a set of programs with n free variables, and of
— X(n)¢ as a set of contexts with n free variables.
e The basic endofunctor is defined by:

EX)(n)p = n+X(n)+X(n+1),
(e,f == x| ef |Ax.e)
2(X)(n)e = 1+X(n)eXxX(n)p
(E == 0O|Ee).

e The auxiliary bifunctor is

PX.Y)(m)p = X(meXY(n)p
rxyY)y(n., = 0.

e For our simple structural law, which is trivial by construction at c, we take at p:

EX)(M)exY(n)y, — S(T(X,S(Y))+X+Y)(n)
(@e) = ni(ins(e))
(Efre) = n°(ini(En(e))) n°(ina(f)).

3.5 Application: capture-avoiding substitution

In this section, we present a third application of Theorem 3.5, to pure A-calculus with capture-
avoiding substitution. This will be subsumed by §5.5, but we find it instructive to unfold the devel-
opment on a concrete example.

o We take as ambient category the category [Set, Set] s of finitary endofunctors of sets, or
equivalently [[F, Set].
e The basic endofunctor on [[F, Set] is defined by

2(X)(n) = n+XM?+X(n+1)
(e,f == x| ef |Ae).

e The auxiliary bifunctor is [Fiore et al. 1999]’s substitution tensor product
p
xan)m= [ X(p)x vy,

or, expressed in [Set, Set] ¢, (X ® Y)(n) = X(Y(n)).
e For our simple structural law, we take (sometimes omitting 1° for readability)

[PEXP)xY(m)P - S(X®S(Y))+X +Y)(n)
(x,0) = inz(o(x))
(e fro) + ini(e,n®00)ini(f,n®00)
(le,o) —  Alini(e, o)),

9
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where ¢1: p+1 — S(Y)(n + 1) denotes the copairing of the following two maps.

25 Ym) 27 yine1) 20 sy (ne1) 125 ne1 2 S(Y) (n4+1) < S(Y)(n+1)

Remark 5. In the final case, we crucially rely on the recursive call being in T'(X,SY), rather than
Just T(X,Y). In Fiore et al. [1999], this is done by taking Y “pointed”, in the sense of being equipped
with a natural transformation n — Y (n).

Remark 6. We obtain the expected syntax and substitution, but not yet the following standard equa-
tions,

e[o][o’] = e[o[o’]] elid] = e
where id: n — S(X)(n) picks the variables. We will complete the picture in §5.

3.6 Application: binding contexts

For a slightly more involved example, we consider in this subsection the sharing A-calculus [Accattoli
2019, §4.1] (but see also [Hirschowitz et al. 2009; Sewell et al. 2008]).
Following Accattoli, the syntax is given by

e,f == x|ef|Axel|e(x f)
E O] E(x— f).

Context application is then defined inductively by

Ole] = e
(E(x = f))le] = Elel<x— f).

Remark 7. Context application may give rise to variable capture. E.g., (O{x — f))[x] = x(x + f).

In order to model this, we extend the setting of the previous section as follows. In §3.4, for any
functor X: F — Set?, we thought of X(n), and X(n). as sets of programs, resp. contexts with n
free variables. We now need to refine this point of view, and index contexts over the number of
capturing variables, i.e., variables bound above the context hole 0. Instead of functors F — Set?,
we thus consider functors F — Set*N. Of course, we have N = 1 + N, but we write 1 + N to
emphasise the fact that in; (%), the unique element of the left-hand summand, models terms, while
each iny(n) models contexts with n capturing variables.

Notation 1. We abbreviate iny (%) to p and iny(n) to ¢y, so that, e.g., X(n).,, is thought of as a set
of contexts with n free variables and m capturing variables.

Accordingly, we specify the syntax by the endofunctor
S(X)(n)p=n +X(n)12J +X(n+1)p+X(n+1), X X(n)p
(X)) (M) = X (n+ 1), X X(n))
Z(X)(n)co =1

Remark 8. On the second line, the expression X(n + 1), X X(n),, reflects the fact that in the above
grammar, in E(x + f), E may use the bound variable x, hence the use of n + 1, and has one less
capturing variable than E{x > f), hence the passing from m + 1 to m. Otherwise said, x is free in E,
but capturing in E(x — f).
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The generated monad S = X* may be presented syntactically by the following rules

k € X(n)p ien nkre:p n-f:p n+lre:p
ntk:p nkxi:p ntef:p ntAle):p
n+lre:p nkf:p K € X(n).,, n+l;mrE:c ntf:p
nre(f):p mmrK:c n0kF0O:c nym+1+FE(f):c

with S(n)p = {e | n+ e : p} and S(n)c,, = {E | n;m + E : c}. One then straightforwardly defines
the functorial action in n: for any renaming p: n — n’, one replaces all x; with x,;), for i € n.
Let us now model context application by a simple structural law:

o the arity functor is defined by
I'(X,Y)(n)e, 0
I'(X,Y)(n)p Yimen X (M), X Y(n+m)p,

reflecting the fact that in a context application E[e], e has as free variables the disjoint

union of the free and capturing variables of E;
o the simple structural law is defined componentwise by

2(X)(n)e,, xY(n+m), — S(I'(X,S(Y))+X+Y)(n)p
(O,e) +— ins(e) (if m=0)

(E(f).e) = ini(E e)(in(f)) (if m=m’+1),

for all n,m € N (omitting 7° again for readability).

Remark 9. The reason e may be applied to both E and E(f) is that both contexts have the same
number of free or capturing variables (n + 1) + m’ and n + (m’ + 1), respectively).

3.7 Application: named substitution

Let us now consider a last illustration of simple structural laws: named substitution in
Ap-calculus [Parigot 1992; Vaux 2007]. Its usual form is as follows. The syntax of Ap-calculus is:

e,f.g == x|ef]|Ax.e]|pac
c,d == [a]e.
There are two syntactic categories: programs, ranged over by e, f,g,..., and continuations,
ranged over by c,d. Accordingly, there are two kinds of variables: program variables, ranged
over by x,y, z, ..., and continuation variables, ranged over by o, §, . ..

Remark 10. In this subsection, y always denote the syntactic operation, as opposed to any monad
multiplication, or least fixed-point operator.

Intuitively, named substitution (t), g (notation from [Vaux 2007, Definition 6.5]) takes as argu-
ment any term ¢ (program or continuation) with a distinguished continuation variable «, together
with a program g, and replaces all subterms of the form [a]e with [«] (e g) in t. This may be defined
recursively by:

(X)ag = x
(Ax.e)a g = Ax.((€)a g) (x¢9)
(eflag = ((&ag) ((flag)
(HPC)ag = pB(c)a 9) (B¢ayg)

[ [d(©ag9)9) Ga=p)
([Ple)ag = {[ﬁ]((e)ag) (otherwise).

11
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In order to model this categorically, since we have two syntactic categories, each with its own set
of variables, we work with finitary functors Set?® — Set?, or equivalently the category [F?, Set?].
We write p and c for the elements of 2 (respectively standing for “program” and “continuation”).
Thus, for any X € [F2,Set?], we think of

® X(m,n), as a set of programs with m free program variables and n continuation variables,
and of

o X(m,n). as a set of continuations with m free program variables and n continuation vari-
ables.

The basic syntax is specified by the endofunctor ¥ defined by

Z(X)(m, n),
%(X) (m, n)c

m+X(m,n)s +X(m+1,n)p+ X (m,n+1)c
nx X(m,n)p.

For specifying named substitution, we take as auxiliary bifunctor

I'(X)(m,n)p = X(mn),XnxY(m,n),
I'(X)(m,n). X(m,n)c x n X Y(m,n)p.

Notation 2. Slightly generalising previous notation, we denote by x; the ith program variable, for
i € m, and by a; the jth continuation variable, for j € n.

Using this notation, we model named substitution by the following simple structural law (omit-
ting n° again for readability):

dxymnp: 2(X)(mn)p XxnxY(mn), — S((X,SY)+X+Y)(m,n)
(xi,j,9) = ina(x;)
(Ale),jog) = Alini(e, j,Whn - 9))
(ef.j,g) +— ini(e j,g) ini(f, ), 9)
(u(e). j.g) + plini(e, j,whp, - 9)

dx.Ymnc: Z(X)(mn)exnxY(mn), — S(T(X,SY)+X+Y)(mn)., ie,
dxYmnc: n X X(mn)p XxnxY(mmn), — ST(X,SY)+X+Y)(m,n)

(lajle.j.g) —  lajl(ini(e, j.g) ins(g))

([aylej.g) +— [aylini(e, j,g) (for j" # j),

where
. w;k = (ing, idg): (m k) — (m+1,k);
o wi = (idp, in): (mk) — (m,k +1); and
e u - a denotes the action of a morphism u: (m,k) — (m’,k’) in [ on an element a of some
A(m, k), for some A: F?2 — Set? and s € {p, c}.

4 INCREMENTAL STRUCTURAL LAWS

In this section, we introduce the incremental variant of structural laws. In §4.1, we sketch the idea
on a simple example. In §4.2, we introduce incremental structural laws in full generality, and
prove that they induce admissible morphisms (Theorem 4.2). In §4.3, we characterise the composite
monad induced by an incremental structural law, as objects equipped with suitably compatible
algebra structures. Then, in §4.4, we explain how to combine several, independent incremental
structural laws. Finally, we cover applications: partial differentiation in the differential A-calculus
(§4.5), and De Bruijn’s presentation of capture-avoiding substitution in the A-calculus (§4.6).
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4.1 On asimple example

Recalling the distributive law, say §: TS — ST constructed in §3.1 from the simple structural
law (2), we now want to extend the language with a second binary operation, multiplication, sat-
isfying
s)xy = (xxy)+y
Oxy = 0.

Furthermore, the full quotiented term language yields a monad $%¢™ and a monad morphism

S — gaddmul pg in §3.1, orienting equations, we obtain normal forms, which are generated for
any argument X by the grammar

e == 0]|s(e)|b
b x|b+e|bxXe.

Of course, by the same reasoning as for mere addition, the initial S-algebra is initial in the category
of models of the whole language (i.e., S-algebras with addition and multiplication, satisfying all
four equations), hence the monad morphism S — $%%m js admissible.

Categorically, because the new equation uses addition, we cannot define a second, independent
structural extension of S. However, the recursive definition of multiplication yields a natural trans-
formation

02 (X),Y) » ST(O(X,Y)+Y), (4)
where (X, Y) := X X Y. Furthermore, inspecting the above grammar for normal forms, we find
saddmul ~ § o (T +©g)*: from the top level, we have a first layer of basic operations, until we meet
a binary operation; the first argument of the latter may then only consist of binary operations until

it reaches a variable x € X, while the second argument is arbitrary. Equivalently, letting T’ = ©5,
we have

(Ts+0s)" =00 =TT,
hence

Sadd,mul ~So (T ® T/)

By induction, i.e., applying (4) repeatedly, we define a distributive law (T @®T') oS — So (T&T’).
Of course O is cocontinuous in its first argument, which easily entails that T@T’ is constant-free,
and so S — S¥mul ~ § o (T @ T') is admissible.

4.2 The abstract case
4.2.1 Main result. Let us now abstract over the previous section.

Definition 4.1. An incremental structural law on a locally finitely presentable category C
consists of

e a distributive law §: TS — ST with free basic monad S = X* and constant-free auxiliary
monad T, together with

e afunctor I': C2 — C which is cocontinuous in its first argument and finitary in its second
argument, equipped with

e a natural transformation

ry(Z(X)) — ST(FSTy(X) + X+ Y).
THEOREM 4.2. Any incremental structural law

dxy: Ty (2(X)) = ST(Tspv)(X) + X +7Y)
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over 6: TS — ST, with S := 3*, induces a distributive law
dis: (TeT)S - S(TaT),

where T” = Ig, making the following diagram commute.

Ix2X dox > ST(Ts7x X + X +X)
lST(TSTXU)Tﬁ[X,X])
fg mx ST(TsrxTX +X)
lST(t]rS,TX+X)
TS):SX ST(T'TX +X)
s 3% lsr(mzmlxuo (5)
TysxSX ST(T@T')(T®T)X +X)
o] [smpdor
T'SX S(ToT' )T T)X

iny SX\L ls y;@T'

(T®T)SX y S(TeT)X

d;sX
Furthermore, T @ T’ is constant-free, hence the monad morphism
S—>S(TaT)
is admissible.
The next subsection is devoted to sketching the proof, and may be safely ignored.

4.2.2  Proofsketch. Our first step will consist in defining an intermediate notion called incremental
lifting, fitting in the following process:
incremental structural law — incremental lifting — distributive law — admissible morphism.
To explain the idea, let us start by recalling from Beck [1969] that distributive laws are equivalent

to monad liftings.

Definition 4.3. A lifting of a monad S: C — C along a functor U: E — CisamonadS’: E — E
such that the following square commutes

and, furthermore, U preserves multiplication and unit, i.e., for all E € E, U(,ug) = “(SJ(E) and

U(U}g,) = ’7?](}5)'
Given any monads T and S on a category C, a T-lifting of S is a lifting of S along the forgetful
functor T - Alg — C.

PROPOSITION 4.4. Forall S and T, T-liftings of S are in one-to-one correspondence with endofunc-
tors S": T - Alg — T - Alg, such that the following square commutes
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T-Alg —5 5 T-Alg

| |

C————C
and, forall X € T - Alg, ;1;: S8X — SX and ryi: X — SX are T-algebra morphisms.
Proor. Straightforward. m]

LeEMMA 4.5 (BEck [1969, §1]). For any monads S,T: C — C, monad distributive laws TS — ST
are in one-to-one correspondence with T-liftings of S.

We now introduce incremental liftings.

Definition 4.6. Let S, T,and T’ be monads on C,and §: TS — ST be a monad distributive law. An
incremental lifting of S to T’ - Alg along § is a functorial assignment, to each pair of a T-algebra
structure and a T’-algebra structure on X, of a T’-algebra structure on SX, such that for each such
X, the multiplication SSX — SX and unit X — SX are T’-algebra morphisms.

This rather technical definition in fact unfolds rather simply, as we now explain. We first recall
the following, well-known characterisation of (T @ T”)-algebras.

LEmMA 4.7. Let T and T’ be monads on a complete (locally small) category C such that the monad
coproduct T ® T’ exists. Then, the category of (T & T’)-algebras consists of objects of C equipped with
algebra structures for both T and T'. Otherwise said, the following square is a pullback.

(TeT')-Alg—— T-Alg

L |

T'-Alg —— C
Proor. See §B. m]
Remark 11. In passing, this result yields an easy proof that T @ T’ is constant-free.
This directly entails the following equivalent presentation of incremental liftings.

COROLLARY 4.8. Incremental liftings of S to T’ - Alg along & on a complete category C such that
the coproduct T ® T exists are in one-to-one correspondence with liftings along the projection (T &
T’) - Alg — T - Alg of the monad on T - Alg, say S%, itself obtained by lifting S, as in

(TeT)-Alg -5, (TeT)-Alg

| |

T-Alg5—5>T-Alg
| |
C S C.

In such a situation, ST is furthermore a (T & T’)-lifting of S.

It is now easy to see that incremental liftings give rise to distributive laws.

CoROLLARY 4.9. Let S, T, and T’ be monads on a complete category C such that the monad coprod-
uctT & T’ exists, and let §: TS — ST be any monad distributive law. Then, any incremental lifting
of S to T - Alg along § gives rise to a distributive law §": (T®T')S — S(T@ T’).

Furthermore, if T and T are constant-free, so is T @ T, hence the induced monad morphism S —
S(T ® T') is admissible.
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Proor. By Corollary 4.8 and Lemma 4.5. Constant-freeness of T @ T’ follows by Lemma 4.7. O

Remark 12. With the same hypotheses, it is straightforward to deduce that ST — S(T @& T') is
admissible, since S — ST and S — ST — S(T & T’) both are.

We thus mostly reduce Theorem 4.2 to the following.
THEOREM 4.10. Any incremental structural law
dx,y: Iy (2(X)) = ST(Ist(y)(X) + X +Y)
over§: TS — ST, with S := %%, induces an incremental lifting of S to T’ - Alg along 6, where T" = T¢.

Remark 13. This result does not directly entail (5), which will follow from the construction of the
incremental lifting.

PROOF SKETCH, SEE §C FOR A COMPLETE PROOF. We first define from d a natural transformation
dy: Tsy (S(X)) — ST(Tsty(X) + X +7Y),

notably using the fact that I'syy, being a cocontinuous endofunctor on a locally finitely presentable
category, admits a right adjoint.

We then want to construct a lifting of S to some functor (T @ T’) - Alg — T’ - Alg. But we have
T’ - Alg = T - alg, so we reduce to constructing a functor (T®T”’) - Alg — I - Alg - still behaving
like S on underlying objects.

For any T-algebrab: TX — X equipped with I'sA-algebra structure c: I'sxX — X, we construct

the desired I'sA-algebra structure on S(X) as
T s SX £ — .
TosxSX =X ToxSX —=%, ST(Terx (X) + X + X) 9, s7x 2, sx,

where (b ¢): Ts7xX + X + X — X is defined as follows.

Definition 4.11. For any T-algebrab: TX — X equipped with I'sA-algebra structure c: TsxX —
X, let b> ¢ denote the following composite.

Fsz+[X,XJ [C,XJ
Fsrx(X) + X+ X ——— Iix X+ X — X.

We then show that ° and 5° are algebra morphisms, as desired. ]

4.3 Augmented algebras

Let us now present the announced characterisation of the category of algebras of the composite
monad S(T @ T’) induced by an incremental structural law, which we call augmented algebras.

Definition 4.12. Consider any incremental structural law
dx,y: ry(Z(X)) — ST(FSTy(X) + X + Y)

over 5: TS — ST, with S = X*.
e A (8, d)-algebra is an object X equipped with morphisms

a:SX - X b: TX — X ¢: T(X,X) > X,

the first two of which are monad algebra structures, making the following diagrams com-
mute.
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TSX — % . STX

Tal (d1) le
TX SX
NN /

X

d

X, X) —=% 5 ST(T(X,STX) + X + X)
F(rzz,x,X)l lST(F(X,aoSb)+[X,X])
I'(8X,X) (d2) ST(T'(X,X) +X)
r(a,x)l lST[c,X ]
T'(X,X) ST(X)

\ %
X

e A (6, d)-algebra morphism is a morphism between underlying objects which is an S-, T-,
and I'A-algebra morphism.
o We let (4, d) - Alg denote the category of (8, d)-algebras and morphisms between them.

THEOREM 4.13. Consider any incremental structural law
dX,Y: ry(Z(X)) - ST(FSTy(X) + X + Y)

over 5: TS — ST, with S = X*. Letting T' = T as before, there is an isomorphism S(T @ T') - Alg =
(6, d) - Alg of categories over the base category C.

More precisely, for any So (T ®T’)-algebra X, the canonical morphisms from SX, TX, andT (X, X)
into S((T & T')(X)) equip X with (5, d)-algebra structure. This assignment extends to a functor
S(TeT’)-Alg — (8,d) - Alg over C, which is an isomorphism of categories.

4.4 Independent extensions

Let us end the theoretical part of this section by briefly showing how to combine independent
incremental structural laws.

PROPOSITION 4.14. For any set I, any I-indexed family
dicy: TH(E(X)) > STy (X) + X +Y)

of incremental structural laws over §: TS — ST, withi € I and S := ¥*, induce a distributive law
Te@Pms—srePmn),
where T; = (I)* and T @ (P, T; is constant-free. We thus get an admissible morphism
S S(TePm).
Proor. Taking I'y(X) = ¥, T} (X) and observing that B, T; = T, we obtain the desired result
directly by applying Theorem 4.2 to the cotupling of all

) d: . ST((ini)x.s +X+Y)
T (3(X) —5 ST(Ti y, (X) + X +Y) st ST(Tsz(y)(X) + X +Y) O
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4.5 Application: differential A-calculus

In this section, we sketch an imperfect treatment of differential A-calculus, to illustrate incremental
structural laws.

4.5.1 Standard definition. Let us first introduce the calculus in the usual, informal way. The syntax
is:

Simple terms e, f == x|eM | Ax.e|De- f

Multiterms > M, N 0|e+M,
where simple and multiterms are considered equivalent modulo the following equations.

D(De-f)-g D(De-g) - f
(6)
e+f+M f+e+M

Structural operations are then defined as follows:

1. First of all, operations are extended to multiterms by induction, as in Figure 1.A. The first two

A. Extended operations B. Capture-avoiding substitution

0+N = N x[x—>M = M
(e+M)+N = e+ (M+N) y[x » M] = y+0 (whenx #7y)
ON = 0 (Ay.e)[x » M] = Ay.(e[x — M])
(e+M)N = (eN)+MN (y fresh for x and M)
Ax0 = 0 (eN)[x—> M] = e[x— M]N[x+— M]
Ax.(e+M) = Ax.e+Ax.M (De- f)[x > M] = De[x+— M]- flx+— M|
D(e)-0 = 0 Olx—>M] = 0
D(e)- (f+N) = D(e)-f+D(e)-N (e+N)[x > M] = e[x—> M|+N[xm— M].
DO)-N = 0
D(e+M)-N = D(e)-N+D(M)-N.

C. Partial differentiation

2 _

3_§ = M

a_z = 0 (whenx #vy)
d(e N)

= (£-M) N+ (De- (&X-M)) N

-M
M
Ix M Ix
a};’;’e-M = Ay.(%~M) (y fresh for x and M)
De- p)
/.M = D(Z-M)-f+De- (L. M)
a0 _
SM =0
3(6+N)'M

= % a4 ON .
x - ox M+ax M.

Fig. 1. Auxiliary functions for differential A-calculus

lines extend e + M to take a multiterm as its first argument. The next two extend e M similarly.
The next two extend A-abstraction. Matters then get slightly subtle: D— - — is first extended to take
a multiterm as its second argument, and then the obtained extension is further extended to take a
multiterm as its first argument.

2. Then, relying on this, capture-avoiding substitution of a variable by a multiterm in a simple or
multiterm is defined by induction in Figure 1.B, the result being a multiterm.

3. Finally, partial differentiation is also defined inductively, relying on extended operations, in
Figure 1.C.
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4.5.2  Using incremental structural laws. Let us now model this syntax and auxiliary operations
using incremental structural laws, but ignoring equations for this paper.

We have two syntactic categories, simple terms and multiterms, but only one sort for variables,
to be replaced with multiterms. As in §3.4, we model this by working with the category [Set, Set?] ¢
of finitary functors F: Set — Set?, or equivalently functors F — Set?. For a change, this time,
we emphasise the presentation as functors Set — Set?. Furthermore, we write s and m for the
elements of 2, and think of F(X);s as a set of simple terms with free variables in X, and of F(X)m
as a set of multiterms with free variables in X. We sometimes write such functors as pairs (Fs, Fi)
of set-functors.

The basic endofunctor is then defined as follows.

S(FA)(X)s = X+F(X)sXx F(X)m+F(X+1)s+F(X)?2
e,f == x| eM | A(e) |De-f
E(F)X)m = 1+F(X)sXF(X)m
M == 0] e+ M

Notation 3. Writing ys = (1,0) and ym = (0,1) (viewing Set® as the category of presheaves over
the discrete category {s, m}), we equivalently have

S(F)(X)=(X + F(X)s X F(X)m + F(X + 1)s + F(X)2) - ys
+(1+F(X)s X F(X)m) * Ym-

Let us now define extended operations. We start by defining the first four layers of Figure 1.A
independently, using Proposition 4.14 (with T = id). The relevant arities are

TP(F,G)(X) = (F(X)m X G(X)m) - Ym TP (F,G)(X) = (F(X)m X G(X)m) * ¥m

I**(F,G)(X) = F(X + Dm * Ym T (F,G)(X) = (G(X)s X F(X)m)  Yim:
and the equations in the table may be read as defining the desired simple structural laws
I'(2(F),G) = S(T'(F,S(G)) + F + G),
for i € {plus, app, abs, lapp,}. We get a distributive law
Os: TyS — ST,
where T; = (X,; T)*.
Remark 14. The operation in the fourth layer is defined by induction on the second argument, so
the main (inductive) argument for T'%Ps goes to the right of the product.
For the last layer in Figure 1.A, we define an incremental structural law over J,, with arity
I (F,G)(X) = (F(X)m X G(X)m) * Ym.
Again the equations of the last layer may be read as defining this incremental law. By Theorem 4.2,
we get a distributive law J5: T55 — STs, where Ts = Ty @ Tjapp, With Tjgp, = (Fslap P )*.
We now define capture-avoiding substitution. The arity is reminiscent of substitution monoidal

structures, so we write it as a tensor product. Because the result of a substitution is a multiterm,
we readily put (F ® G)(X)s = 0. Then, we define

(F ® G)(X)m = F(G(X)m)s + F(G(X)m)m,

reflecting the fact that we substitute multiterms for variables in both simple and multiterms.
The two layers of Figure 1.B may be read as defining the two components of the desired incre-
mental structural law
2(F)®G — ST;(F® ST;G+ F+G),
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which yields by Theorem 4.2 a distributive law 8 : TeS — STy, where Ty = Ts @ Tyypsp, With Tyyps =
(-®5-)".
Finally, we define partial differentiation. The arity is again empty at s, with
T (F,G)(X)m = F(X + 1)s X G(X)m + F(X + 1m X G(X)m.

The additional variable in the first argument models the distinguished variable x along which we
differentiate. Again the equations may be read as defining an incremental structural law and we
get a distributive law ;: T;S — STy, where T; = Ty © Ty, with Ty = (I“Sd ﬁ)*.

One could be content with this, prove the desired commutation lemmas [Vaux 2007, §6.1.4], and
then show that everything is compatible with Equations (6), all by hand. But of course, it would
be better to derive both results automatically. In the next section, we will explain how to derive
commutation lemmas (though on a simpler example), leaving compatibility with equations for
further work.

4.6 Application: capture-avoiding substitution, De Bruijn style

Most applications of the paper take place in the setting of so-called presheaf models, i.e., mild
generalisations of the category of finitary functors Set — Set [Fiore et al. 1999]. Our framework,
however, applies just as well in other settings. To illustrate this, in this subsection, we transpose
the example of capture-avoiding substitution to the De Bruijn-style setting of [Hirschowitz et al.
2022b)].

To summarise the idea: just as the presheaf-based approach equipes the nested datatypes repre-
sentation [Bird and Paterson 1999] with initial algebra semantics, the setting of [Hirschowitz et al.
2022b] does the same for De Bruijn representation [De Bruijn 1972]. In the presheaf-based ap-
proach, terms are indexed by sets n of potential free variables, and by convention the bound vari-
able is always the greatest one, typically x,.; for A,: X(n + 1) — X(n). Indexing is thus made
necessary by the binding convention. In De Bruijn representation, the binding convention is the
opposite: the bound variable is always 0. This makes indexing unnecessary, but some operations
become less intuitive (to many, at least [Berghofer and Urban 2007]).

In order to specify capture-avoiding substitution in the De Bruijn setting, we will need several
layers. Indeed, the presheaf-based approach features not only indexing, but also built-in renaming,
which is not the case in the De Bruijn setting. We thus need to define a first layer for renaming,
and then a second one for substitution.

We take Set as ambient category, and the basic syntax is specified by the endofunctor

(X)=N+X?+X.
For the first layer, letting S = ¥* again, the auxiliary bifunctor is
[(X,Y) =X x NN,
and renaming is specified by the following simple structural law (omitting 7° for readability):

dyy: (X)X NN = S(XxNN+X+7Y)

(xi,p) Xp (i)
(Ae)p) — Aliny(e1+p)
(e f,p) +— ini(e p)ini(f,p)
where 1+ p: N — N is defined by
(1+p)(0) = 0
(1+p)(1+n) = 1+4p(n).

Letting T = T, we get a distributive law §: TS — ST by Theorem 3.5.
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Notation 4. We denote by e[ p] the renaming operation of T.

We then specify substitution by taking as auxiliary bifunctor ®(X, Y) = XxY™, with incremental
structural law defined by

SX)x YN = ST(X X (STYYN+X+7Y)
(xi,0) > ins(a(i))
(A(e),o) = Alini(e, T 0))
(e f,o) +— ini(e,0)ini(f,0),

where ] o: N — STY is defined by
fo:N — STY

0 - X0
n+1 - o7l

letting T: N — N denote the successor map.

5 BENIGN EQUATIONS

In this section, we examine what we call “benign equations”, i.e., equations that are automatically
satisfied by the initial model. The initial model is thus initial in a potentially smaller category.

We start in §5.1 by presenting a simple example to motivate this investigation. In §5.2, along with
recalling Fiore and Hur’s [2009] equational systems and some basic facts about them, we then
introduce a mathematical definition of a system of benign equations, called a benign equational
system. In §5.3, we present a notion of signature for benign equational systems, called structural
equational systems, which we apply in §5.4 to prove associativity of capture-avoiding substitu-
tion.

5.1 On asimple example

In the case of addition, as defined by structural recursion in §3.1, an example of benign equation
is associativity:
(x+y)+z=x+(y+2). (7)
This is typically proven by induction on the first variable x. We explain how to derive this result
from the results of §3.1 and §4, which leads to structural equational systems.
We start by briefly sketching the idea. By the construction of §4, we define a new, auxiliary
ternary operation op(x, y, z) by the structurally recursive equations

op(0.y.2) = y+z ®)
op(s(x).y,2) = s(op(x,y,2)). ©)
By Theorem 4.2, the syntax, SO, admits a unique such operation. But on the other hand, one easily

proves that taking op(x,y,z) = x + (y + z) or op(x,y,z) = (x + y) + z yields two such operations.
Indeed, we have

s(x)+(y+2z)=s(x+(y+2)) 0+(y+2)=y+z
and
sx)+y)+z=s(x+y)+z=s((x+y) +2) 0+y)+z=y+z

by the defining equations of addition. By uniqueness, both definitions of op must thus coincide,
which proves (7).

More formally, we start from the distributive law §: TS — ST of §3.1. We introduce a bifunctor
¥: Set’ — Set mapping (X,Y) to X X Y X Y, for the arity of the ternary operation. Again, X
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corresponds to the decreasing argument in the recursive definition of op, while Y accounts for
other arguments. As in §4, the recursive definition is modelled by an incremental structural law
dyy: Y(3X,Y) — ST(¥(X,STY)+X+Y)
(0,y1.y2) > in3(y1) +in3(y2)

(G yny2) = s(inm(x 4, 42))-

Equation (7) induces a pair
Lx,Rx: ¥(X,X) — STX

of natural transformations, respectively mapping any triple (x,y, z) € X to (x+y)+z and x+(y+z),
and we want to show that the algebra structure yaT : STSTO — STO (= S0) of the initial ST-algebra
coequalises Lsr¢ and Rsrg, as in

Lsto ST
W(STO,STO) —_ % STSTO —"— ST0.
Rsto

By Theorem 4.13, models of the incremental structural law d are ST-algebras equipped with an
additional ternary operation making the diagram (d2) commute (with S := ST and T := ¥), and
furthermore, by Theorem 4.10, ST is an initial model. By initiality, we thus merely need to show
that both induced composites ¥(ST0, STO) — STO make (d2) commute.

In the next subsections, we propose an abstract version of this idea, with a simple sufficient
condition for it to work.

5.2 Equations

In this subsection, loosely following [Fiore and Hur 2009; Hirschowitz et al. 2022a], we introduce
an abstract notion of equational system, and define what it means for such an equational system
to be benign.

Definition 5.1. Given a finitary monad T on a locally finitely presentable category C, an equa-
tional system consists of a finitary monad G on C, together with two monad morphisms G — T.

Example 5.2. Taking C = Set, we model associativity of a binary operation by taking T and G
to be the free monads on the endofunctors %(X) = X2 and ©(X) = X? on sets, respectively. The
monad morphisms L,R: G — T are induced by universal property of G = ©* from the natural
transformations L%, R*: ® — T defined by

ng(xl,xz,m) = x4+ (x2 +x3)
R;)((xl’xz;xS) = (x1+x2) +x3.

Definition 5.3. The quotient E* of a finitary monad T by an equational system E = (G, L, R) is
the coequaliser

L
G— ——=T—1 »E*
R
of L,R in Mnd;(C).

Remark 15. The coequaliser exists because the category of finitary monads on a locally finitely
presentable category is itself locally finitely presentable [Lack 1997], hence in particular cocomplete.

Remark 16. The coequaliser is also a coequaliser in the category Mnd(C) of (not necessarily finitary)
monads on C, since colimits are preserved by the embeddingMnd ¢ (C) — Mnd(C) by Blackwell [1976,
Proposition 5.6].

Definition 5.4. An equational system is benign when the universal coequalising morphism T —
E* is admissible.
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Although coequalisers of finitary monads may not be intuitive to all readers, the monad E*
admits the following nice characterisation by its algebras.

Definition 5.5. Given a finitary monad T and an equational system E = (G, L, R) on it, a T-algebra
a: TX — X satisfies E iff a coequalises Lx and Rx, i.e., ao Lx = a o Rx.

Such T-algebras are called E-algebras, and we denote by E - alg the full subcategory of T - Alg
spanned by them.

Remark 17. Equivalently, E - alg is the equaliser in CAT of the induced functors T - Alg — G - Alg,
which a priori might differ from the equaliser in Monadicy/C, the full subcategory of Monadic/C
spanned by finitary monadic functors. They in fact coincide, by the following Proposition.

PROPOSITION 5.6. For any finitary monad T on a locally finitely presentable category C and equa-
tional system E = (G, L, R) on it, we have an isomorphism E - alg = E* - Alg over C. Otherwise said,
the forgetful functor E - alg — C is finitary and monadic, and the associated monad is isomorphic to
E*.

ProoF. By Remark 16, E* is a coequaliser of L and R, as monad morphisms. By Kelly [1980,
Proposition 26.3], its category of algebras is thus computed as the equaliser in CAT/C of the func-
tors T - Alg — G- Alg = O -alg, as claimed. m]

We may derive from this the following useful characterisation of benign equational systems.

PROPOSITION 5.7. An equational system is benign iff the initial T -algebra satisfies it, i.e., ,ug oLrg =
GoR
Ho © KT0-

Proor. If the initial algebra satisfies an equational system E, then it is a fortiori initial in E - alg,
hence in E* - Alg by Proposition 5.6. The forgetful functor E* - Alg — T - Alg thus preserves the
initial object, and we conclude by Proposition 2.4.

Conversely, if an equational system E is benign, then, by Proposition 2.4, the initial T-algebra
admits a unique E*-algebra structure e: E*T0 — T0 making the following diagram commute

TTO are E*T0

T0,

and e makes T0 into an initial E*-algebra. But g9 coequalises LT and Rrgp, hence so does ,ug, as
desired. O

Let us conclude this subsection with the following observation on combining equations.

Definition 5.8. For any family (E;);¢; of equational systems on a given finitary monad T on a
locally finitely presentable category C, with E; = (G;, L;,R;) for all i € I, let }; E; denote the
equational system defined by the cotuplings

[Li]ie[: @iEIGi - T and [Ri]jg[: @iGIGi — T.

PROPOSITION 5.9. For any family (E;);cr of equational systems on a given finitary monad T on a
locally finitely presentable category C, 3; E; is benign iff each E; is.

Proor. By Proposition 5.7 and universal property of coproduct. O
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5.3 Structural equational systems

In this subsection, we introduce a notion of signature for benign equational systems.
We fix a free monad S = * on a locally finitely presentable category C, with 3 (hence S) finitary.

Definition 5.10.

e A structural interpretation of an incremental structural law
dxy: O(ZX,Y) - ST(O(X,STY)+ X +Y)

over some given distributive law §: TS — ST is a natural transformation Kx : 8(X, X) —
STX making the coherence diagram of Figure 2 commute.

0(2X,X) dxx ST(O(X,STX) + X + X)
W'Iz,xﬂi)l lST(@(nf(T,STXH[X,X])

0(SX, SX) ST(O(STX, STX) + X)

stl lST(KSTX"'X)

STSX ST(STSTX + X)

55xl lST sty ]

SSTX ST(STX)

h STX (/:“f(T

Fig. 2. Coherence diagram for structural interpretations

e A structural equational system over a distributive law §: TS — ST consists of
- an incremental structural law (O, d) over §, together with
— apair of structural interpretations L, R: ®A — ST of d.

We now associate an equational system to any structural equational system, and prove that it
is benign.

Definition 5.11. For any structural interpretation K: ®A — ST of
dxy: O(ZX,Y) - ST(O(X,STY)+X +Y)

over §: TS — ST, let K : @ — ST denote the monad morphism induced by universal property of
0 from the composite

s s
SXx Hrx

c] K. N9
OsxX — OsxSX — STSX ——> SSTX — STX.
For any structural equational system E = (d, L, R) over 8, the equational system E induced by E
is the pair L, R: ®§ — ST.
Notation 5. We often conflate E and the associated equational system E. In particular, recalling

Definition 5.5 and Proposition 5.6, we speak of E-algebras, which form a category E - alg = E* - Alg.

THEOREM 5.12. Consider any monad distributive law §: TS — ST in a locally finitely presentable
category C such that T is constant-free. Then for any structural equational system E over §, the quo-
tient morphism ST — E* is admissible.
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PROOF SKETCH (SEE §E FOR MORE DETAIL). Let
dxy: ©(2X,Y) - ST(O(X,STY) + X +Y)

denote the given incremental structural law, and L and R denote the two structural interpretations.
We first prove that each any structural interpretation K induces ©A-algebra structure on any
ST-algebra X, given by
Kx
(X, X) =5 STX — X,
and furthermore that this ©A-algebra structure satisfies (d2), hence by Theorem 4.13 makes X into
an S(T @ T')-algebra.

The given structural interpretations L and R thus induce two extensions of the ST-algebra struc-
ture of SO = STO to S(T @ T’)-algebra structure. But by Theorem 4.2 and Proposition 2.4, S0
has a unique compatible ©A-algebra structure making it into a S(T @ T”)-algebra structure, so
both algebra structures derived from L and R must agree with the canonical one. In particular the
diagram

Lso
©(50, S0) 3 STSO) ——» SO
Rso
commutes, hence S0 satisfies the induced equational system, and is thus initial in S(T @ T”) - Alg.
O

Let us conclude this subsection with the following direct consequence of Theorem 5.12 and
Proposition 5.9.

CoROLLARY 5.13. Consider any monad distributive law §: TS — ST in a locally finitely pre-
sentable category C such that T is constant-free. Then for any family (E;)ier of structural equational
systems over 8, the quotient morphism ST — (3; E;)* is admissible.

5.4 Application: associativity of substitution

In this section, we continue the development of §3.5. There, we specified the syntax of pure A-
calculus by an endofunctor > on [Set, Set] , and substitution by a simple structural law

dx,y: F(ZX, Y) - S(rsy(X) + X+ Y),
where T'(X,Y) = X ® Y, thus generating an admissible morphism S — ST, where S = ¥* and
T=T3.
We now want to show that the I'A-algebra structure of the syntactic model S0, a.k.a. capture-
avoiding substitution, is associative. Again, this will be subsumed by §5.5.
We define a structural equational system with the following components:
o the arity functoris ©(X,Y) = (X®Y)QY;
e the incremental structural law is defined by

&y y(x,0,0) = o(x)[0]
dy(ef.0.0) = (e0.0) (f.0.0)
& y(Ae),0,0) = Ale,al, o),

where
- o: p = ST(Y)(q),
- 0:q—> ST(Y)(n),
— —1[—2] denotes the formal (= explicit) substitution operation of T, and
- we omit coproduct injections and 7°7 for readability;
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o the structural interpretations are defined by
Lx(e,0,0) =e[o][0] and Rx (e, 0,0) = e[a[0]],

where by definition o[0](x;) := o(x;)[6] (writing x; for the ith element of p to emphasise
that it is thought of as a variable).

Checking the coherence condition of Figure 2 essentially amounts to checking each case of the
usual induction, separately. The most interesting case is that of abstraction, with the right-hand
side R:

e d maps any triple (A(e), 0, 0) to A(e, o1, 87), which the right-hand composite then maps to
Ae[caT[07]]), while
e the left-hand composite maps the triple to A(e[o[0]]).
We thus need to prove o'[01] = ¢[6]:

® on X1, we directly have o[0] T(XP+1) = Xn+1, and, slightly less directly,
1[0 (xps1) = 0T (3ps1) [07] = %41 [07] = 300013

e onx;fori € p,wehave o[0]1(x;) = wn- (0(x:)[0]) = o(x;) [STX (wy) o8], where w,: n <>
n + 1 denotes the inclusion, while

ot [0 (x;)

ol (x;)[67]
(wq - o(x:)[67]
o(x;)[07 o wql.

But the following square commutes by definition of 87, hence the result.

g — 5 g+1

9l leT
STX(n) TR STX(n+1)

Theorem 5.12 then tells us that the usual substitution lemma is satisfied in the syntax S(0).

5.5 Embedding presheaf-based models

In this section, we show how the general framework of pointed strong endofunctors [Fiore et al.
1999; Fiore 2008] embeds into ours. More precisely, for any pointed strong endofunctor ¥ on a mo-
noidal, locally finitely presentable category (C,®, I, a, A, p) satisfying standard additional axioms
(see Definition 5.16 below):

e We define a simple structural law, whose initial algebra SO = (I+X)*0 is the desired syntax,
and whose category of algebras is a relaxed variant of Fiore et al’s;

e We then define two structural equational systems E; and E;, whose joint algebras in the
sense of Corollary 5.13 are precisely those of Fiore et al’s.

We thus recover the admissible morphism
S — ST — (E; + Ey)* = 3°
of Example 2.5.

Remark 18. The motivation for this subsection is one of connecting to other people’s work. In appli-
cations, it will probably be easier to directly define the desired structural laws and equational systems.

We start by recalling the notion of pointed strong endofunctor, and its associated category of
models.
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Definition 5.14. A pointed strength on an endofunctor ¥: C — C on a monoidal category
(C,®,1,a, A, p) is a family of morphisms stc (p) : 2(C) ® D — %(C ® D), natural in C € C and
(D,v: I = D) € I/C, the coslice category below I, making the following diagrams commute,

2(4)
P3(A) 2(pa)
Z(A) ®1 STt Z(A ® I)
SIA(X,0x) ® StagX,(Y,0y)

A eX)®Y  SAeX)®Y S(A®X)®Y)
aZ(A),X,Yl lz(aA,X,Y)

2(A)®(XeY) 2(A®(X®Y))

SEA(X®Y.0xgY)

where vx: I — X and vy: I — Y are the given points, and vxgy denotes the composite

ol
1Srer 2 xey.
Definition 5.15. For any pointed strong endofunctor ¥ on C, a ¥-monoid is an object X equipped
with X-algebra and monoid structure, say a: X(X) — X,s: X ® X — X, and v: I — X, such that
the following pentagon commutes.

(X)) ® X XX 5 x @ X) 9, 3(X)

a®X\L la (10)

X®X X

N

A morphism of ¥-monoids is a morphism in C which is a morphism both of X-algebras and of
monoids. We let ¥ - Mon denote the category of £-monoids and morphisms between them.

Let us now show how any pointed strong endofunctor ¥ gives rise to a simple structural law,
and how the coherence laws of 3-monoids may be enforced by benign equations.

Following [Fiore et al. 1999; Fiore 2008], we assume that our category C is leftist, in the following
sense.

Definition 5.16. A monoidal category (C,®, I, @, A, p) is leftist iff ® is cocontinuous in its first
argument, and finitary in its second argument.

Definition 5.17. The simple structural law associated to any pointed strong endofunctor (Z, st)
is defined as follows.

e We take as basic functor X*(X) = I + 2(X), and
e as auxiliary bifunctor I'(X,Y) = X QY.
e We then take as simple structural law dx y the composite

Asy+Stx (sY,.0y)

SHX) ® SY === I ® SY +3(X) ® SY —— SY + %(X ® SY)
Z*(X)@r;f/T l[Sim,S(inl)oanX@SYOinz]
SPX)QY SX®SY+X+Y);

where S = (2*)* and v denotes the composite ] — X* — §.
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By Theorem 3.5, the initial 3*-algebra has a unique model structure, which makes it initial,
and furthermore, by Theorem 4.13, models are X-algebras a: £X — X, equipped with morphisms
v: I —> Xands: X ® X — X making the pentagon

S ®X —— XX §(X®SX +X+X)
lS(X®W+X+X)
[v.a]®X SX®X+X+X)
lS[s,X,X] (11)
X®X

\/

commute, where [v, a] is induced by universal property of S(X).

ProprosITION 5.18. Commutation of (11) is equivalent to joint commutation of the pentagon (10)
and the diagram below.

I®X —) X®X
\ / (12)

Proor. The domain of (11) is a coproduct, and we claim that the restriction to each term yields
one of the given diagrams. For the first term, we get the following diagram.

Tox L2, 1®sx Xy ox Sy (X ® SX + X + X)
lS<X®W+X+X)
0®X SX®X+X+X)

lS[s,X,X]
XQ® X SX
lv al

For the second term, we verify that both pentagons are equivalent by chasing the following dia-
gram.

2(X)® Stx,(X,0x) Ns*in

I(X)®X —> X)) ®S(X) —= (X ® 5X) LN THX ®SX) — S(X®SX + X +X)

&@[vad/ Z(X@[Ua])l S(X®[va]+X+X)l
®X Z(X)@X—)Z(X@X)—)Z’f(X@X)—>S(X®X+X+X)
lz(s) lZ* (s) sXX]l

X®X 2(X) 5 3H(X) 5 SX
\ [ Toal
[m|

28

a




A unified treatment of structural definitions on syntax

However, s and v are not yet required to satisfy the remaining monoid equations. In order to
enforce them, relying on Corollary 5.13, we introduce two structural equational systems, one for
each equation. First, we introduce some notation.

Definition 5.19. For any object Z, we define jz: Z ® Z — TZ to be the composite

Z®r7§ NrgAz
ZR®Z ——>7ZQ5SZ=1IszZ — TZ.

Definition 5.20. For our first structural equational system E;, we take
e as auxiliary bifunctor ©;(X,Y) =(X®Y)QY;
e as incremental structural law, say d;, we take the left-hand composite of Figure 3;

SX®YQ®Y X el
H H
IRY®Y+3XQYQ®Y IQI+3X QI
lAY®Y+X®n§®:7§ lmstx,u,,-dl)
Y®Y+EX®SY®SY I+3(X®I)
ljyﬂtx,(sw ®SY H
TY +2(X®SY)®SY X ®I)
lTY‘*‘StX@SY,(SY,vy) lnw
TY +3(X ® SY ® SY) S(X®I)
lTYﬂ'nz lsnfw
TY + 2" (X ® SY ® SY) ST(XQ®I)
ln§Y+nz+nT(X®Sn£®Sq)T,) lSTinl
STY +ST(X ® STY ® STY) ST(X®I+X+Y)

l[STing,STinI]
ST(X®STY @ STY + X +Y)

Fig. 3. Two incremental structural laws

e as first structural interpretation, say L, at any X, we take

T
Jrx ”x

X ®nx
X®X®X—>TX®TX—>TTX—>STX
e as second structural interpretation, say Ry, at any X, we take

s, T
Jrx

n° iy
X®X®X—>X®(X®X)—>TX®TX—>TTX—>STX

Definition 5.21. For our second structural equational system E,, we take
e as auxiliary bifunctor ©;(X,Y) = X ® I
e as simple structural law, say d,, we take the right-hand composite of Figure 3;
e as first structural interpretation say L, at any X, we take

Jsx

X®I SX®SX—>TSX—>STX
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e as second structural interpretation, say R, at any X, we simply take

ST

n
xol 2 x 2, sTX.

THEOREM 5.22. For any locally finitely presentable, leftist monoidal category (C,®,1, a, A, p) and
pointed strong endofunctor X, the above data E; and E; indeed form structural equational systems,
and (E; + Ez)-algebras form a category isomorphic to X - Mon over C.

Furthermore, there are unique morphisms

$: S0® S0 — SO v: I — SO

rendering the pentagon (10) and triangle (12) commutative.
Finally, these morphisms, together with pg , satisfy the remaining ¥-monoid axioms, and make the
initial *-algebra S0 into an initial X-monoid.

Proor. We start by reducing to proving the first claim, by observing that

o the second claim has already been stated, right before Proposition 5.18, and,
e assuming the first claim, the last one follows directly by Corollary 5.13.

The first claim is proved in §F. O

6 CONCLUSION AND PERSPECTIVES

We have introduced admissible monad morphisms as a foundation for syntax with auxiliary func-
tions. We have then shown how to generate admissible morphisms from monad distributive laws,
and defined simple structural laws and incremental structural laws as basic notions of signatures
to generate such monad distributive laws, hence admissible morphisms. We have also defined
structural equational systems as a basic format for ensuring that the generated auxiliary functions
satisfy some (hopefully useful) properties. We have used these tools to cover significant examples
of auxiliary functions, from addition and multiplication of natural numbers to binding evaluation
contexts, capture-avoiding substitution, and partial differentiation. We have finally shown that the
standard framework of Fiore et al. [1999] is subsumed by ours.

An important question, already raised in the introduction, remains open: can we devise some
further tools to ensure that the auxiliary functions generated by our signatures are compatible
with severe equations, i.e., equations on the basic syntax?

Finally, our framework is designed to account for auxiliary functions defined on top of an exist-
ing syntax. It would be useful to extend it to settings where the syntax and functions are mutually
dependent, as in induction-recursion [Dybjer and Setzer 2001].
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A PROOF OF PROPOSITION 2.4

First, ax : SX — TX is an S-algebra morphism between SX and sem(«)(TX). Since S0 is an
initial S-algebra, sem(a)(T0) is initial if and only if «y is an isomorphism. This argument shows
(i) © (ii). Morever, since S is an initial S-algebra, creation implies preservation, so (iii) = (ii).
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Finally, let us show that preservation implies creation, (ii) = (iii). Let SX 2, X be an initial
algebra. We show that there is a unique T-algebra structure on X that is mapped to x by sem(a),
and moreover that it is initial as a T-algebra. Since, by hypothesis, sem(a) preserves the initial
object, sem(a)(T0) is also initial, and thus X is isomorphic to T0, as S-algebras. Now, sem(«) is
an isofibration: through this isomorphism, X inherits a T-algebra structure which is mapped to
SX — X by sem(a), and this isomorphism lifts to the category of T-algebras. Since this T-algebra
TX — X is isomorphic to T0, it is initial. It remains to show uniqueness. Consider an alternative
T-algebra structure on X, that is also mapped to SX — X by sem(a). By initiality of X as a T-
algebra, there is a morphism X — X between these two T-algebras. It is enough to show that its
image by sem(«) is the identity morphism, which follows from initiality of X as a S-algebra.

B COLIMITS OF MONADS AND THEIR ALGEBRAS

In this section, we state a few useful results on colimits of monads, and on limits of the correspond-
ing monadic functors, which notably entail Lemma 4.7.

Definition B.1. For any functor F: A — Mnd(C), let F - Alg denote a (choice of) limit of the
induced diagram

A% — Mnd(C)°? ~ Monadic/C — CAT/C.

Thus, an F-algebra is an object X € C, equipped with compatible F4-algebra structures, for all
AcA

The next proposition, due to Kelly, relates this with the colimit of F, when the latter exists.

For any functor F: A — Mnd(C), if T € Mnd(C) is a colimit of F, then the colimiting cocone
induces a cone over the diagram

A% — Mnd(C)”? ~ Monadic/C — CAT/C,
hence a functor m: T - Alg — F - Alg over C.

ProrosiTION B.2 ([KELLY 1980, PROPOSITION 26.3]). For any functor F: A — Mnd(C) with col-
imit T, if C is complete (and locally small), then the functorm: T - Alg — F - Alg is an isomorphism.

Remark 19. Kelly explicitly requires C to be locally small, which is implicit here by the convention
fixed in §1.

This immediately entails Lemma 4.7.

CoroLLARY B.3. Consider two monads S and T on a locally finitely presentable category C, and a
monad distributive law §: TS — ST. For any bifunctorT': CXC — C, letting T’ := I, the following
square is a pullback.

(ToT)-Alg —— T-Alg

! |

I[s-alg—— C
Proor. By Lemma 4.7 and the isomorphism T’ - Alg = I - alg over C. O

Remark 20. Otherwise said, giving a (T @ T')-algebra structure on X is equivalent to giving a
T-algebra structure and a I's-algebra structure.
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C PROOF OF THEOREM 4.10

Definition C.1. A bifunctor I': C2 — C on a category C is bipointed if it comes equipped with
natural transformations

”‘r, By

X 25 T(X,Y) =Y.
Definition C.2. For any bifunctor I, let I'*(X,Y) :=T(X,Y) + X + Y.

ProrosiTiON C.3. For any bifunctorT, the bifunctor I'® is bipointed. (It is in fact the free bipointed
bifunctor overT.)

Proor. Straightforward. m]

Notation 6. When applied to, say, Tr for some endofunctor F, the notation I} is ambiguous, as it
could denote (T'*)F or (I'r)®. The issue is even worse for, e.g., I2p. In order to resolve the ambiguity,
we write FC';‘F for (FG);, ie.,

F.

iy X =T (X,GFY) + X + FY.

We now want to show that any incremental structural law
hxy: Ty (3(X)) = ST(Tsry (X) + X +Y),

or using Notation 6

hX,Y: FyZX g STFS.T\YX’

induces an incremental lifting of S to T” - Alg along &. For this, we extend h to a natural transfor-
mation

hXy: TsySX — ST(FS'le(X))

making the following triangle commute

1",]5 ns.x
Iy=X r » TsySX
hX,N /;gy
ST,y X,

and then show how it induces an incremental lifting. This route being slightly long-winded, let us
point to the definition of h*® (Definition C.35) and the proof that it induces an icremental lifting
(Proposition C.38).

The plan is to successively define families

o hiy: Igy(2(X)) — ST(Tgy, (X)),

h;,Y: [ory2X — STI“S'T‘YX,

° }fi)(’y: X — T;TYSTOyFSOTYX,
o h°xy: SX — T STOyIG X,

o h°¥xy: T3y SX — STOyTS, X
(involving new functors defined along the way), from which we then define h*“ and prove that
it satisfies the properties stated in Lemma C.37 below. We then use this to construct the desired

incremental lifting.
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C.1 The family h*

Let us start with h®, which requires the following preliminary definition.

Definition C.4. Consider any pointed endofunctor F. We let T¥ denote the natural transformation
defined at any X, Y € C by the composite

|Finy,Fin,
—_—

nh+FY ]
X+FY ——> FX+FY F(X+Y).

Remark 21. In particular, for any F and G with F pointed, we have

F . T* .
ToryX+X,Y - Loy X = FIGpyX.

LemmaA C.5. For any bifunctor G: C? — C, distributive law §: TS — ST, and objects X,Y € C,
the following diagram commutes.

° G‘.‘SYX \ ° TS \ °
G|TSYX G|STYX SS|TYX

il Jsr

TG;lSYX —)TTS TSG;SlYX m;‘y STG§T|YX

Proor. Unfolding the definition, we refine the claim as follows,

Gsy, X+X+6: S4+STY i i
GrsyX + X +TSY X Gorv X + X + STY 100 §(GeryX +X) + STY 2574 oG X 4+ X 4 TY)

r/T+TSYl l;;ﬂsry lSnT+STY lS(nT+TY)
T§G5y X+X)+0y

nS+STY
T(GTst +X) +TSY —— T(GSTyX +X) +STY —— ST(GSTyX +X) +STY —— JS(T(GSTyX +X) + TY)

[Siny,Sing
nﬁrN /T(G(SYX+X)+5Y

ST(Grst + X) +STY

[Tiny,Tin,] S[Tiny,Tin,)

[STin,,STin,]

T(GTst +X + SY) Tm) T(S(GrsyX +X) + SY)Tmz]TS(GTSYX +X+ Y)[Smy)ST(GSTYX +X + Y)
where all subdiagrams easily commute except the top right square and the bottom left polygon.
Both have coproducts as their domains, so we chase them termwise. The first term of the top right
square is chased as follows.

Siny

S(GstyX +X) y S(GstyX + X +TY)

\S)(,’TJrTy)

7 S(T(GSTyX+X) +TY)

ing ST(GSTyX + X)

Siny ‘

S(GSTyX + X) +STY

[Sim.Sim] . S(GSTyX + X+ TY)
S(nT+TY)

SnT+STY

ST(GSTyX +X) +STY > S(T(GSTyX + X) + TY)

[Siny,Sin,]

The second term of the top right square is chased as follows.
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STY STY
\ Siny \
iny STY STY
S(GstyX + X) +STY ‘ s S(GstyX + X +TY) Sin,

[Siny,Sin,] .
myp T Ty
SpT+STY S(n"+TY)

ST(GSTyX +X) +STY 7 S(T(GSTyX +X) + TY)

[Siny,Siny]

The first term of the bottom left polygon is chased as follows.

ST(Gay X+X)

T(GrsyX +X) ST(GrsyX +X)

\ ”

iny T(GrsyX +X)

ST(GsryX +X)

~_

ST(GstyX +X)

ST(Giy X+X)

v TS(GrsyX +X) —5— ST(GrsyX +X)
K iny

ST(Gsy X+X)+8y
T(GrsyX +X) +TSY ST(GsryX +X) +STY Stim

o ST(GrsyX + X) +STY
pS4TSY
Tin, TSin [STin,,STins]
[TinyTinz] Tiny

T(GrsyX + X + SY) W} T(S(GrsyX +X) +SY) Timsiml TS(GrsyX + X +Y) S Gy XaXHT) ST(GstyX +X +Y)

Finally, the second term of the bottom left polygon is chased as follows.

Sy

TSY STY

TSY
\TSY TSY TSY o ‘ \STY
Tin, Tiny TSin,
T(GrsyX +X) +TSY s STGrasX+X) +STY ST(Cay X4X0+0x ST(GsryX +X) + STY STins
mm l [STiny.STinz]
T(GrsyX +X +SY) T) T(S(GrsyX +X) +SY)Tm‘|TS(GTS)/X+X+ Y) W} ST(GstyX +X +Y) D
Definition C.6. Let
L] L] L ]
Xy FSlY(Z(X)) — ST(FSTlY(X)),
be defined by cotupling the following three composites.
3 STT® - X
hx.sy . STTS . S&uST . (S84ST)|Y R
Is5y2X — STFSTlSYX —— STS STSIYX —_— STI‘STS‘Y STI“ST‘YX
TS TS
ST| ST|
TsnTx STayy . 3’ SThxy .
> X — STX —— ST(I‘ST‘Y(X)) Y — STY —— ST(FSTlY(X))

Lemma C.7. For all h, h* satisfies the following coherence laws.
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Ny, T
S(X) —X, ST(X)
.

S
e Yl lSTa

Iy (200) —— ST(Igy, (X))

ST
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nsT
y — ™ L, sTY

ﬁ;i YJ/ J/STﬁ o
I3, (300) s 7137, (X)

Sreg 32X
. 79 w1y .
I§ 15y =X ——— STgg BX ———— ST}, X
lsh;(y
R sy SSTTgy X
I
STTgrsy X~ STy X 55— $TTgpy X
ST1® (SEuTe, 5 X
1"”5 2X .
[yEX ——— TsyZX —=— T§, 5X
hx,y %
STT

ST\Y

Proor. The first two laws hold by construction. For the third law, by universal property of
coproduct, it suffices to verify it on each term of the coproduct I's, 2X = TssyXX + ZX + Y.
The result follows straightforwardly by diagram chasing in each case. The first term is chased as
follows, using the coherence properties of monad distributive laws.

» STs3X
Tssy2X STssy=X : STsy =X
Shy.ssy Shx.sy
hxssy s ST g X
. STlay
STrsT\ssYX SSTFSTM) SSTFST\QY
. s
ST T
STI‘;I'\SYX
iny ST1S Siny SSTTS
ST1S
STSTS STu® rsz, X 7
STSTg g6y X STSST: STST?, SSTST,
STS|SY STSS| Y STS| Y STS] Y
! I | \\ ‘ WSTSTy g, X
. " ) ST X s \\,
I5 sy =X STggy =X Tsy =X STSTergy X
S(SEISTIT. o X
(SOTIST ¢ oy X Shiy SoweTIY
S.STl"myX (S5 T)l‘m \Tux
(S&u° )r\{w X s
STFST\bYX STTS ngrsnw (o X STTgry X
SswsTIY
The second term is chased as follows.
”S
X
X SEX SEX s
T, M50
”S
S
STX a SSTX
S
iny STpS ‘ \
STSX - STX
Sin, S&uST
Siny i
‘ SI"S‘YZX SSTiny
. I .
SFSS‘YZX STMYZX
STin,
Sm
STin, SSTFST\Y
STSin, s
STTS . oy X —————————— STSTS X STTS. X
ST|SY ST STS|Y (S55TIT* X ST|Y
H S&uST|Y
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The third and final term is chased as follows.

SY SY SY

7 ~ T
Sy s ”Y\
STSY STSY 5 SSTY —— STY
’ o \ %

ing Sing Sing SSTY

STins

s STins STSins  gre gy SSTiny
. T . #S1Y N N
FS\SYZX Sl"sleZX Sl"leZX STFST\YX
5% A/"ir x
SSTTg X s
. . .
STTgrisy X STTS STSTgrsyX BRI, o X STy X

Finally, for the fourth law, A, , o in; yields the first composite of Definition C.6. But precomposing
the latter with F,]; > X, we obtain by naturality of A the composite

hxy . STF;TWX . ST1S . (sa;yST)r('SJWSTWX .
Iy:X — STFST‘YX —_— STFSTlSYX — STSFSTS‘YX STFST‘YX,

which we now prove equal to hx y, i.e., that the last three morphisms compose to the identity.

STI* (X
STInS ST(n5+S
STTgr X o > ST(IsrsyX + X + SY) ST, ST(S(TstsyX + X) +SY)
ST (T, s X+X+Y) lsr[sm,,smz]
© Y

ST(FSTS}IX + X+ Y)

3 7 STS(FSTst + X+ Y)

STn”
\ l(sé;usT)F;TSIYX

STI“S'TS‘YX

STT: o X
SSUST|Y

STTg X o

C.2 The family h°

We now want to make the ¥ in the domain of ~* into an S. For this, as an intermediate step, we
emphasise the less pointed variant of I' defined as follows.

Definition C.8. A bifunctor T': C> — C is main-pointed iff it comes equipped with a natural
transformation a)r( v X = T(XY).

Definition C.9. For any C with binary coproducts and bifunctor I': C? — C, let I°(X,Y) :=
T(X,Y)+X.

ProrosrTion C.10. For any C with binary coproducts and T': C* — C, the bifunctor I'° is main-
pointed.

By construction, we have:
LeEmMma C.11. For any C with binary coproducts, F,G: C — C, and T': C? = C, we haveT®

GIFY =
OpyI2 |
FYXGFy-
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By the last lemma, h5, ,, equivalently has type

T,

Sy X — STOYTGy X.

Definition C.12. Let %, denote the natural transformation with components

[iny,in,] XTY sT1T S”Tr;yT\YX
gy 2X —— FS‘TYZX — STFSTlTYX — STTFSTTlYX _ STFSTlYX.
LemMma C.13. For all h, h° satisfies the following coherence laws.
5T,
2(X) ————— ST(X)
“gl STY STay, "T‘
e SX r:sa‘:usnyzx . %X r, grzx
STSY STY TySX — ) TopyZX — oy 2X
hi SYJ/ J/ho X,Y \ /
STFS‘Tlst e STSFSTslyX S STFS'TIYX TTe
STy (S&:p° T)l“‘5 gmx STIY
r° =X
o S}‘ o
Lorry2X > Lopy2X

hoX,TYl lh(’x.y

STOTYLgrry X —— STTOYTgy X ———oe— STOYIgy X —gom— STOYTg, X

sT17 SuT Oy Ty X STOy r°;y
Proor. The first law holds by chasing the following diagram.
T
=X PIx > STX STX
m /@7
iny . STin, STTX STin,

ny

STTiﬂzl

X —) STTT?

X 5 STIg X,

- X STy X

Tory2X » Ig ST|Y

liny,iny] ~SITY

For the second one, we proceed by diagram chasing, as follows.
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o r(Osa‘;uST)yZX o
Trgy2X > Ty 2X
[in1,inz]l l[iﬂl,iﬂz]

. I‘;“SYZX . TS . .
Isirsy2X » Loisry2X > STesiry2X . Isry2Y
STes, BX .
ST37y X STTr 1y X
h;(,TSY h;qs‘ry (Lemma C.7) Sh;(,TYl %
SSTTgy 1y X
HS
.v STF§T|5YX .v ST . (Sg;HST)r;(S;yST\TYX .
STTgrirsyX > STIgrsryX > STSTorgiryX P STIgrryX
sT1T (Lemma C.5) lsrsTT (S5uSTYTT < lSTTT
o STTTS o STOT 5y X M H SSuSTT|Y N M
STTFSTTlSYX — STTSFSTTSlYX E— STSTFSTSTlYX » STTFSTTlYX
Sf‘Tr;u,T \stl SPTSF;;:m yxl ls;["r;ﬂ X
STEgp 5y X s STSTgrg X T > STTg;, X
’ S&pST|Y
Let us now consider the third claim. It follows by chasing the following diagram,
T sT3X .
ny ny o
Iy2X y TsryZX ————— I, 2X
I =X ing o
[ s3X SY I osx l[ml,mg]
Ty . S\t]lT/ R
Tsy2ZX e FSlYZX > FSlTYZX
L]
STFSTlTYX
lSTTT
Koy :
STTFSTTlYX
SpTr;ulex
STI“ST‘YX STFST‘YX

whose bottom right triangle commutes by chasing the following diagram.
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T* X
STing,

T(Tsry X + X +Y) s T(TsrryX + X + TY)
T(I‘ST%T/X+X+Y) lT(r]T+TY)
T(n"+n)

T(FSTTyX + X+ Y) e T(T(FSTTyX +X) + TY)

\ lT[Tinl,Tinzj
TryT

L]
TTTg 1y X
Tre
l" TSty X
L]
TrSTTIYX
lTFSyT\YX
L]
TTgr X
Finally, we prove the last claim by diagram chasing as follows,
e 3X
o sy o
Torpy2X Tory2X
[inl,inzjl F;u;ZX J'[inl,inzj
Tsrry2X I3, =X
crry | S0 x [
. ny STl .
STOrTYTS g X STOYT Sy X
STTTJ' o STiTorT X J'STTT
%
STTOY T ppy X — s STTTOY TS ppy X Y STTOY TS 7y X
T o T o T o
Su OTYFS,‘,ITYXJ' J,S“ ToyrS”]ryx J'S,u oyrsyzx
STOryTgrryX ST > STTOyTgrpy X SHTOYTor 7y > STOyTgrpy X W STOyTgry X
Py

where

e both top rectangles, as well as the bottom left and bottom right rectangles, commute by
naturality, and
o the third rectangle commutes by naturality and Lemma C.14 below. O

LemMma C.14. For any monad T on a category with binary coproducts, for all objects X and Y, the
following diagram commutes.

OulT/ X

OrryX > OryX

7| 7

TOryX T—TT) TTOyX m TOyX

Proor. This hold by diagram chasing, as follows.
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X+y§
X+TTY » X +TY
r,)T(+TTYl
TX+TTY nx+TY
TX+;1¥,‘
Tnk+TTY v
TTX +TTY TX+TY
[Tiny,Ting] x"‘ﬂy
[Tiny,Ting]
[Tiny,Tin,] [TTin,,TTiny] L
T(X +TY) —oran T(TX +TY) T P TT(X +Y) ———— T(X+Y) O

C.3 The family °

We now turn to defining our next family of morphisms, h°. For this, we need to exploit the cocon-
tinuity hypothesis in the first argument of T.

Because we have assumed C to be locally finitely presentable, each I'y has a right adjoint, which
we denote by Ty. Furthermore, we have:

Lemma C.15. Each Ty has as right adjoint the functor Ty defined by Tj (X) = Ty(X) X X.
Proor. We have

C(Ie(X), 2) C(Iy(X) + X, 2)

C(Iy(X), Z) x C(X, Z)

C(X, TyZ) x C(X, Z)

C(X, Ty(Z) X Z)

C(X, T (2)). O

123 13 [ 1P

Furthermore, by [Mac Lane 1998, Theorem IV.7.3], we readily get:

ProrosiTION C.16. For all bifunctors L: C> — C such that each Ly has a right adjoint Ry, the
functors Ry assemble into a bifunctor C X C%? — C making the bijection

C(Ly(X),2) = C(X,Ry(2))
natural in all variables.
Here, naturality in Y means that, e.g., for all morphisms f: ¥ — Y’ and u: Ly X — Z, the
transpose of
LfX u u RfZ
LyX — Ly X > Z is X > Ry Z —> RyZ,
where # denotes the transpose of u.

Cororrary C.17. Forallf: Y — Z,9: B— C,u: A — RyB, andv: A — RzC, letting @i and 0
denote the transposed morphisms, the square below left commutes iff the one below right does.

A—" RyB LyA—* B
I 7
f ]
In particular, for all A and f: B — C, the following diagrams commute.
LsRcA 54 [ ReA A" ReLeA
LBRfAJ/ chA UBAJ/ J/RfLCA
LgRgA T A RpLgA W RgLcA
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Let us return to the construction of the next family.
Definition C.18. Let E;X,Y denote the transpose
hexy: 5X — Ty STOyTSy X
of hy y

LEmMma C.19. The family h° is natural in X, i.e., forallY and f: X — Z, the following square
commutes.

e 2 ¥/
,;’XY ﬁBZY
Ty STOyIgry X 1y STOYTS, f TrySTOY TGy Z
Proor. By naturality and bijectivity of transposition. O

LEmMA C.20. The family h° is extranatural [Kelly 1982] in Y, i.e, for all X and f: Y — Z, the
following square commutes.

}?’X,Y
zX TrySTOYTgry X
}F’le TsrySTOS Ty STf
T57,5TO02T g, X T, STOZ TG, X T5rySTOZT g, X
Proor. By naturality of h° and Corollary C.17. m]

LemMma C.21. The family he satisfies the following laws.

Ny T
SX % eTX

hx, Yl lsm o

STYSTFS.T|YX ' STFS.T|YX

ke XY .
>X STYSTFSTlY

fx STTSy X

"Q L]
h®x.sy TssrySTTgry X

l’lx STT:

ssy i sty

X

STT

ST|SYX ’ STSYSTSFS.TleX ’ ’I;(TSYSTPS.T\Y

s
TsrsySTTxy crsy(s‘sﬂ e ss, sﬂyx

STSY

}FX,Y .
EX ——— Ty STTgp X

lm

Tsry ST, X

l’[ sTSTTS 7y X

TySTT?,

hxy

ST|Y
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X .
Tsry STl )y XY

2A i’ STYSTOY STY

e . L STOYTS, A
'IETYSTFST‘YX,TYJ( l visTy

TrrySTOry STTYA STTT’ Tr7ySTTOY gy A STOyTgryA

—1
TouT STy
TirrySHTOYT? LA
sl

Proo¥. The first diagram holds by Lemma C.13 and construction of Tg.,. The second one holds
by Lemma C.13 and Corollary C.17. The third diagram holds by Lemma C.13, observing that by

construction of the adjunction of Lemma C.15, 71 o h°x y is the transpose of

o

; h
Tsry X — Ty 5X — STy X,

hence, by Proposition C.16, T erT X o oh° x.y is the transpose of

ST\Y

Ter»X e

IySX —— FSTyZX 2 re  vX —5 STT?

STY STYX

Finally, the last diagram is precisely the transpose of the last diagram of Lemma C.13. O

C.4 The family °”

We now want to define the next family, h°” . For this, we start by observing the following: We have:

Lemma C.22. For all Y, the composite functor Tg,, STOyTgy, is a monad.

Proor. We already know that ST is a monad. Furthermore, precomposing any monad by any
option functor Oz again yields a monad, by the following (folklore) lemma. We conclude by the
adjunction Tg,y F Ty m|

Furthermore, the following result is folklore.

LemMma C.23. For all monads T on a category with binary coproducts, and for all objects E therein,
the natural transformation "7y : OpT — TOg defined at any X by

[TX.nE] T(iny),T (i
TX + E —20 7(x) + T(E) LU0 75

forms a monad distributive law, thus equipping TOg with monad structure.

We may now define he”.

Definition C.24. For all X,Y € C, let h° Xy SX — T§pySTOyTg, X denote the unique monad
morphism making the triangle

X — X 45X

— o@
Rxy XY

STYSTF.S.T\Y
commute, obtained by universal property of S.

By construction, we have:

LemMma C.25. The family PF;Y is natural in X.
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Notation 7. Let L = Ig.: C? 5> GR = "I§T: C X C? — C, and Ky(X) = STOyX (hence
K: C? — C). We thus have for all Y that Ly is left adjoint to Ry, and that Ky is a monad.

Furthermore, we observe the following:
LeEmMma C.26. Forany B € C and A € Kp - alg, RgA has a canonical X -algebra structure given by

ZRBA MRsrn b KaLpRaA “EXEBA R A s RpA.

This defines a functor Kg - alg — X - alg over Rp, for all B.
Proor. Functoriality is straightforward. O
Unfolding the definition, the family P?’;Y is in fact constructed in this way, with A = KyLyX,

whose Ky-algebra structure is given by yf:X.

Let us prove that the functorial assignment of Lemma C.26 is in fact also functorial in B, in the
following sense.

Lemma C.27. For any morphism f: A — B and object Z, equipping KgZ with the K4-algebra

KB
structure KaKgZ —> KgKgZ —> KpZ,the morphism
RrKpZ
RBKBZ —_ RAKBZ
is a X-algebra morphism.

Proor. By commutativity of the following diagram

SRrKpZ YRaKpZ

(Lemma C.19) }FRAKBZ,A
RAKALBRfKpZ
h°RgKpz,A
ZRBKBZ RAKALARBKBZ _— RAKALARAKBZ
| | |
}?’RBKBZ,B (Lemma C.20) RAKfoRBKBZ (Corollary C.17) RAKfEAKBZ
RaKpepKpZ
RpKgLgRgKgZ ————————— RaKgLgRgKpZ ARBEERB RaKgKgZ
‘ RfKBLBRBKBZ
RpKpepKpZ (interchange)
RpKKpZ Rajiy®
\
RB/JIZ<A (interchange)
RgKgZ RiKoZ RaKpZ O

Moreover, we have:

LeEmMma C.28. The family PF’;Y is extranatural in 'Y, i.e., the following square commutes for all X
and f: Y — Z.

w
o

;;X.Y
SX T57ySTOy Ty X
}F;Z\L P ySTOfT X
T5725T02T g1, X TrpSTOZTg, X T57ySTOzT g, X
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For proving this, we will need the following result.

LemMma C.29. For any monad S on a category with binary coproducts, the following diagram com-
mutes for all objects C and D.

SA+SB

it

S(SA+B) S(A+ SB)

sﬂ)l lSTS

SS(A + B) SS(A+ B)

S(A+ B)

Proor. By diagram chasing, termwise, but doing only one term as the other follows by symme-
try.

SA — 5 SA+SB SAS s SA+SSB
l[sml,smz]
i S(A+SB)
lS(i]fﬁSB)
SA+SB SSA S(SA + SB)
73 ,+SB ll—ls w lS [Siny.Sin,]
SSA+SB SA SS(A + B)
[Siny,Sing ]l & lys
S(SA + B) S SOARSB) S SS(A+B) — S(A+B) O

Proor or LEmma C.28. Using the notation, we want to prove that the following square com-
mutes.

}’l“"'w
SX % RyKyLyX
’?ﬁé,zl lRYKfoX
—_—
RzKzLzX R KLoX RyKzLzX

We first observe that both morphisms have the same restriction to X, by definition of h°” and
Lemma C.20. Thus, by

e universal property of SX as a free X-algebra over X, and
o the fact that for any morphism «: T; — T, of monads, any ax: T1X — T>X is a Ty-algebra
morphism, equipping T,X with the T;-algebra structure given by

anx uex
TszX —_— TszX — TZX,

so that each }?’(;(Y is an S-algebra morphism, or equivalently a X-algebra morphism,

45



T. Hirschowitz and A. Lafont

it suffices to equip RyKzLzX with X-algebra structure and show that the bottom and right mor-
phisms above, i.e., RrKzLzX and RyKyL¢X, are X-algebra morphisms. For the X-algebra structure
on RyKzLzX, we apply Lemma C.26 with the following Ky-algebra structure on KzLzX:

Kszsz #KZ
Kszsz —_— Kszsz 4 Kszx.

The bottom morphism then lifts to X - alg by Lemma C.27. Finally, the fact that the right-hand
morphism RyKyLgX is a X-algebra morphism will thus follow from K¢LrX being a Ky-algebra
morphism, which in turn follows by chasing the following diagram.

KyKpLgX
KyKyLyX sy KyKzLzX
leKZLZX
Ky Kszsz
-
KrLyX KzLpX
KyLyX —22— KzLyX —— K, L,X D
LeEmMa C.30. The family he” satisfies the following laws.
S T
SX Ix STX
f?’;yl lsm;;}‘

Ty STOYI X — STOyTg, X

Xy x .
SX Ty STTgry X
st STTgy X
TY
“é(&) X L]
h°x sy FISSTYSTFSTlYX
lT§5Y STF.;TlYX
X . X . X .
—_— _
TsrsySTgr sy X Tar Sy TrsySTSTgrgy X ; Torsy STy X
: Tirsy SGATITS, 1 X
n=x

’I;TYSTFS.TWX

I

46



A unified treatment of structural definitions on syntax

SX Pxry > Tirry STy py X
l §TTYSTTT
Ry ’I?TTYSTTFS.TT\YX
\LI:‘TTYSIUTI;”T‘YX
’IETYSTF_S?NYX PI;@STF;TD’X ’ ’I;TTYSTF_S.T|YX

Proor. The third law is direct by Lemma C.21. For the first two, we proceed similarly to the
proof of Lemma C.28, by showing that all the needed morphisms are X-algebra morphisms. For
the first diagram, the top and right-hand morphisms are free ¥-algebra morphisms, so we reduce
to proving that m, is a 3-algebra morphism. This holds by commutativity of the diagram in Fig-
ure 4 (recalling Notation 7), where the question-marked polygon commutes because the following
diagram does, for all A.

RyA T A
|
inz
OYLY <+ EyA
Ry A LyRyA iny
|
ing
<+
_—
OyLyRyA OyerA OyA

The top triangle commutes by construction of

EYA: FSOTY’I;TYA — A:

the domain I'¢;., T¢, A is the coproduct

Lsty(Tsty (A) X A)  +  Tsty(A) X A,

and the second component of ey A is my: Tsry (A) X A — A.

Let us now turn to the second diagram. We start by equipping the codomain with X-algebra
structure, by applying Lemma C.26 with B = SY and A = STF;TlYX = KyTgp,X, whose Ksy-
algebra structure is given by either of the following three equal composites.
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JuUaWIaYe)S 1541y ‘0" D ewwa jo jooud Joy wesSerq 'y 'Si4

h°Ry Ky Ly XY

RyKyLyRyKyLyX

(Lemma C.21) / ‘

RyKyé‘yKyLYx

RyKyKyLyX

RypXYLyX

RyKyLyX

T2

YRyKyLyX

nzn”RyKyLyX

STRyKyLyX

STa®vlyRyKyLyX STm

KyLyRyKyLyX @

(naturality of 7r3)

_

KyeyKyLyX STin,

KyKyLyX

T2

S

Ky Lyx

STKyLyX

(defn of/tKY) /JSTOyLyX

KyLyX

27{2

Y>KyLyX

(interchange)

SpTKyLyX

S810y Ly x

S
SSTTOyLyX

(definition of yr

SKyL

SSpTTOyLyX

(dist. law axiom)

ST)

uSTOyLyX

(monad law)

suT
HoyLyx

nsKyLyX

YX = SSTOyLYx

SSTOyLyX
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KsyKyLyX KsyKyLyX KsyKyLyX
H H H
ST(STOyLyX + SY) ST(STOyLyX + SY) ST(STOyLyX + SY)
lsns lsn”n lsn”n
STSOySTOyLyX STST(OyLyX +SY) STST(OyLyX + SY)
l(sa;#s T) lSTSTTS l,;ST
STOySTOyLyX STSTS(OyLyX +Y) ST(OyLyX + SY)
l[,tKY le‘;,us lsﬂs
STOyLyX STTS(LyX +Y +Y) STS(LyX +Y +Y)
H lsﬂ l(ss;ys T)(LyX+[Y,Y]
KyLyX STS(LyX +Y +7Y) ST(LyX +Y)
lSé(LyXﬂY,Y D H
SST(LyX +Y) KyLyX

’

ST(LyX +Y)

KyLyX

LeEmMmA C.31. The above Ksy-algebra structures are indeed equal.

Proor. The latter equivalence is clear. For the former, we proceed by diagram chasing as in
Figure 5, where A = Ly X. m]

Returning to the second law of Lemma C.30, the bottom row is the image by ¢, of a morphism

that lifts to Ksy - alg, by commutation of the diagram in Figure 6. It thus itself lifts to X - alg by
Lemma C.26.

Finally, we prove that the right-hand composite is a ¥-algebra morphism by diagram chasing as
follows.
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y - STISTim,s' STST(n5,y+SY)
ST(ST(A+Y)+7°T) ST[STiny,STin;] STST(A+Y +5Y) Masy+ STST(S(A+Y) +SY)

ST(ST(A+Y) +5Y) ST(ST(A+Y) +STSY)

s
STST(Sins,Sinz]
ST(ST(A+Y)+S7]) 5 - STST(A+Y+Sp})
ST(ST(A+Y)+STSnT)
N ST(A+Y +8Y) S(A+Y+Y)
STSram +SY)
58

ST(A+Y+5nT) / \ir(mmby)

ST(ST(A+Y)+n3") ST[STiny,STiny]

ST(ST(A+Y)+STY) ———— ST(ST(A+Y) + STSTY) ————— STST(A+Y +STY) *} ST(A+Y +STY) ST(S(A+Y) +SY) SSTTS(A+Y +Y)
lsr(n"usnj sr(n*’*srv\ ST (Svf.v+3v§/ \fﬂsm..sm,\ lus
ST(SST(A+Y) +5Y) ST o (STST(A+ Y) + STY) ST(ST(A+Y) +STY) STS(A+Y+Y) STTS(A+Y +Y)
ST(SinSiny 1l lsnsrm, STin) ST[STin,STin; ]l % \ lsur
STS(ST(A+Y) +Y) —T1 s STST(ST(A+Y) +Y) (Lemma C.29) STST(A+Y +Y) STS(A+Y +Y)
sal lsa(mn’,yn
SST(ST(A+Y) +Y) - s SST(A+Y)
W5 (s‘n,uv)w)l . w Lﬁ‘umn
ST(ST(A+Y) +Y) Ty ST(ST(A+Y) + STY) ey STST(A+ Y +1) = ST(A+Y +Y) AT ST(A+Y)
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0€D BwWwa7 "9 ‘B4

3re - < 01 sy1| wisiydiow wonoq

syST(n°+S
KsyKsyLstsyX 5 Koy ST(SLsrsy X +5Y)

KsyLstsyX

ST(*T1sy)

KsySTISin; Siny] Ky (8545T)

STSTOsyOsyLstsyX

ST 0,
15T uOsy

ST(g°+SY)

(termwise)

KsyST(Lgy, 57 X+Y)

STT1y) KsySTS(LstyX +Y)
STSTOsyOsyn STSTOsyOsySLsrsyX ——110svlSimSinal 16704, 5(0y LsrsyX) STCT1sy)
VLSTST[?M,SM,] (proved in Cogq)
STSTSOyOyLorsyX STSTOsySOvLstyX
lsrsr[sm,,s,m]

- STSTSOyOyLstyX

TS0V s

STSOyLstyX
ST[Siny, Sip’
ST(SLsrsyX +SY) TS STS(LsrsyX +Y) et ST(LstsyX +Y)

KsySTS(LstsyX +Y) ———————— KsyST(LstsyX +Y) . KsyKyLstyX
Koy (S5415T)
K\ysrsm /

sT1%
ST(*1sy) !
STSTOsyOyLstyX STSOyKyLstyX
lsrsn»‘
STSTSOyOyLsryX SEuST
Lo
STSOyLstyX STOyKyLstyX
y
S&uST
ST(Lgs 57X+

ST(LsryX +Y)

XBJUAS UO SUOI}IULJP [EINIONIIS JO JUSWILAI) PalIUN
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1;5;ySTKYZ
YRyKyZ > XRsyKyZ
_ he
hoRyKyZ,SY RSYKSYLSYTSd STK J/ RsyKyzSY
RsyKsyLsyRyKyZ ———————— RsyKsyLsyRsyKyZ
RsyKsyTg, STRYKYZl (Corollary C.17) lestyesy
~ RsyKsyeyKyZ N
B Ry Ky Z.Y RsyKsyLyRyKyZ > RsyKsyKyZ
(Lemma C.21) leysnS l/RsySTTS
RsySTSOyLyRyKyZ RsySTSOyKyZ
KoL RoKeZ Rsy(S§ 15T) ley(sa;pST)
~ ystRvLyRyRy
RyKyLyRyKyZ ”—> RsySTOyLyRyKyz —~8TOvelvZ o po STOyKyZ
RyKyEyl
58 gTI(yI(yZ
RyKyKyZ RsypKy
RnyYl
RyKyZ T Kz > RsyKyZ
S&uST

We then consider the fourth law, for which we proceed similarly: it suffices to show that the
bottom morphism and right-hand composite are X-algebra morphisms. We first prove that the
bottom morphism is a X-algebra morphism by diagram chasing as in Figure 7. Finally, we show
that the right-hand composite is a X-algebra morphism, by Lemma C.26: we verify that it applies
by proving that the composite is a morphism of Kry-algebras, as we show by diagram chasing in
Figure 8, where the bottom left heptagon commutes by Lemma C.32 below. O

LemmaA C.32. For all objects A and Y, the following diagram commutes.

Ory1t 1T (D),
OryOryA —— OryTOyA —— TOyTOyA —— TTOyOyA

I

4OTY TOyOyA
s
OryA T > TOyA

Proor. The domain is a coproduct, so we proceed termwise, by diagram chasing. The first term
is chased as follows.

TA Tiny T(A+Y) = TT(A+Y)

(TinTimsTY l \k’u,,

Tim
PTYTY iy Tine Ty
A+TY +TY 2 TASTY 4 TY T(A+Y)+TY TT(A+Y) +TY T(T(A+Y) +Y) ) iy TTA+Y +7)
n "
T T(A+Y) q
AvTYTY Tiny
Ay

T(A+Y) — T(A+Y+Y)

TA+TY Linuline EE———— T(A+Y)

The second term is chased as follows.
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wsiydiow wopoq ‘me| Yy1anoy ‘pe'D) BWLWIT Jo Jooud L "Si4

ST, STIg X

x
T
sul,

2T STTe, X

Z'I>SSTYSTI‘S.T\YX'

1y SISy XY,

’I;TYSTOYF;TY’I?TYSTI‘;T\ YX

Ty STOyesty STIEp X

i

1

STy SISy X 1Y

T STOY Ty Tigy STTE X
sul S s

TiprySTOy r;ju{(

1§TTYSTOYF;TYT§TYSTF;I‘\ vX

Ty STOr g1y T,

X
STTY " sT|Y

STy XiTY

’I:TTYSTOTYF;TTY’I;TYSTF;T\ YX
1§1‘:'y STTOYrsDr'ry T§I'Y STFS‘T\ vX
[Terresimortsny Ty s X

’ISTTYSTOYI‘STTY’ISTYSTI‘ST\YX
Ty STOVT TSy ST, X
Skry

TirrySTOvesTy

Birry STTOY Gy Ty ST

X ST
lb TvSH

X o x
L1y STOY gy Topry ST

—PS(TTYSTDTYFSQTTY’I;TTYSTF;T\ YX

ngm,sro, yestry STy, X
x .

Typy STOPYSTOYTE X
1:1 T YSTTOVCSTTysTrf

o omaT
CoprySTT
X
STivX o

T4y STTOYSTOYT X

x T
TrrySTT

X

.
Ty

STTgpy X

TprySTOyesTTY

X ST
TrrySH

T3prySTOySTOy T X

_—
TrryH Yl

T;I . STOySTOy 37y X
sul

TETTYSTO)'STOY r;TYX

_—
l"smﬂ Y

T:T}STF;T\ YX

STy X

TrrySTIGy X
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swsiydiow omy jsiiy ‘weldelp yinoy ‘oD ewwa] ‘g ‘514

STORYSTO Ty X STonTr STORYSTTOY gy, X STOrYSTOYTg7 X
seTn STSHTOrO4T: ;X o "
. stsop " stsrn . ooty e
STSTOry Oyl X —————000 s STSTOR Oy TGy X ————— 0y STSTTOry Oy Ty X STSTOryOy Ty X STTOySTOYT,
4 o i OO X STOrOyT, X STSTTOY Oy X STTSTOyOy T3y, X s
STOR Ory Ty X —220 0 STORTON TG X —— U0 3 STTOr 04Ty X STTOV0NTS X STTOYO T, X srsit STSTTO;OyTE X st STOYSTONTEy X
srory STTOYTOYTG 7y X STTTOYOy Ty X STSTOYOy T3, X SSTTTOy Oy Ty X STSTOyOY T, X
: STITOYOy T 1y X —————— T STTO,0y T, X s SSTTOYOY T, X SSTTOYOY T, X
i SSTOyOY Ty, X
$T0,0,T, X
s
sri X

STOrSiTON: X

STOnTgp, X

STTTg X

X

JUOJET Y pU® Z}IMOYISIIH ‘|



A unified treatment of structural definitions on syntax

TY TY TTY
Tin lmn,,
E
T(A+Y) TT(A+Y)
L N [ b
TA+TY +TY Lim T 1Y (A4 Y) + TY TT(A+Y)+TY ————— T(T(A+Y) +Y) ————————— 5 T(T(A+Y) +TY) TT(A+Y+Y)
[Tiny,Tiny] T(T(A+Y)+n}) T[TinyTing|
e
e
TA+[TY.TY]
B TY Tiny T(A+Y+Y)
Tiny lmmgvu
TA+TY [TinyTina) T(A+Y)
Finally, the third term is chased as follows.
T
TY TY I TTY
TTiny
ing ing Tm:J er\
[Tiny, Tiny]+TY nTATY [Tiny,Tins] T(T(A+Y)+n}) T[TinyTiny)

TA+TY+TY TA+Y)+TY ——— TT(A+Y)+TY ———— T(T(A+Y) +Y) T(T(A+Y)+TY) ———— TT(A+Y +Y)

TY I

Ting
TA+[TY,TY]
T(A+Y+Y)

lI(A*\Y,V])

T(A+Y)

Tiny

TA+TY [Tiny,Ting]

C.5 The family e

Transposing back, we obtain a family

B xy: Ty SX — STOyTS X

of morphisms.
By extranaturality of h’inY, naturality in X, and Corollary C.17, we get:

LemMma C.33. The family h°” is natural in both variables.
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LeEmMma C.34. The family he” satisfies the following coherence laws.

S(ny)
S(X) — ") sT(X)

.
o sy

a S
SX.STY J,STD[X,Y

Igry (S(X)) ? ST(FS’TW(X))

o ST
o r§5 5X o FI‘S X o ro X UrgTYX STT° X
Loy SX ———— TgorySX ———— T, SX sTY — My STTSry
}?:Z)X,SYJ/ JJ?:Z)X,Y r&y’?il J{STinl
; > b Ie.SX e STT: X
STFSTISYX T’ STSFSTSlYX - STrsnyX STY e ST|Y
XY (S&FST)F;&;;STWX
TirrySX i > STT3 1y X
STTY 7 24Ty
lSTTT
e .. .SX .
ol STTIS 7y X
\LS#TF;HTIYX
TsrySX = > STTg; X
XY
re,,SSX — "X g1oyre sx —TOM XY ey sTOVTE, X
re ‘usl lﬂsoroy
STYFX rSTYX
LsrySX = STOyIgy X
XY

1‘,]§T172,X in
IySX — Ty SX —— TgSX

h& /ﬁ:&xy

STT, ;T‘YX
Proor. By Lemma C.30, Corollary C.17, and the fact that "’l‘;;y is a monad morphism by con-

truction. E.g., the third law holds iff the transposed morphisms coincide. This gives the following
diagram,

ST

Ryn
X X RyLyX — % RUSTLyX

lryf( . l}eysnn1
R

SX a s RyKyLyX

which is precisely commutation of h°” with unit. Similarly, the penultimate law holds iff the trans-
posed morphisms coincide. This gives the following diagram,

56



A unified treatment of structural definitions on syntax

@
RyKyLyh XY

e
55X ——X 3 RyKyLySX —— XY RyKyLyRyKyLyX

lRyKyey

I RyKyKyLyX
lRYﬂKY
SX — > RyKyLyX
hexy
which precisely commutation of he” with multiplication. ]

C.6 The family A*?
Definition C.35. Let h;(’j’yz I[sySX — STI“S'T‘YX denote the composite
T, 75X =5

S in o ° Xy .
TsySX ——— TsrySX — Tgpy SX — STTg;, X.

LemmA C.36. The natural transformation h3y, : Tg, SX — STFS'mX is natural in both variables.

Proor. This follows straightforwardly from Lemma C.33. m]

LemMma C.37. The natural transformation h*® makes all diagrams below commute, for allX,Y € C.

Fﬂs YSX
TssySX > T'sySX

Ao | =

ST s X <5 STSTrsX —samx? SSTTosry X —)uSTr'sz STTgry X
7

hee ST (h% +S’7T+’7$T)
LsySSX —==5 ST(TsrySX + SX +Y) ——————— ST(STIg; 1, X + STX +STY)

ST(ST(TsrryX + X +TY) + STX + STY)
ST(STTT+STX+5TY)l

ST(STT(TstryX + X +Y) + STX + STY)
ST(Su™ (Tg, Ty X+X+Y) +STX+STY)l
Tsypy ST(ST(TstyX + X +Y) + STX + STY)
ST[STinl,STing,STing]l

STST(Ts7y X +X+Y+X+Y)

pST[inl,inz,in3,inz,ingjl

ST(TsryX+X +Y)

TsySX > STTgp X

e
hX Y
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T, X

TsyX — TsryX — " Tgp X

s
Isyny ST

Wy .
> STIg X

TsySX

1",]39/ X

IyxX > TsySX

hx,N ﬂ;(wy

STTgr X

Proor. The last diagram is direct by Lemma C.34. The third one follows by chasing as follows,

FS X

. . .
TsyyX ——— ToryX ——— [, X = > Topy X
nST
Tsyny Tsryny Loy liy STTg X nST
STin\
IsySX — g TmvSX > TipySX = > STIg X
using Lemma C.34. The first statement follows by chasing the next diagram.
L5 SX
IssySX - s ToySX
T, T SX T.. 75X lr‘, SX
g”SY F55YSX ‘S‘S’IY F”;:YSX Sny
Is7sySX ——— TsstySX s TsySX
inll linl
I35, 5X Ty SX
T5rsySX > TgorySX > LorySX
’?ZJX,SY\L (Lemma C.34) l}?&x,y
7

For the second statement, we first reduce to the rightmost subdiagram in Figure 9, which further
reduces as in Figure 10. O

C.7 The incremental lifting
ProrosiTiON C.38. For any object X and (T & T’)-algebra structure

b
TX 5 X  TsxX,
the I's-algebra structure on SX given by

Lug 5% h ST(TsaX+[X.X ST[b.X
TisxSX —— TyxSX —% STTg X o 2, o7 (e + x) 10 57X 2 sx

defines an incremental lifting of S to T’ - Alg along 6.
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rsﬂyT/SSX in 5 ff‘:asx,y ST(hS&ry+Snic+n3T) R
T5ySSX ——— Ts7ySSX —— [, SSX ———=— ST(IsrySX +SX +Y) ST(STTgy y X + STX + STY)
ST(ST(TsrryX + X + TY) + STX + STY)
ST(STTT+STX+STY)l
ST(R® x y+Y) ST(STT(Tsrry X + X +Y) + STX + STY)
T
(Lemma C.34) ST(Sp (rS”TYX+X+Y)+5TX+5TY)l
Tsyus, (interchange) TSy ki ST(ST(TstyX +X +Y) +STX + STY)
ST[STinl,STinz,STing]l
ST(STTgpy X +Y) STST(TsryX +X +Y +X +Y)
” yST[inl,inz,ing,inz,ing]l
STOySTOyTS, X ST(Tsry X + X +Y)
T STOy
v ~ Frepyx
IsySX —)r X TstySX —)inl TorySX = ? STFS'leX
Sny h° xy
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SI‘(h;(‘ny+Srl;+niT)

ST (in+SX+Y) \5

—_— _— 2 :
ST(TsrySX +SX +Y) o ) ST(TstrySX + SX +Y) ST(TZ 7y SX +5X +Y) — ST(STgp py X +STX +STY)
Ty / XTY+SnAnyTY)
5”M‘, ST ;. +5X+) ) |
ST(IgySX +SX +Y) " STUGpSX+8X3) ST(ST(TsrryX + X + TY) + STX + STY)
\ lsr(sﬁhsrmsn»
ST(IySX +SX +Y) (Lemma C.34) ST(STT(TstryX + X +Y) + STX + STY)
JVST(S;.L’ (T, y X4X+Y) +STX+STY)
— ST(R" sy +SnL+Y) ST(ST(TsryX + X +Y) + STX + STY)
2 o 1
ST xrs) M lST[STim,STm;,STm;]
ST(STOYIgy X +STX +Y) STST(TstyX +X +Y +X +Y)
lST( [STOYTgyy X.STiny]+Y) lsrsr[m,.mz.xng,mz,m,(]
o o o o
ST(STONTgry X + ¥) ooy ST(STOV Ty X + STY) ey STST(OV TGy X4 ¥) ot STST(Tory X+ X + 1)
T
ST(ST(IZy X +Y) +Y) or STy X

#
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A unified treatment of structural definitions on syntax

Proor. The given composite readily equips SX with (T @ T’)-algebra structure by Lemma 4.7
and the isomorphism I's - alg = T’ - Alg. It remains to verify that the unit and multiplication are I's-
algebra morphisms. The former follows easily by Lemma C.37, and the latter by Figure 11. There,
the middle, unlabelled polygon is chased as follows,

ST(SinySins] STISTin, STiny STins]

STOsxOs5xSTA 125, STO 505 STA STSOxOsxSTA L SSTOs7xOs7xSTA —— STOs7xOs7xSTA

STSTOxOxA
s

SSTSTOxOxA s6
STOg1 0,1 555

ST T sTssTON Ox A SSSTTOxOxA —£— SSTTOxOxA

- 7 o

STOs7xOstxSTA STO1X [TinySTing] STOsrxSTOXA STISTin,STina]

STSTOxOxA —2— SSTTOxOxA —“— STOxOxA

where the middle, bottom polygon is the image by ST of a diagram whose domain is a coproduct,
and whose commutativity may be checked termwise. E.g., the second term is chased as follows.

STX u SSTX A SST(A+X)

SOTA+STX) S SOTA+ST) e N

S(STA+STX)

w
ST(A+X) ——— STX

Os1xSTOxA ST imSTina] STOxOxA [m|

It remains to show:

ProposiTiON C.39. The distributive lawd;s: (T®T’)S — S(T @ T’) satisfies (5), which we repeat
here for convenience.

Ty =X DX ST(Terx X + X +X)
lST(TSTXU)Tﬁ[X,X])
Tyg m2x ST(TsrxTX + X)
lST(r]rS,TX+X)
rs):sx ST(T'TX +X)
fg X lST(inzin1X+X)
FSS;SX ST(T®T')(T&T)X +X)
- smister
T'SX S(TeT')T&T)X

inzSXl lsu;l‘(q;’]"

(T®T)SX » S(TeT)X

d /5X
We need the following intermediate result.

LeEmMma C.40. For any object Y, the following diagram commutes.
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wsiydiow eiqadje ue si uonedidiyny 1| “Si4

ST(ST (e X2 X42:5X ST(s

Ty 55 Tosxi
TsssxSSX = TsxSSX. =
TS| (associativity of 1) Sl (@ancoraiy of T)
ToxSSX T ToxSSX Toiy
(emma C37)
risxSX g STSIgpgSX S TEomeSX
ST(TszsxSX +2 - 5X) ) ST s SX Gaueaty of &) ST P T (emma C37)
STtsxins)|
ST 5x025%0) 1)
ST(TssrxSX +2-5X) ST(TsrxSX +2-5X) STSTgy SX S SSTTg X e STTg,5X
) ey
ST(TssxSX +2-5X) ST ST(hxric %) § 51 AT
ST SX525%) _—
X — 1) SASTIE, L XS TY) STTI  XATXASTY) STIT 2 STUSHTTS X2 STX) Tl TingSTin ST
ST(TyxSX +2- 5X) ) X+ 2 5%) Ly STS(STI X+ X+ XV ST (ST X4 STX # STX) —ZD 2 sr(sTrg X+ STX+ STR) TS (7712, X2 5TX) 10y ST(sTE X 2 ST W e, X+ x+X)

ST(STTgp

(casy)

ST(STIg X +2+5X)

STsTI XX | :

ST(STX +2-SX)

ST(sas ul

ST(SX+2-5X)  (easy)

STUSim Stng.Sins]

STS(TX +2-X)

— ST(ST(srxX + X +TX) +2-5X)

ST(STTY,
- ST (ST (L XoXATX)2:5%)

STISTIT +2:5%)

ST(ST{42:5%)

———————————————————— ST(STT(IsyxX +2- X) + 2

R ST (X +2-X) +2-STX)

(easy)

T (Tox X2 )42

ST(ST(TsxX + X 4TX) 42 5X) —— TS0 op(spr (T + 2+ X) + 2 S X0 (hy X + 2 X) 42 STX)

(easy)

l\n\nmx—n 2%
STUSTT+2:5%)

STETX +X+TX) +2:8X) —————— > STSTTQ@ - X +X) +2- X, ooy S
i W @xx) 5y

STLSim Sin.Sins]

STS(T(2- X +TX) +2-X)
X £

SST(T(2- X +TX) +2-X)

I
sttty

(easy)

ST{Sim, Sin,Sins ]|

{proved in cog) STS(T(X+2-X)+2-TX)
55

SST(T(X +2-X) +2-TX)

STUT XX D) -

- STS(X+2-X) ST(T(2-X4TX) +2-X)
STISX.SX.5X] ST(T@Xrae2 X
STSIXXX] ST(T(2-X+X)+2-X) STTIXXX)#2X) ST(TX +2-X)
STSX (aturalty of 554%)
so]
SSTX bix

STUSTim STins STins]

e STST(IsxX 42 X +2-X) — ST(Ig X+ X +X)
P s

STISTin, STin STing]

#T(T5xXsV)

—————— STI,

B

TssxSX

TsxSX.

ST\XX

ST XX

S STST(TxX+2-X42.X) ————— T X

STUSTin STins STins]

(easy)

STS[Tim Tin, Tin |

(naturality of $5%)

ST(IT(2 X +X) 42+ X) P oz X 4 X) # 21X LTIk 0 X 4 X 42 X)

STST(bs2X42:X)

(ST(2- X +X) +2 STX) — Wil §TST(2- X+ X +2-X)

SSTT(2- X +X+2-X)

STTIXXXXX] | e

(proved in Cog)

(naturality of 4%)

(easy)

[

(easy)

PTIXXXXX]

sl

STX

=
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A unified treatment of structural definitions on syntax

°w

L5y SY ",
Ts5ySY —————— Ty SY —————— ST(Tsry Y+ Y +Y)

Mg sy lsnrmn%[m)
'Sy ST(TsryTY +Y)
lST(m-S‘Ty+Y)
ST(T'TY +Y)
in,SY lsm1 [(uT®T oinging),nT®T" |
S(TeT)T&T)Y

| b

(T®T)SY e s S(T®T)Y

Proor. Up to some easy rewriting of the right-hand composite, this is proved in Figure 12. O

Proor or ProposITION C.39. By diagram chasing, as follows.

d
Ix=X X > ST(Tsrx X + X + X)
Lysmex i lsmrsniﬂx,xn
) 5%
TsxSX ’ ST(T'TX +X)
anxsx \ lST(inginﬁX)
TssxSX T) ToxSX ST(TeT)(TeT)X+X)
rs.SX uX lsm] T o™
~ (Lemma C.40)
T'SX S(T®T)T®T)X
iny \LS”)T(GBT,
(T®T)SX y S(TOT)X O

d/gX

D PROOF OF THEOREM 4.13

We fix a given incremental structural law

d: ry(Z(X)) - ST(FSTy(X) + X+ Y)

over 6: TS — ST, and let T = I

Given any distributive law, algebras for the composite monad admit the following well-known
characterisation.
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IssySY

ST(TsryY +Y +Y)

sySY

T
”
nrs. .»‘yl
T'SY
\ d
n
n

Ts(rer)sy (T ® T')SY -Tsajsvdjs

\ |

(T & T")SY
ins
+

(ToT)ToT)SY

TsySY

\ ayy

n
\ il ST (Lsim, 0T +[Y,Y])
°
LssremyyS(T© T)Y ——————— Ts(raryS(T & T)Y
ST(Tstremyy(TOT)Y +(TOT)Y +(TOT)Y) ST(Ts(rer)yy(T®T)Y +Y)
ST(I"SU»,,““,Y(T@T’)YH(T@T’)Y,(TeBT’)Y])l n —_—

ST(Ts(reryy(TOT)Y + (T T")Y)

ST (g (rar v +Y)

ST (nrg+(T®T")Y)

in,SY
ST(T'(T®T)Y +(T®T)Y) ST(T(T®T)Y +Y)
(dysY is a Ts-algebra morphism) ST (ing+(TOT')Y)
ST(T®T'NTS®T)Y+(T®T)Y) (casy) Sim[(I°T oing) 7o)
¥ sr[@“’,(mr’)y]l
ST(TeT")Y S(TeT')(T®T)Y
Siml
S(TeT')(T®T)Y
SMT/e;T/
Sp
(T®T)SY S(TeT)Y

djsY
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A unified treatment of structural definitions on syntax

Definition D.1. Given any monad distributive law §: RS — SR, a d-algebra is an object X €
C of the underlying category, equipped with S- and R-algebra structures, say a: SX — X and
b: RX — X, satisfying the following law.

RSX — %%, SRX

| |s
S A

A S-algebra morphism X — Y is a morphism between underlying objects which is both an S-
and R-algebra morphism.
We let § - Alg denote the category of §-algebras and morphisms between them.

(13)

LemMma D.2 ([BEck 1969, §2]). Given any monad distributive law §: RS — SR, and SR-algebra
x: SRX — X, the derived S- and R-algebra structures

Snk MRx

SX — X SRX 5 X RX 25, sRx 5 x

equip X with 5-algebra structure. Furthermore, this underlies an isomorphism SR - Alg — & - Alg of
categories over C.

In our situation, applying this to the distributive law d;s: (T ® T")S — S(T @ T’) from Theo-
rem 4.10, we obtain:

CoroLLARY D.3. An S(T @ T')-algebra is equivalently an S-algebra a: SX — X, equipped with
(T ® T’)-algebra structure satisfying the pentagon (13) withR=T & T’.

But we can say more, by Corollary B.3:

LemMa D.4. An S(T & T')-algebra is equivalently an objet X, equipped with morphisms
a:SX - X b: TX - X c: T(X,8X) - X,

the first two of which are monad algebra structures, satisfying the pentagon (13) with R = T, together
with the following diagram,

TosxSX Isaa Tox X
lr& SX
TsxSX @) c
a5
STIg X —sra— STX — SX . X

recalling b > ¢ from Definition 4.11.

Proor. The pentagon (13) with R = T @ T’ equivalently states that the S-algebra structure
a: SX — X is a morphism of (T @ T’)-algebras. But by Lemma 4.7 this is equivalent to being both
a T- and TsA-algebra morphism. The former is taken care of by (13) with R = T, the latter by the
given diagram. O

It remains to show that, given an object X equipped with S- and T-algebra structuresa: SX — X
and b: TX — X satisfying (d1), the following are equivalent:

e a morphism c: I'(X, X) — X satisfying (d2), and
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e a morphism c: I'(X, SX) — X satisfying (d2’);
and furthermore the notions of morphisms agree.
For any c¢: I'(X, X) — X satisfying (d2), we define ¢ to be the following composite
I'(X,a c
r(x,sx) X, rx, x) S X,
and conversely for any ¢: T'(X,SX) — X satisfying (d2’), we define ¢ to be

X.ny)

T(X,
T'(X,X) —— I'(X, SX) - X.

It thus suffices to prove:

(a) the assignments ¢ — ¢ and ¢ +— ¢ are mutually inverse,

(b) for any c: T'(X,X) — X satisfying (d2), ¢ satisfies (d2’), and conversely

(c) for any c: I'(X,SX) — X satisfying (d2’), ¢ satisfies (d2);

(d) for any (d, 5)-algebras X and Y, a morphism f: X — Y which is both a T-algebra mor-
phism, an S-algebra morphism, and a I'-algebra morphism is a morphism between the cor-
responding I's-algebras, and

(e) conversely for any d,s-algebras X and Y, a morphism f: X — Y which is both a T-algebra
morphism, an S-algebra morphism, and a I's-algebra morphism is a morphism between the
corresponding I'-algebras.

Statements (d) and (e) follow easily by naturality of #° and the fact that the considered morphism
is an algebra morphism.

Statement (b) follows from commutation of the diagram in Figure 13, and df} as in Defini-
tion C.35. Subdiagram (A) commutes by chasing as in Figure 14. Subdiagram (A’) commutes as

I'sxa

TssxSX LsaSX TsxSX Tox X
g SX RSx X
v [SX ) Ixa ¥
TsxSX = IxSX I'xX
|
axx T sxl
ST i X TsxSX
lsr(erXJr [X.X]) d;;fxl
ST(FSX +X) ST(FS.T|XX) (B)
lST(l"aX+X) ST (Tsp X+ [x,x])l
ST(FX + X) ST(FS)(X +2- X) c
ST (b>¢) ST(FaX+X)l
(A, Figure 14) ST(FXX + X)
ST[eX] sr[c,x]l
STX — b, sx
\
ST(X) SX . X

Sb

Fig. 13. Main diagram for proving (d2’) for ¢

shown in Figure 15. Subdiagram (B) commutes by Lemma D.7 below.
Statement (c) follows from commutation of the diagram in Figure 16, where
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v weideipgns Suisey) ‘| ‘814

.
dX,X

d.(/.)
Tsx SX Ty SX ”\* STT® X

/$ ST|X
. T sSX (Lemma C.37) Se
\rngxsx / ,,}s(. . ' /p T, X lsr(rﬂ,x JXX])
FSSXSX @) STTST|SXX ST—TS) STSFSTS|XX m SSTFSSTIXX ST(PSXX'FX)
ST(I‘aX+X)l
ST(Tx +X)
TuSX
lST[c,X]
T5aSX STIg X (A, Figure 15) STX
[
SX
la
I'xSX W IsxSX W STFST|XS')'I<(F51,X+[ ’XS]%H(FSXX"'X)SM)ST(FX +X) ST[C,Xi STX Sh > SX 2 > X
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. ST(75+5X) o ST[Sin,,Siny] . SOT5x X . usrr]‘rsT\XX .
. AN
STFST\SXX ST(STgrgx X +SX) STSI‘STS\XX SSTI‘SST\XX STFST\XX
sr(sr;“msx\l STsriu\xXl STSIgsxX
ST(I, X+5X) o ST[Siny,Sina] " . . (interchange) o
5 ST(STZ X +SX) STST3 X STSTggr X rsrr ST X ST X+[XX])
ST(n°+8X) ] . STIX
(13) lsrsrssbxx (naturality of ) \ STS(TgpX+[X.X])
o STSTS, X .
ST(Tgpy X +SX) sz, 0 - Shix STSTgg X ST A STS(IsxX +X) ST(Isx +X)
“’ STST, Xxl
(monad algebra law)
ST(S(TgrxX) +X) ST(STgyX +5X) ITINGT] S?‘blig‘xx STS(Lu+X) ST(L+X)
l.sTt.\l‘;h)GX) sr(sr;xmx»l ST 5(1«X+[X.X\}
. ST ST(S(TZX) +X) ST(STZX +SX) SRS : STS(XX +X) —zr ST(IxX +X)
ST ST(S((-+X)+SX)l STS[eX] lsﬂc.x|
s
sy ST(S(X +X) + 5X) STEIXXI$X) ST(SX +5X) TN ooy &S5, ge1x “ STX
(naturality of 1) l l
SSb Sb
" s
ST(S(X+X)+a) STa ssx — X5 ex
ST(S(I7X)+X) lSa
ST(S(TSX) +X) STS(eX)+X) ST(S(X + X) + X0 SN ox L xy X oy sb sX
o - ST +x) ST(n3+X) STIXX] *
ST(ToxX + X + %) B8 X + X+ X) LX) o (x4 x4 x) LN o7 (x4 x) 2
W (easy) STRXXX] \ ls‘r[x,x]
STFST\XX STTX+ XKD ST(Tsx X + X) STOX) ST(IxX +X) STIex] STX Y SX a X
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A unified treatment of structural definitions on syntax

o the top part commutes by Lemma C.37 and
o the bottom right part commutes by Lemma D.6 below.

dx x

( Tsﬂzx T SSX TSSX a2,
Ix>X —> FSXsX 4) FSSXSX 4) FSXSX —> ST(FST)(X+X+X)

J{rxnz‘x ST“’"C) ST (Tosp X+[X,X |
IxSX ST(FX‘)L( +X)
era Toxca Tsaa ! ST(T,s X+X)J
IxX ST (Tsx X + X)

Tsx X
a
\ i %
X

Fig. 16. Diagram for (c)

Finally, (a) follows from Lemma D.5 and D.6 below.

LEmMA D.5. Given an algebra SX 3 X, precomposition with morphisms I's, and I;s induces a
bijection (natural in the algebra) between morphisms I'xX — X and morphisms IsxX — X making
the following diagram commute.

I'sX
Tox X —% o Iy X —X 4 gy X

\ / "

X

Proor. Straightforward. m]

LemMA D.6. Given an algebra for S(T @ T’) presented as in Lemma D.4 by compatible algebra
structures

a:SX —» X b: TX —» X c: IsxX — X,
the diagram (14) commutes.

Proor. We show commutation of the diagram by precomposing both sides by the split epimor-
phism Is,a, and observing that they both are equal to the left bottom composite in (d2’). For c,
we readily get the top right part of (d2’), hence the result. For the top right part of (14), the result
follows by chasing the diagram below.
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TosxSX LaSX TsxSX Tsxa Tsx X
fﬂi SX L sxl raxl

TsxSX LSX TxSX Ixa Tx X
lrngx X T sxl L X\L

TssxSX TsaSX TsxSX Isxa Tsx X
f"’s( SX

IsxSX c

a5
STI X —srm— STX — SX . X

Lemma D.7. For any (8, d)-algebra X with structure induced by
a:SX - X b: TX - X c: IxX — X,

the following diagram commutes

I,sSX 4o
IxSX —— TsxSX —= STIq X
ST (Tesp X+X.X 1)
Ixa STIgX
lST[c,X]

IxX STX
\ %
X

Proor. We start by reducing to Subdiagram (C) as below.

IsxSX

1“” )5( SX d;(L:)X

IxSX —————— [, SX ——— §TT3. X

mlo(r”)s(ysx) T x |
I'xa Torya ST (Taosp X+[X,X 1)
inio(T, s7X)
IxX ———=>* I“;TXX © STTgX
iny TaoshX+X JST [eX]
o
o X STX
c,X
[eX] aoSh
X

Commutation of (C) is then equivalent to commutation of the transposed diagram below.
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T ST Taosh X+[X.X1)

—w

d° . o
SX T ST g X ——————— T STIRX
la ”[ijTXST[cX]l
X STXSTX

NSTX.X Torx <a05b)l

Ty Torg X Tirx IR X TorxX

STX*STX Ty g X STX™X Torx[eX] STX

~w
Because d°y x is a monad morphism by construction, one easily proves that both sides have the
same restriction along ’7x X — S§X, so it suffices to prove that both sides are S-algebra morphisms.

By construction, a and d° x.x are, so we focus on other morphisms.

e We first recall Lemma C.26, which says that Tg, lifts to a functor STOx - Alg — X -alg,
by considering, for any STOx-algebra e: STOxA — A, the following >-algebra structure:

Tk A
& x x Ty A
STOx r;TXT;TXA
J:ISTXSTOXESTXA
T35 STOxA
lq;TXe

A.

X
’IS TX

X
'IS TX

e For proving that the top right composite is a morphism of X-algebras, it thus suffices to
prove that the underlying composite STTg;, X — X is a morphism of STOx-algebras. But
this is in turn equivalent to being both a morphism of ST- and Ox-algebras. This easy to
see for Ox, and the given composite is a morphism of ST-algebras as a composite of two
free ST-algebra morphisms, and the ST-algebra structure STX — X.

e For the bottom left composite, we show that it is a 3-algebra morphism by chasing the
diagram in Figure 17, where the bottom right subdiagram commutes by Lemma D.8 below.

O

Lemma D.8. For any (8, d)-algebra X with structure induced by

a:SX - X b:TX - X c: IxX - X,
the following diagram commutes.
[y X —— 2 ST, X
T (@onsx) | JsTTsxsixoxn
TS X STTSX
Taoswyxl lST[c,X]
STX

X

Proor. Since the domain is a coproduct, we proceed termwise. On XX, the result is straight-
forward. On I'syx > X, we observe that the diagram in Figure 18 commutes for all X, Y, so that the
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‘wrexSerp SUIMo[oJ a3} Jo uoTeINUIIod 0} (dSueydIojul SUIsSN) SIINPIIT BUILII]

INSTX X X o T x LoshX X Torx[eX] X
( 2X 2Tory LorxX ’ 2F[srxrxx 2Ty X
dxx do—lérxrgrxx’x dOTETXX'X
TrxSTOXTgrynsTX.X
X o X o X
STOX ¥ TXX ’ ’ISTXSTOX STX’ISTXFSTXX ’ISTXSTOXFSTX’ISTXX
NSTX xX ’IETXSTOXSSTXrSTXX 'IETXSTOXESTXX
s TS T 35X Srxdiox STOxTS. . X Ty STOXTR X TS STOXxX
— S S
STX"STX STX xT, STX STX X STX X
TipxSTOXTE X Ty STOx [eX]
TS ST[X,X]
STX >
- Ty [eX.X]
TsrxTsx (aons,x)
aonsx "I§TXSTX
Ty (a0Sb)
T IO o X T [e.X]
L X o STX " aoShb X o STX L™ X
X TSTXX TorxLsrxX Torx IxX T X
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A unified treatment of structural definitions on syntax

TsrySX m > T2y 5X
dx,sTy liny,iny ]l
STFS.T|STYX I§ ITYZX

ST1S .
\ dX’TYl
(88:4°T) ss;ﬁﬂryx

STSFS'TSITYX > STI“S'T‘TYX dyy
STST STTTl
srsrt STTTgrr v X
S”Trépmxl
STSTF_S.TST\YX ST X ’ STFS.T|YX
wST)y

Fig. 18. Proof of Lemma D.8, first step

LrxEX ——29% s7re o X s STSTIY W X S, STTg X
fao%le lSTFsmos»X lsuraosbm[x,xn
Fsz X STTY 5T|x STF"X
Fx(aor/zx) sr(raobl,xﬂxx]) sr[cx]
STTRX STX

ST[C X]
[eX] S aoSh
aoSb

whose bottom left polygon commutes by (d2). The right-hand part is chased as in Figure 19. O

E PROOF OF THEOREM 5.12

LemMA E.1. For any structural interpretation K: ©(X,X) — STX of an incremental structural
lawdxy: ©(ZX,Y) — ST(OsryX + X +Y) over a monad distributive §: TS — ST, with S = X*, the

©-algebra structure defined on any ST-algebra X with structure mapsa: SX — X andb: TX — X
by the composite

K b
0, X) 25 stx 2 sx A x
satisfies (d2).
Proor. By coherence of K, this reduces to commutativity of both of the following diagrams.
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ST(Tsrsrx X + X + STX)

ST X

TS5 jaosh

STTg; X

ST (TospX+[X.X])

X

stiex| %
STX

ST15T

ST (TaosbosTaosTshX+X+STX)

BT X
X T STT:

SrixX

STSTI"S'TSTIX

ST (Tuesp X+[X.X])

STIZX

/\) lsrlc,XJ
ST|STiny,STin,] ST[X.X]
-

STX

ST(IxX + X + STX)
ST1ST
ST( [c,X]+STX)l
ST(X +STX) ST ST(STX + STX)

JVST(aoSbh?TX)

ST (X+aoSh) ST(X + STX)
J'ST(Xﬂesb)

ST(X +X) ST(X +X)

ST
STST(X +X) ——— ST(X +X)

Jrsrsr[x,x 1
STSTX

ST[STX.STX]

aoSh

ST (aoSh)

STX 208b X
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A unified treatment of structural definitions on syntax

O(ns.x:1y) Ksx Sox Hx

(=X, X) y O(SX,SX) —X5 STSX —2Xy SSTX —X4 STX

Ssbl J/Sb

i
0(n3.x,X) 0(aa) SSX —) SX
] L

O(SX, X 0(X, X —) STX ——— y SX > X
(SX.X) 5t O(X.X) L
ST(O(n37 STX)+[X.X]) s

ST(O(X, STX) + X + X) — L OBSTOMXXD or(sTX, STX) + X) ST(Ksrx+X) ST(STSTX +X)

ST(e(X,Sb)Jf[X,x])l lsr(@(sb,sbm() lsr[ WS nsT ]
ST(O(X, 5X) + X) ST(O(5X, 5X) + X) STSTX
3 ST(STSb+X
ST(B(X,a)+X)l ST(O@a)+X) (5T L&T

ST(O(X, X) +X) ST(STSX +X) STX

ST(Kx+X)l (—/w le
ST(STX + X) SX

ST(Sb+X)l la

ST(SX +X) —gimr STX = SX - X |

COROLLARY E.2. The assignment of the previous lemma lifts to a section K: ST -Alg — S(T &
T') - Alg of the forgetful functor S(T ® T’) - Alg — ST - Alg, where T" = ©.

Let us now prove Theorem 5.12. Suppose given a structural equational system over a distributive
law §: TS — ST, i.e., an incremental structural law

dx,y: @y(Z(X)) — ST(@ST(y) (X) + X+ Y)

and a pair of structural interpretations L, R: ©A — ST. In this section, we show that the initial
ST-algebra STSTO — ST0 coequalises Lstp and Rsrg.

To this end, we exploit admissibility of the monad morphism ST — S(T@®T’) (Remark 12) which
entails that the ST-algebra structure on ST( uniquely extends to an S(T @ T”)-algebra structure.
By Theorem 4.13, we obtain that there is a unique ©A-algebra structure on ST satisfying (d2).

But by the corollary L and R both induce ®A-algebra stucture on ST which satisfy (d2), namely
the composites

Lsto s'r
Os79STO 3 STSTO — X, $T0.
Rsto

We thus conclude by uniqueness.

F PROOFS OF §5.5
We need to check coherence (Figure 2) for all of L, Ry, Ly, and R,.

F.1 Coherence of L;

We first check coherence of L; in Figure 20, which uses the following lemma.

LemmMa F.1. For all objects X, the following diagram commutes.

75



T. Hirschowitz and A. Lafont

rsx']‘;( r'igxsx
Igx X ———— Tggx X ———— Tg5xSX

f/rs,xl

TX
k /
STX

Proor. By diagram chasing, as follows.

l’ﬁsﬁx

TSX

Ts. S I's SX
Tox X X TsxSX Tox TosxSX
x\ Tssxny
Tssx X (Lemma C.37)
dsx
7°Tsx X
n¥ing
r“
5T5,%0 siny
S(TsxX) ————— S(TssxX) —— S(TssxX + X +SX)
Mre,.x

sw&sx)l

S[Sinl,Sinz]i
SS(FSSXX +X +X)

w5 s x+x+x)J
x

S(rsxx+X+X)

Slnrgxonknk IJ

STX

TX

S(s(rssxx + X) + SX)

(Lemma C.37) s SX

TsxSX

(Lemma C.40)

TSX

O

In Figure 20, the subdiagram marked (d/d ® d) commutes by chasing as follows.

dxc x®X
X ®X®X XX©
N5+ x ®n§®n§}l T+ x ®N5% ®X
SX®SX ®SX SX®SX®X
SX®W§X®SXl lsx‘aqueax @) Slnrgax-nknk®X
SX ®SSX ® SX SX®SSX ®X
lnrs,sx ®X
T Sx®X
nrgSX®nT, TSX®@ X — 228 5 STX ® X
T,S
kTSX@q X m
TSX @ TSX

»y S(X®SX+X+X)®X

Slrgaxsningl) ensy

~

5)( ®5x

> STX ® STX

The subdiagram marked (st/8) has a coproduct as domain, so we check its commutation termwise

in Figure 21.
The subdiagram (I'; T') commutes as in Figure 22.

F.2 Coherence of R;

We now check coherence of Ry, in Figure 23.
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17 Jo dua1ayo) "0z 814

TX@X@X == [@X®X+IX®X®X ———

e x OO

AxeXsXenSex

2

X+Xanens
Y @ X 43X @ SX © SX

kst (sx.0y) 85X TXstxasx, (59

TX+3(X®SX) ® SX —
>

Jx+E(XeSX)eny

X®X+ZX®SX®)§(W>®}(®X+E(X®SX)®X
(5¥Xax

dx x®X
(Definition of d)
(d/s®8)
SX®SX ® SX S(X@SX+X+X)®X
Jsxenly SMr\Ax.VL’V;]WV;rl
TSX @ TSX T STX @ STX
frox jsrx
TTSX Tox TSTX e

(X+2(X®8X)) ® X

[n¥ins, (15 0im2)in, 18X

STTX

Sk

STX

STins,STin,

) +in, 5 tnsen’ (XeSnLasyk
R 42X @ 5X 0 5X) % X 4 5+ (X © SX B SRS sT(x @ STX © ST (X © STX @ STX + X + X)

(st/8)

st
%

ST(y37 eSTX@STX+[X.X])

ST(STX ® STX ® STX +X)
lsm,w@vi”m
ST(TSTX ® TSTX +X)
[stirmen
ST(TTSTX +X)
lsm“ﬂsrxm
ST(STSTX +X)
lsm;’ T
STSTX
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0z 24n314 o (¢/1s) weudeipgng ‘|z ‘Si4

X®X X — TX
r]i@Xl / Tryf{
SX®X — Sxeny, — SX®SX Jsx > TSX ) > STX

s
nTx

X

Sing®X Snkeny’ \ TSnk STr]}T(l \

S(X®SX+X+X)®X > STX @ STX —— TSTX 5 > STTX T) STX
Hx

Slnrgax-nknk 1@ Jstx TX

S(X®SX)®nj SEXaSX,(5X.0 iny an’ (Xesnkesnl) STiny
S(X®S5X)®X i (X ® SX) ® SX XX, 5 (¥ SX ® SX) —— 5 $HX ® SX ® §X) —— N SP(X ® STX ® STX) 1 ST(X ® STX ® STX + X +X)
w} W lsrm"asrxxsrxv lsm,;;l ©STX@STX+[XX])
sl (nkesnkesnk ST(5x @0, L
(ngeoins)im ©X FHX ® SX) ® X (ngeoinimg S(x @ X ® SX) XWX @ STX @ STX) LIxSISx®Ised, op 6Ty @ SSTX ® TSTX) ST(STX ® STX ® STX + X)
dxa: Si
N’ y STy yrr@lbl)ﬂl T stim, —_ J,STISTX&W:,XE%,XD()
SX®SX+X+X)@X S(X®SX ®SX +X ® SX +X) ST(mgrx@Sly) ST(TSTX ® TSTX) ST(STX ® SSTX ® TSTX +X)
3 (g x) @0 S(nrgx®Sn%) ST<T57XM)\M¢
h (naturality of d) SnT (TnL@sTyk) .
Strganforl1ong S x®SnL 4 xn}) $(1x @ ST "X (11X @ STTX) ST(TSTX @ STSTX) ([ ST (1 57x OTSTX4X)
ST m,»l l.sr(m rs7X)
STX ® STX SH(TX) ® TX — S(TX ® STX +TX +TX) STTTTX ;1) STTTSTX ST(TSTX ® TSTX +X)
'lrﬁrxﬁﬂ’,\)gl STy uTSTX STim ST (rstx+X)
STX6nEy STX ® STX STTH, STSTSTX ST(TTSTX +X)
STX® .
n; STug" lsr (S u" STX+X)
STX ® SSTX ® St xnfoniy] ST STTTX STSTX ST(STSTX +X)
st ST AT
Snirx ! l
m STTX STSTX
51
Sul Sk lﬂx
TSTX < STTX STX
=~
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A unified treatment of structural definitions on syntax

ST (155 @35 @M hry)
ST(TX ® STX ® STX) U SALES ST(STX ® SSTX ® TSTX)
Ls T (g sTx ®TSTX)
ST(nrgrx ®SnT) ST(TSTX ® TSTX)
(Lemma F.1)
ST (8rx®TSTX) lsr(rsrxezm:js., x)
ST(TTX ® STTX) ST(STTX ® TSTX) ST(TSTX ® STSTX)
ST(qfl.X®STT§}(STTX®5TX) L\‘Tw.g TSTX)
ST(STTX ® STTX) ST(Orx@50rx) STTTSTX
ST(STTX@nj;TTX)l
ST(mrgrrx) ST(STTX ® SSTTX) STuTST STnSuTSTX
(Lemma F.1)
ST (Nrg.sT7X)
STTSTTX STTSTX % STSTSTX
STér lxl lSTS;X lSTS&,X
STSul. ST
STTTTX - STSTTTX e STSTTX — By orssTTX
— STHSrrx /
STyl - srq, rx lb& zx\ lsm
STTyk, STTTX sq,, x SSTTTX STSTTX
/ 575#){
Hrrx

STTTX STTTX STSTX

l551x
ST,

& SSTTX
STy STy lﬂTTX

STTX

lsyx

STTX STX

Suk

Fig. 22. Subdiagram (T';T)

There, the top subdiagram with red arrows is the associativity axiom for pointed strengths. We
then use naturality of st three times easily, and a fourth time much less easily. The point is that
we use naturality at the pair of morphisms

id eny)
X 25 x S(X®X)—X>S(X®SX)—>STX

which requires us to prove that the second morphism is a morphism of pointed objects. We do this
by chasing the following diagram,

I ing SHX 8 X) st Xxex S(X & X)
iny

Pt >0 S(Xeny)
I I

X sx S(X ® SX)

iny N3t x

I®

Mrg.sx

iny®iny SX ® SSX TSX STX
SX®rgy s
NTsx

XX —————— SX®SX ——————— S(SX ® §5X) —— S(SX ® S5X) —— STSX —— SSTX STX

Ns+ x ®ls+ x Noxesx

whose question marked subdiagram commutes as follows.
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X8 XeX IeXoX+IXeX0X XeX+IX05K 05X TX4+E(X05X) 85X TX 4T B X 5X) T TX 45 (X0 5X ©.5X)
SXesXesX X8 (X0X) — [8(X0X) +5X 6 (X8 X) ne i (X©X)+3Xo (5K 05X) TX 43X @ (X ©5X)
5X8 (5K @ 5X) SX@(Xesx) lmxxamzms(xgn o IR S(X®X)+3X 8 5(SX & 5X)
L nhedgesnp) Kermx -
atsont| e \’u o EXaS(XORE)
75X (5K 0 95%) sXeTX ey Azxeaxuz(xeas(xwx)y S(X®X) +3X 8 S(X@5X) STX+3X @ STSX
rsvoms | R Ioons i ssoresixent ervos
ToxeTS o st aon i . STX+ 32X @5(X 9.5X)) STX+3X @ SSTX STX +3(X  5(5X @ 5X))
TSX & STSX ——— casiy —— STX @SSTX i STX+ (X 05TSX)
TTSX ————— 15— TSTX wrss(xaxhx‘xs)r) STXHEX 6 STX STX+ (X0 55TX)
® |
£ S(IX@STX+TX+ rx)
iy STTX STX4 (X0 STY)

l»r Xein,

Tsx STX+37(X @ STX)

l\yhmq,»n

STSX 1 STX +5(X © 5TX)
six STX STX +5(TX ®STX)
SsTX STX£STTX

Jimes

STX

Txtin: et XSRS G ST(x 0 5TX @ ST

7in

T (X @ STX @ STX + X+ X)
ST SSTXSTXXX])

srastx Ty
O

I i
krw 'l

STSTX
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A unified treatment of structural definitions on syntax

in®iny M5+ x @5+ x

I®1I X @ StX - . SX ® SX
lsxmssx
AT I ® SX SX ® SSX
\ iflrs,sx
I® SSX TSSX Ty, TSX
l \ i
Tox ssx
Sins dsx
SX®55X+SX+5X S(SX ® SSX + SX + SX)
ix
Sx
st x
SX STX

The double question marked subdiagram of the latter diagram in turn commutes as follows.

+ x @+
Tol —MOm . suy o sy Ty x @l x SX @ SX
lsxemssx
toim| MK 2 Xense x SX ® SSX
||

183X *X ® SX SnS®SSX SX ® SSX
1®ny+_xJ y Jx*nf(mx J/m;,sx

185X — o BX®SX ey SX ®SSX — oy SSX @ 55X ., TSSX s TsX

i ®SX SSXonsy g sX

It remains to prove that both large subdlagrams at the bottom of Figure 23 commute. For the left-
hand one, the first term is almost trivial, and the second term is easy:

S(X®S(X®ny)) (X ®Snrg.x)

(X ®S(X®X)) (X ®S(X®SX) —— (X ®STX)
x linz
SHX Q@ S(X ® X)) SHX ® STX)
S(iny)ons+ xes(xex)oinz N5+ XeS(XeX) N3+ XeSTX

S(X®S(X®X)) = S(X ® S(X ® X)) 55— S(X ® STX)

S(XeS(Xeny)) S(X@Snrg,
S(X®S(X®r]§<))l ls(;;X@srx)
SX®S(X®X)+X+X®X) S(X ®S(X ® SX)) St es ) S(TX ® STX)
2y ®onre.x
S(n§(®5m~5x)l lSUrS,Tx
S(TX ® STX) STTX
Snrgrx
S(TX @ STX +TX +TX)
Snrg.rx Sﬂ;
STTX Sy STX

In order to prove the right-hand one, we need the following lemma.
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LemMma F.2. For any object X, the following diagram commutes.

SXeus, SX®Sny,
SX®S5X —————— SX®S5X ——— SX ® 55X

'Irs,sxl/ l’lrs,sx
TSX TSX
x /

STX

Proor. We resort to the definition of § from d, and proceed by diagram chasing, as follows.

SX®us SXeSn3
SX®SSX — "X, sX®SX X s SX ® SSX MoSX

l;f)x \ lSX CITS

> TSX

SX®SX+X+X)

lS(qu'X-'—X*—X)
(Lemma C.40)
1rs,5X S(TX +X +X)

ls (TX+[X.X])
S(TX + X)

TSX

S[TX.n%]

SX ®SX

|

SX®SX+X+X)

S(Urs,x+X+X)l (Lemma C.40)
S(TX +X +X)

S(TX+[X.X J)l

S(TX +X)

S[TX.n%]

STX

We may now prove that the bottom right subdiagram of Figure 23 commutes.

nen” (XosuL eseT)

(X ®SX ® SX) —— (X ® SX ® SX)
l:,,
(X ® (SX ® $X)) —— TH(X ® (SX ® 5X))

s ’l e (Xe (ST eST)

3(X ® S(SX 8 5X)) — TH(X ® S(SX ® SX))
,,m,u\asrsnga.\-n;n\’ ST(X@nExesry)
ST(X ® S(STX @ STX))
ST(XGS(STXO137,0)
2(X ® STSX) ——— (X ® STSX) ST(X ® S(STX @ SSTX))

q,,ﬂuxwx,,;\’ l.mm.\-m,,m

ST(X ® STSTX)
R )
T S
(X @ SSTX) ———— E*(X @ SsTX) 7 ST(STX @ STSTX)
o (XBSSTRL Jl

2(X ®STX) ST(X ® SSTTX)

ST(ax.srxsrx)

ST(X ® (STX ® STX))

.ﬂu,;’mlx«n:”n\)

ST(STX ® (STX ® SSTX))

ST(X ® STX ® STX)

ST(X®STX ®STX + X + X)
[srgssmxesretcs

ST(STX ® STX ® STX +X)
ST(@rx)

ST(STX @ (STX ® STX) +X)

ST(STX ® TSTX) ST(STX ® (STX ® SSTX) +X)

l‘\) [srisrxemsnxen
ST(TSTX ® TSTX) ST(STX @ TSTX +X)

STISTXG )

ST oTSTXN)

ST(TSTX ® TSTX + X)
STy osTHTX) STUSTX o0 1)

STim ST(TSTX ® STSTX +X)

ST(TSTX ® STSTX)

iny ST 6SSTTX) ST(SHT®S57x) lwmm\w lmm\ p—
(X ® STX) ST(STX ® SSTTX) STorxesin)  ST(TTSTX) T ST(ITSTX +X)
ST(S1E,@SSTTX) STEHTSTH) srasursrxen
ST(Xepfy) ST(STTX ® SSTTX) TS STSTSTX T ST(STSTX + X)
Tavxosx
STl s7rx)
STTSTTX
ST(STTX0ufry)
S(X® STX) ———— ST(X ® STTX) STsors
BT Pp— v e
sx«,ixxsTx;l STULesTTX) N * STUT AT
ST (TXoSTH) STisufyesTT)
S(TX © STX) T ST(TX @ STTX) ooy ST(STX @ STTX) 23 ST(STTX & STTX)
T @STTX)
S Ml srisTrxesE )
st 0
STTX ST(STTX @ SSTTX) —re—ed STISTTX — s STSTTTX I srsrx By srssTTX
stest rq’,(asbv;uvl
ST
ST(STTTX ® SSTTTX) STSTX

ST

STTSTTTX

STX



A unified treatment of structural definitions on syntax

There the bottom right subdiagram commutes as follows.

ST (1rg,sTTX)

> STTSTTX

ST(STTX ® SSTTX)
ST(STT;;)T(MS;;;TX)l
ST(STTTX ® SSTTTX)
SanS,smxl
STTSTTTX
srrs,gxl

STTSTTX

STTSTTnk

STTSTyk

STTSTTX STM STSTTTX

STTSuL STSTuL
X STTSuE X

STTSTX STorx

F.3 Coherence of L,

STorrx STSTTTX

STS;ITX

STSTTX

lST”sTTX
STSSTTX
STy

STSkrx STSTTX

STS;;X

STSTX

v

$ STSTTX ——» STSTX ——— STX
STSpy 154

We then check coherence of L, in Figure 24, where, in the middle triangle which unfolds dsx sx,
we use ry‘;X o ns+ x o ing instead of vsx as a point. This is justified because these morphisms are in

fact equal, as the diagram below shows.

\ / 2+X
s+ x

/ Y‘o
S!

S S ————— SX

\ ls!
N5+ sx 5}7
SSX

The left-hand, question-marked subdiagram of Figure 24 only commutes when postcomposed

with 6y o Tyi = y‘;x 0 S8x o dsx, as follows.
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X @l I891+3X®I Artstx iy [+3(X®1)
N3+ x ®ll stpS @iy in|+2(r/§®in1)l
SX®I $HSX ® BHX SHX + 2(SX ® £+X)
v:ix@i"'l
SSX @ B*SX
55X®'lz*,sxl SHSX@nye x
SSX ® SSX ® $7SX @ SX 2O srox @ s5X
ssxm;isxl
S5X ® $SSX
nrs,ssxl
Tssx — 9% pesex — S qgsx

Ss; xl léssx

STSX — sTsny — STSSX

s |

SSTX

SSTn3
X SSTSX

STSX

st

T
Shixer

SHX ®T)

SX +3(SX ® SX)

N3x+E(SX@ngy)

Assx+st

SSTX
Hix

STX

X (SSX,n o xcoint)

S(X®I)

~
I® SSX +E5X ® SSX ——— SSX + 2(SX ® SSX)

[Sins.Sinjonss sxessxoinz]

\

S(SX ® SSX + SX + SX)

(3)
dsx
Fisx

ST
Hx

STiny

ST(X®I) — ST(X®T+X +X)

&)

lST(r,;’@HIX,XI)
ST(STX ® I+ X)
lST(r/’;\TX@inﬁX)
ST(SSTX @ S*STX + X)
J’sr(ssrxmxf,-,nx}
ST(SSTX ® SSTX + X)
lsr(ssrxmg'ﬂx»()
ST(SSTX ® SSSTX + X)
lST(r]rS,ssTx+X)
ST(TSSTX + X)
J'ST((ssTX“'X)
ST(STSTX + X)
lSTIuirvviT !

STSTX
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A unified treatment of structural definitions on syntax

StX el 3t X®in;

SPX @ 3X
ol l N}@im

TRen SX @ IX
vt S SSX@nst x
. . m T3t x Ozt x N
SX®I X @ BtSX X ® SX
S SX®in o s
Ngx®iny s+ x ®XTSX Nst sx®Nox
SnSens.
SSX ® T*SX SX ® T*SX SX ® X SRS SSX & SSX
. SXeSn3,
.s.sxmxmxl \S‘X®V2+ SX
SSX ® SSX X @ SSX o SSX®135
s uS oS Snx®ngx
SSX®nIex sxwx
SSX®Si
SSX ® SSSX SX ® SX . SSX ® SSX % SSX ® SSSX
SX@I];X
/ J’/lﬁ;,ss}(
3 ®SSX
Nigssx px® S eyl
\ Tssx
TSSX SX ® SSX rpx
L \
TSX TSX
TSr/Xl \ X
TSSX - TSSSX TSSX — TSX STX
TSSnS, THsx Tu ox

The right-hand, double question-marked subdiagram has a coproduct as its domain, so we pro-
ceed termwise. The second term is chased as follows

(X)) — ™y srxel) s s(Xel) Skl STX®I) — M s sT(X®I+X+X)
>:<y7§(®in,)l lan;’ ®I) lan;‘ ®I+[X.X])
(SX ® S*X) S(rg@in) ST(STX ® I) ST(STX ® I +X)
l lST(quX®in|) lST('Iﬁrx@"l"X)
2(SX ® SX) S(SX ® 5*X) e ST(SSTX ® $*STX) ST(SSTX ® S*STX + X)
z(sxmgixyl lS'I‘(SS‘I‘szasrx) lsr(ssrxmyvsrﬁm
3(SX ® SSX) S(SX ® SX) ———— syT (s esyy) —— ST(SSTX ® SSTX) ST(SSTX ® SSTX + X)
inzl lsr(ssrxmgsm+x)
H(SX ® SSX) Ssxersy ST(SSTX@nSsry)  ST(SSTX ® SSSTX + X)
S(SX ® SSX) SnT Syl @sspsT) ————————— ST(SSTX ® SSSTX) ST (g ssTx+X)
\ lsr(mm,x)
Siny Snrg.sx STTSSTX ST(TSSTX + X)
snTTspyT / lSTJ_sTX lST(ésrx*'X)
S(SX ® SSX + SX + SX) ——— STSX — STSTSTX ST(STSTX +X)
SSTX Snly STSTX
ix orx s

The first term is chased as follows
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STiny

. Snke,
X ®I) T S(X®I) ol ST(X®I) ———"— ST(X® [+ X +X)

I ing
>0 S! S(n3F el ST(n3T @) ST(n3T @I+[X.X1)
X / A S(STX ® 1) ST(STX ® I) ST(STX ® I+ X)

o+
ls(qg.rx@[n,) lST(q_gTX@m,) lST(n§7X®m‘+X)
S(SSTX ® $*STX) ST(SSTX ® S*STX) ST(SSTX ® S*STX +X)
ls(ssrxmy‘srx) lsr(ssrxmzfsm) lsr(ssrxmv‘ﬂﬁx)
s S(SSTX ® SSTX) ST(SSTX ® SSTX) ST(SSTX ® SSTX +X)
ls(ssrxmgiﬂx) lsr(ssrxmgsm) lsr(ssrxmgiﬂﬂm
S(SSTX ® SSSTX) ST(SSTX ® SSSTX) ST(SSTX ® SSSTX + X)
lsm's,ss:x lSTms,s.slx ls'l'(vrs,ssrx*’X)
SX STSSTX STTSSTX ST(TSSTX + X)
T~ st l&fs:x lSTrss‘Jx lST((SSTxi»X)
ST(STSTX +X)

SSTX

suly
. o
T ™ STX 50 SSTSTX —T5TX__y STSTSTX
st ST 1T ST
Skx LST[/J’X iy
s,
HEZES STSTX

SSX

s
Tsrx

S
15
TX -

Sins s\r;;)(ssn}(
\ \ ) 5%
X SSTX Frx STX

S(SX ® SSX + SX + SX) — STSX s

F.4 Coherence of R,
We finally check the coherence of Ry, namely commutation of the following diagram.

THX QT —— [@[+3X @I~ [+3(X®I) == S*(X®I) -2 S(X &) ng,) ST(X®T) ™ ST(X ® I+X +X)
M+ x ®1l lsr(qf(' ®I+[X.X])
SX®l ST(STX ® I +X)
psxl lS‘l‘(prﬁ()
SX ST(STX +X)
it [stusgeno
STSX ST(STSTX + X)
ssxl lST[;lf(T,nf(T ]
STSTX

SSTX
x T
STX

Again, the domain is a coproduct, so we proceed termwise.
The first term is chased as follows.
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101 *’ St XeD) — s SX @ 1)~ ST (X @ 1) ST ST(X @ 1+X +X)
ls(n”@u) lsr(q*%n[x,x])
S(STX ® ) ST(STX ® [ +X)
Spstx ST(psTx+X)
sso — S, SSTX ST(STX +X)
sVsTx
uy ST (353 +X)
SSTSTX
syT
S0 . Hsrx STSTSTX ST(STSTX +X)
Hix STpST
et lST[HBiTJI)S(T]
STSTX STSTX
S!
e s
STX
The second term is chased as follows.
X (1 in; + n
SX@T XU sven My st (X e l) o S(X e D) - sT(X @ 1) ST ST(X @ 1+X +X)
mgl w‘ - J's(n;(' ®l) lST(q’X ®I+[X.X])
PX
X @I =X S(STX ® ) ST(STX ® I +X)
”m@zl l
SX®I =X ST(psrx+X)
Spx
Spstx
Psx ST(STX +X)
SX SSTX
suih| ST
syl
sl SSTSTX —SISIX STSTSTX
S
PTSTXl ST
HSTSTX STpst
STSX STSTX ST(STSTX +X)
s Jsruaag
SSTX STSTX

STX
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