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DECENTRALIZED EFFICIENT NONPARAMETRIC STOCHASTIC OPTIMIZATION

We consider stochastic optimization problems defined over reproducing kernel Hilbert spaces (RKHS), where a multi-agent network aims to learn decision functions, i.e., nonlinear statistical models, that are optimal in terms of a global convex functional that aggregates data across the network, while only having access to locally observed sequentially available training examples. We address this problem by allowing each agent to learn a local regression function while enforcing consensus constraints. We use a penalized variant of functional stochastic gradient descent operating simultaneously with low-dimensional subspace projections. The resulting algorithm allows each individual agent to learn, based upon its locally observed data stream and message passing with its neighbors, a function that is provably close to globally optimal and satisfies the consensus constraints. Moreover, when constant learning rates are used, the complexity of the learned regression functions is guaranteed to be finite. For a multi-class kernel logistic regression task with Gaussian mixtures data, we observe stable function estimation and state of the art accuracy for distributed online multi-class classification.

INTRODUCTION

We consider decentralized online optimization problems: a network G = (V, E) of agents aims to minimize an objective that is a sum of local objectives available only to each node. The problem is online because data samples upon which local convex objectives depend are sequentially and locally observed by each agent. In this setting, agents aim to make inferences as well as one which has access to all data at a centralized location in advance. Rather than assuming agents seek a common vector w ∈ R p , we address the case where agents seek to learn a common decision function f (x) belonging to a reproducing kernel Hilbert space (RKHS), which represents, e.g., a nonlinear statistical model [START_REF] Anthony | Neural network learning: Theoretical foundations[END_REF] or a continuous trajectory [START_REF] Marinho | Functional gradient motion planning in reproducing kernel hilbert spaces[END_REF]. Nonlinear interpolators perform far better than their linear counterparts induced by the vector-valued convex problems [START_REF] Li | Kernel Learning Algorithms for Face Recognition[END_REF], but few works [START_REF] Forero | Consensus-based distributed support vector machines[END_REF] extend them to streaming decentralized settings that underlie Internet of Things [START_REF] Liu | Algorithm design for femtocell base station placement in commercial building environments[END_REF][START_REF] Ghosh | Pricing for profit in internet of things[END_REF] and multi-robot [START_REF] Koppel | Online learning for characterizing unknown environments in ground robotic vehicle models[END_REF][START_REF] Schwager | A multi-robot control policy for information gathering in the presence of unknown hazards[END_REF] applications.

Consider centralized vector-valued stochastic convex programming, which has been classically solved with stochastic gradient descent (SGD) [START_REF] Robbins | A stochastic approximation method[END_REF]. SGD involves descending along the negative of the stochastic gradient rather than the true gradient to avoid the fact that computing the gradient of the average objective has complexity comparable to the training sample size, which could be infinite. In contrast, a stochastic program defined over a function space is an intractable variational inference problem in general, but when the function space is a RKHS [START_REF] Kimeldorf | Some results on tchebycheffian spline functions[END_REF], the Representer Theorem allows us to reduce an infinite space into a parameterization of weights and data samples [START_REF] Schölkopf | A generalized representer theorem[END_REF]. Unfortunately, the resulting feasible set has complexity comparable to sample size N (intractable for N → ∞ [START_REF] Norkin | On stochastic optimization and statistical learning in reproducing kernel hilbert spaces by support vector machines (svm)[END_REF]).

Efforts to mitigate the complexity of the function representation ("the curse of kernelization") have been developed that combine functional extensions of stochastic gradient method with compressions of Thanks to NSF CCF-0952867, ONR N00014-12-1-0997, ASEE SMART. the function sequence parameterization [START_REF] Engel | The kernel recursive leastsquares algorithm[END_REF][START_REF] Richard | Online prediction of time series data with kernels[END_REF][START_REF] Kivinen | Online Learning with Kernels[END_REF][START_REF] Dekel | The forgetron: A kernel-based perceptron on a fixed budget[END_REF][START_REF] Zhu | Kernel Logistic Regression and the Import Vector Machine[END_REF]. Mostly, such methods compress the function representation independent of the iterative sequence to which they are applied. In contrast, a method was recently proposed that combines greedily constructed [START_REF] Pati | Orthogonal Matching Pursuit: Recursive Function Approximation with Applications to Wavelet Decomposition[END_REF] sparse subspace projections with functional SGD, and tailors the compression to preserve descent properties of the RKHS-valued stochastic process [START_REF] Koppel | Parsimonious online learning with kernels via sparse projections in function space[END_REF].

In this work, we extend [START_REF] Koppel | Parsimonious online learning with kernels via sparse projections in function space[END_REF] to multi-agent settings. Multiple distributed optimization tools may be used to develop such an extension; however, the Representer Theorem [START_REF] Schölkopf | A generalized representer theorem[END_REF] has not been established for stochastic saddle point problems in RKHSs. Thus, we adopt an approximate primal-only approach via penalty methods [START_REF] Johansson | Subgradient methods and consensus algorithms for solving convex optimization problems[END_REF][START_REF] Ram | Distributed stochastic subgradient projection algorithms for convex optimization[END_REF], which in decentralized optimization is called distributed gradient descent (DGD). Using functional stochastic extensions of DGD, together with the greedy projections designed in [START_REF] Koppel | Parsimonious online learning with kernels via sparse projections in function space[END_REF], we develop a method such that each agent, through its local data stream and neighborhood message passing, learns a memory-efficient approximation to the globally optimal function almost surely. Such global stability contrasts with nonlinear function estimation techniques such as dictionary learning [START_REF] Mairal | Task-driven dictionary learning[END_REF][START_REF] Chainais | Learning a common dictionary over a sensor network[END_REF][START_REF] Koppel | D4l: Decentralized dynamic discriminative dictionary learning[END_REF] or neural networks [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF] which exhibit instability due to non-convexity.

Subsequently, in Section 2 we clarify the problem of stochastic programming in the RKHS. In Section 3, we propose a penalty method that yields a decentralized online method for kernel regression without any complexity bottleneck based on functional stochastic gradient method combined with greedy subspace projections (Section 3.2). We establish that each agent's function sequence converges to a neighborhood of the globally optimal regression function with probability 1 in Section 4. In Section 5, we present an example of a decentralized online multi-class kernel logistic regression problem with Gaussian mixture data [START_REF] Zhu | Kernel Logistic Regression and the Import Vector Machine[END_REF], and observe a state of the art trade-off between stability and accuracy.

FUNCTIONAL STOCHASTIC PROGRAMMING

Consider the problem of distributed expected risk minimization, where the goal is to learn a regressor that minimizes a loss function quantifying the merit of a statistical model averaged over a data set scattered across an interconnected network that represents, for instance, robotic teams [START_REF] Koppel | D4l: Decentralized dynamic discriminative dictionary learning[END_REF], communication systems [START_REF] Ribeiro | Ergodic stochastic optimization algorithms for wireless communication and networking[END_REF], or sensor networks [START_REF] Kozick | Source localization with distributed sensor arrays and partial spatial coherence[END_REF]. To do so, we define a symmetric, connected, and directed network G = (V, E) with |V| = V nodes and |E| = E edges and denote as ni := {j : (i, j) ∈ E} the neighborhood of agent i. Each agent i ∈ V observes a local data sequence as realizations (xi,n, yi,n) from random pair (xi, yi) ∈ X × Y ⊂ R p × R and seeks to learn a common globally optimal regression function f from the class function H. This setting may be mathematically captured by associating to each node i is a convex loss functional i : H × X × Y → R that quantifies the merit of the estimator f (xi) evaluated at feature vector xi. This loss averaged over all possible xi defines the statistical loss L( f ) := i∈V Ex i ,y i i( f xi), yi , which we combine with a Tikhonov regularizer to construct the regularized loss R( f ) := argmin f ∈H L( f ) + (λ/2) f 2 H [START_REF] Shalev-Shwartz | Learnability, stability and uniform convergence[END_REF][START_REF] Evgeniou | Regularization networks and support vector machines[END_REF]. Then the globally optimal regression function f * is defined as 

f * = argmin f ∈H i∈V Ex i ,y i i( f xi), yi + λ 2 f 2 H . (1 
)] fi,t+1(•) = (1 -ηλ)fi,t -η∇ f i ψi,c(fi(xi,t), yi,t) . 8 
Update params: Di,t+1 = [Di,t, xi,t], wi,t+1 [cf. [START_REF] Kimeldorf | Some results on tchebycheffian spline functions[END_REF]] Greedily compress function using matching pursuit (fi,t+1, Di,t+1, wi,t+1) = KOMP( fi,t+1, Di,t+1, wi,t+1, ) end loop end for Observe that this global loss is a network-wide average (scaled by V ) of all local losses; however, in multi-agent optimization, there is no global coordination among the agents in selecting function f , but rather, each agent, via its locally observed data and message passing with its neighbors, seeks to learn f * . Thus, we allow agent i to select a distinct fi, but we enforce that at optimality all function estimates fi coincide, which yields the nonparametric decentralized stochastic program:

f * = argmin {f i }∈H i∈V Ex i ,y i i(fi x), yi + λ 2 fi 2 H such that fi = fj , (i, j) ∈ E (2) 
For further reference we define the stacked Hilbert space H V of functions aggregated over the network whose elements are stacked functions

f (•) = [f1(•); • • • ; fV (•)]. Moreover, define stacked random vectors x = [x1; • • • ; xV ] ∈ R V p and y = [y1; • • • yV ] ∈ R V that represents
V labels or physical measurements, for instance. The goal of this paper is to develop an algorithm to solve (2) in distributed online settings where nodes do not know the distribution of the random pair (xi, yi) but sequentially observe local independent training examples (xi,n, yi,n). In the next section we discuss necessary details of the function space H V to make (2) tractable.

Function Estimation in Reproducing Kernel Hilbert Spaces

The problem in ( 2) is intractable in general, since it defines a variational inference problem integrated over the unknown joint distribution P(x, y). However, when H is equipped with a reproducing kernel κ : X × X → R (see [START_REF] Li | Kernel Learning Algorithms for Face Recognition[END_REF][START_REF] Müller | Special issue on advances in kernel-based learning for signal processing[END_REF]), a functional problem of the form (1) may be reduced to a parametric form via the Representer Theorem [START_REF] Norkin | On stochastic optimization and statistical learning in reproducing kernel hilbert spaces by support vector machines (svm)[END_REF][START_REF] Wheeden | Measure and Integral: An Introduction to Real Analysis[END_REF]. Thus, we restrict the Hilbert space in (2) to be one equipped with a kernel κ that satisfies for all functions f : X → R in H and for all xi ∈ X :

(i) f , κ(xi, •)) H = f (xi) (ii) H = span{κ(xi, •)}. (3) 
Here •, • H denotes the Hilbert inner product for H. Further assume that κ is positive semidefinite, i.e. κ(xi, x i ) ≥ 0 for all xi, x i ∈ X . For kernelized regularized empirical risk minimization, the Representer Theorem [START_REF] Murphy | Machine Learning: A Probabilistic Perspective[END_REF] states that optimal f in the function class H may be written in terms of kernel evaluations only of the training set

f (xi) = N n=1 wi,nκ(xi,n, xi) , (4) 
where wi = [wi,1, • • • , wi,N ] T ∈ R N denotes a set of weights. The upper index N in ( 4) is referred to as the model order, and for ERM the Algorithm 2 Kernel Orthogonal Matching Pursuit (KOMP)

Require: function f defined by dict. D ∈ R p× M , coeffs. w ∈ R M , approx. budget > 0 initialize f = f , dictionary D = D with indices I, model order M = M , coeffs. w = w.
while candidate dictionary is non-empty I = ∅ do for j = 1, . . . , M do Find minimal approximation error with dictionary element dj removed γj = min Update weights w defined by current dictionary D w = argmin

w I\{j} ∈R M -1 f (•) - k∈I\{j} w k κ(d k , •) H .
w∈R M f (•) -w T κ D (•) H end end while return f, D, w of model order M ≤ M such that f -f H ≤
model order and training sample size are equal. By exploiting the Representer Theorem, we transform an infinite dimensional optimization problem in H V into a finite N V -dimensional parametric problem. Thus, the RKHS provides a principled framework to solve nonparametric regression problems as a search over R V N for a set of coefficients. However, when training examples (xi,n, yi,n) become sequentially available or their total number N is not finite, the complexity of representing a function f in (4) approaches infinity as well, and thus demands an infeasible amount of memory. Thus, our goal is to solve (2) in an approximate manner such that each fi admits a finite representation near f * i , while satisfying the consensus constraints fi = fj for (i, j) ∈ E.

GREEDY PROJECTED PENALTY METHOD

We now develop an online decentralized iterative solution to (2) when the functions {fi}i∈V are elements of a RKHS, as detailed in Section 2.1. To exploit the properties of this function space, we require the applicability of the Representer Theorem [cf. [START_REF] Forero | Consensus-based distributed support vector machines[END_REF]], but this result holds for any regularized minimization problem with a convex functional. Thus, we may address the consensus constraint fi = fj , (i, j) ∈ E in (2) by enforcing approximate consensus on estimates fi(xi) = fj(xi) in expectation. Thus, we introduce the penalty function

ψc(f ) = i∈V Ri(fi) + c 2 j∈n i Ex i [fi(xi)-fj(xi)] 2 , (5) 
where Ri(fi

) := Ex i ,y i i(fi xi), yi + (λ/2) fi 2 H . Further define f * c = argmin f ∈H V ψc(f ) and the local penalty as ψi,c(fi) = Ri(fi) + c 2 j∈n i Ex i [fi(xi)-fj(xi)] 2 . ( 6 
)
Observe from ( 5) -( 6) that ψc(f ) = i ψi,c(fi).

Functional Stochastic Gradient Method

The data distribution P(x, y) is unknown, so minimizing ψc(f ) directly via variational inference is not possible. Rather than postulate a distribution for (x, y), we only require sequentially available independent and identically distributed samples (xt, yt) from their joint density. Then, we address (5) using stochastic methods. Thus, compute ∇ f ψi,c(f (xt), yt), the functional stochastic gradient (5), as in [START_REF] Kivinen | Online Learning with Kernels[END_REF] 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 (c) Model Order Mi,t vs. samples processed Fig. 1: In Fig. 1a, we plot the global objective i∈V (Ex i ,y i [ i(fi,t x), yi ]) versus the number of samples processed, and observe convergence. In Fig. 1b we display the Hilbert-norm network disagreement (i,j)∈E fi,t -fj,t 2 H with a penalty parameter c that doubles every 200 samples. In Fig. 1c, we plot the model order of a randomly chosen agent's regression function, which stabilizes to 18 after 162 samples.

∇ f ψi,c(f (xt), yt) = i (fi(xi,t), yi,t)κ(xi,t, •)+ λfi ( 7 
)
+c j∈n i (fi(xi,t)-fj(xi,t))κ(xi,t, •).
Now we may define the distributed stochastic gradient method for the kernelized λ-regularized multi-agent problem in (2) as fi,t+1 = fi,t -η∇ f ψi,c(f (xt), yt) ,

where η > 0 is an algorithm step-size. We further require that, given λ > 0, the step-size satisfies η < 1/λ and the global sequence is initialized as f0 = 0 ∈ H V . With this initialization, the Representer Theorem (c.f. ( 4)) implies that, at time t, the function fi,t admits an expansion in terms of feature vectors xi,t observed thus far as

fi,t(x) = t-1 n=1 wi,nκ(xi,n, x) = w T i,t κ X i,t (x) . (9) 
On the right-hand side of (9) we have introduced the notation Xi,t = [xi,1,. . ., xi,t-1] ∈ R p×(t-1) , κ X i,t (•) = [κ(xi,1,•),. . ., κ(xi,t-1,•)] T , and wi,t = [wi,1, . . . wi,t-1] ∈ R t-1 . Moreover, observe that the kernel expansion in ( 9), together with the update (8), yields the fact that performing the stochastic gradient method in H V amounts to V parallel parametric updates on the dictionaries Xi and coefficients wi:

Xi,t+1 = [Xi,t, xi,t] , (10) 
[wi,t+1]u= (1 -ηλ)[wi,t]u for 0 ≤ u ≤ t -1 -η i (fi,t(xi,t),yi,t)+c j∈n i (fi,t(xi,t)-fj,t(xi,t)) ,
where the second case on the last line of ( 10) is for u = t. This update causes Xi,t+1 to have one more column than Xi,t. We define the model order as number of data points Mi,t in the dictionary of agent i at time t (the number of columns of Xt). FSGD is such that Mi,t = t -1, and hence grows unbounded with iteration index t. Next we address this intractable memory growth such that we may execute stochastic descent through low-dimensional projections of the stochastic gradient [START_REF] Koppel | Parsimonious online learning with kernels via sparse projections in function space[END_REF].

Sparse Subspace Projections

To mitigate the complexity growth noted in Section 3.1, we approximate the function sequence (8) by one that is orthogonally projected onto subspaces H D ⊆ H that consist only of functions that can be represented using some dictionary D = [d1, . . . , dM ] ∈ R p×M , i.e.,

H D = {f : f (•) = M n=1 wnκ(dn, •) = w T κ D (•)} = span{κ(dn, •)} M n=1
, and {dn} ⊂ {xu} u≤t . For convenience we define [κ D (•) = κ(d1, •) . . . κ(dM , •)], and K D,D as the resulting kernel matrix from this dictionary. We enforce efficiency in function representation by selecting dictionaries Di that Mi,t << O(t) for each i, following [START_REF] Koppel | Parsimonious online learning with kernels via sparse projections in function space[END_REF]. To be specific, we propose replacing the local update [START_REF] Schwager | A multi-robot control policy for information gathering in the presence of unknown hazards[END_REF] in which the dictionary grows at each iteration by its projection onto subspace

H D i,t+1 = span{κ(di,n, •)} M t+1 n=1 as fi,t+1 := PH D i,t+1 (1 -ηλ)fi,t -η ∇ f i i(fi,t(xi,t), yi,t) +c j∈n i (fi,t(xi,t)-fj,t(xi,t))κ(xi,t, •) . (11) 
We define projection P onto subspace H D i,t+1 by the update [START_REF] Schölkopf | A generalized representer theorem[END_REF]. The coefficients and dictionary updates are given in Algorithm 1 -2.

CONVERGENCE ANALYSIS

We turn to establishing -based in the analysis in Section IV of [START_REF] Koppel | Parsimonious online learning with kernels via sparse projections in function space[END_REF] that Algorithm 1 converges with probability 1 to a neighborhood of the minimizer of the penalty function ψc(f ) [cf. [START_REF] Liu | Algorithm design for femtocell base station placement in commercial building environments[END_REF]] and that the kernel dictionary that parameterizes the regression function fi for each agent i remains finite. Let us define the local projected stochastic functional gradient associated with the update in [START_REF] Schölkopf | A generalized representer theorem[END_REF] as

∇f i ψi,c(fi,t(xi,t), yi,t) = (12) 
fi,t -PH D i,t+1 fi,t -η∇ f i ψi,c(fi,t(xi,t),yi,t) /η such that the local update of Algorithm 1 [cf. [START_REF] Schölkopf | A generalized representer theorem[END_REF]] may be expressed as a stochastic projected functional gradient descent fi,t+1 = fi,t -η ∇f i ψi,c(fi,t(xi,t), yi,t) .

Subsequently, we require the following technical conditions common in the analysis of kernelized stochastic methods, see [START_REF] Pontil | Error analysis for online gradient descent algorithms in reproducing kernel hilbert spaces[END_REF][START_REF] Ying | Online regularized classification algorithms[END_REF][START_REF] Nesterov | Introductory lectures on convex programming volume i: Basic course[END_REF].

(A1) The sets

H D i,t in (11) intersect a finite norm ball f H ≤ K. (A2)
The feature space X ⊂ R p and target domain Y ⊂ R are compact, and the reproducing kernel map satisfies

sup x∈X κ(x, x) = X < ∞. (14) 
Moreover, the instantaneous losses i : H × X × Y → R are Ci-Lipschitz continuous for all z ∈ R for a fixed y ∈ Y. (A3) The local losses i(fi(x), y) are convex and differentiable w.r.t.

the scalar argument fi(x) on R for all x ∈ X , y ∈ Y. (A4) Let Ft be the filtration measuring the algorithm history: Ft = {xu, yu, fu} t u=1 . The projected functional stochastic gradient of the penalty which stacks [START_REF] Norkin | On stochastic optimization and statistical learning in reproducing kernel hilbert spaces by support vector machines (svm)[END_REF] has finite conditional variance

E[ ∇f ψc(ft(xt), yt) 2 H | Ft] ≤ σ 2 . ( 15 
)
We show that under the previous assumptions the iterates of Algorithm 1 converge to a neighborhood of the minimizer of ψc(f ). Fig. 2: Visualizations of the Gaussian mixture data set (left) as in [START_REF] Zhu | Kernel Logistic Regression and the Import Vector Machine[END_REF], where each class is denoted by a distinct color, and the learned low-memory multi-class kernel logistic regressor of a randomly chosen agent in the network (right), which attains 95.2% classification accuracy on a hold-out test set. Curved black lines denote decision boundaries between classes; dotted lines denote confidence intervals; bold black dots denote dictionary elements. Kernel dictionary elements concentrate at peaks of the Gaussian clusters and near points of class overlap.

Theorem 1 Consider the sequence {ft} generated by Algorithm 1 with f0 = 0 and regularizer λ > 0. Suppose Assumptions 1-4 hold, and we select η < 1/λ and compression budget = Kη 3/2 for any K > 0.

Then we have convergence to a neighborhood with probability 1 as

lim inf t→∞ ft -f * c H ≤ √ η λ 2KV + √ λσ 2 = O( √ η) a.s. (16) 
Empirically, the use of constant step-sizes has the effect of maintaining consistent algorithm adaptivity in the face of new data. Moreover, we may apply Theorem 3 of [START_REF] Koppel | Parsimonious online learning with kernels via sparse projections in function space[END_REF], which guarantees the model order of the function sequence remains finite.

Corollary 1 Denote ft ∈ H V as the sequence defined by Algorithm 1 with η and as in Theorem 1. Let Mt be the model order of function ft.

Then there exists a finite upper bound M ∞ such that, for all t ≥ 0, the model order is always bounded as Mt ≤ M ∞ , and the model order of the limiting function f ∞ c = limt ft is finite.

Thus, use of constant step-sizes yields approximate convergence to f * c while ensuring the memory requirements are always finite, as stated in Corollary 1. We are left to analyze the goodness of the solution f * c as an approximation of the solution of the original problem [START_REF] Marinho | Functional gradient motion planning in reproducing kernel hilbert spaces[END_REF]. In particular, we establish consensus in the mean square sense. First we establish an upper bound on the penalty term in [START_REF] Liu | Algorithm design for femtocell base station placement in commercial building environments[END_REF].

Proposition 1 Let Assumptions 2 and 3 hold. Let f * c be the minimizer of ψc(f ) in (5) and p * be the optimal value of (2). Then 1 2

i∈V j∈n i Ex i [f * c,i (xi)-f * c,j (xi)] 2 ≤ p * c . (17) 
As a consequence of the previous proposition, considering the limit with c going to infinity in [START_REF] Zhu | Kernel Logistic Regression and the Import Vector Machine[END_REF], allows us to write for all i, j that

lim c→∞ 1 2 Ex i [f * c,i (xi)-f * c,j (xi)] 2 = 0. ( 18 
)
The latter is equivalent to consensus in the mean square sense.

NUMERICAL EXPERIMENTS

Consider the task of kernel logistic regression from multi-class training data that is scattered across a multi-agent network. In this case, the merit of a particular regressor for agent i is quantified by its contribution to the class-conditional probability. We define a set of class-specific activation functions f i,k : X → R, and denote them jointly as fi ∈ H K , where {1, . . . , K} denotes the set of classes. Then, define the probabilistic model of the odds ratio of a sample being in class k versus all others

P (yi = k | xi) := exp(f i,k (xi)) k exp(f i,k (xi)) . ( 19 
)
The negative log likelihood defined by ( 19) is the instantaneous loss (see, e.g., [START_REF] Murphy | Machine Learning: A Probabilistic Perspective[END_REF]) at sample (xi,n, yi,n):

(fi, xi,n, yi,n) = -log P (yi = yi,n|xi,n)+ λ 2 k f i,k 2 H (20) 
Following [START_REF] Zhu | Kernel Logistic Regression and the Import Vector Machine[END_REF][START_REF] Koppel | Parsimonious online learning with kernels via sparse projections in function space[END_REF], we generate a data set from Gaussian mixture models, which consists N = 5000 feature-label pairs for training and 2500 for testing. Each label yn was drawn uniformly at random from the label set. The corresponding feature vector xn ∈ R p was then drawn from a planar Gaussian mixture model, i.e., x y ∼ (1/3) 3 j=1 N (µy,j, σ 2 y,j I) where σ 2 y,j = 0.2 for all values of y and j. The means µy,j are themselves realizations of their own Gaussian distribution with class-dependent parameters, i.e., µy,j ∼ N (θy, σ 2 y I), where {θ1, . . . , θK } are equitably spaced around the unit circle, one for each class label, and σ 2 y = 1.0. We fix the number of classes K = 5, meaning that the feature distribution has 15 distinct modes. The data points are plotted in Figure 2a.

Here the V = 20 node digraph is random and with edges generated randomly with probability 1/5 repeatedly until we obtain one that is connected, and then symmetrize it. We run Algorithm 1 when each agent observes a unique random stream of samples from this common training set, a Gaussian kernel is used with bandwidth d = 0.6, with constant learning rate η = 3, compression budget = η 3/2 , parsimony constant K = 0.04, mini-batch size 32, and regularizer λ = 10 -6 . The penalty coefficient is initialized c = 0.01 and doubled every 200 samples.

The results of this implementation1 in Figures 2b and1. In Figure 1a, we plot the global objective i∈V (Ex i ,y i [ i(fi,t x), yi ]) relative to the number of training examples processed, and observe stable convergence to a global minimum. In Figure 1b we display Hilbert-norm network disagreement (i,j)∈E fi,t -fj,t 2 H versus observed sample points. Since each regression function is initialized as null, initially the disagreement is trivially null, but it remains small over the function sample path as model training occurs. Moreover, the model order of an arbitrarily chosen agent i = 15 versus samples processed is given in Figure 1c: observe that the model order stabilizes after only a couple hundred training examples to 18, which is only a couple more than 15, the number of modes of the joint data density function. The resulting decision surface of node 15 is given in Figure 2b, which achieves 95.2% classification accuracy on the test set which is comparable to existing centralized batch approaches (see Table 2 of [START_REF] Koppel | Parsimonious online learning with kernels via sparse projections in function space[END_REF]) to kernel logistic regression.
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	Algorithm 1 Greedy Projected Penalty Method
	Require: {xt, yt, η, }t=0,1,2,...
	initialize fi,0(•) = 0, Di,0 = [], w0 = [], i.e. initial dictionary,
	coefficients are empty for each i ∈ V
	for t = 0, 1, 2, . . . do
	loop in parallel for agent i ∈ V

Observe local training example realization (xi,t, yi,t) Send obs. xi,t to nodes j ∈ ni, receive scalar fj,t(xi,t) Receive obs. xj,t from nodes j ∈ ni, send fi,t(xj,t) Compute unconstrained stochastic grad. step [cf. (
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