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Adaptive warped kernel estimation for nonparametric regression

with circular responses

Tien-Dat Nguyen∗, Thanh Mai Pham Ngoc†, Vincent Rivoirard‡

April 1, 2022

Abstract

In this paper, we deal with nonparametric regression for circular data, meaning that observa-
tions are represented by points lying on the unit circle. We propose a kernel estimation procedure
with data-driven selection of the bandwidth parameter. For this purpose, we use a warping strat-
egy combined with a Goldenshluger-Lepski type estimator. To study optimality of our methodol-
ogy, we consider the minimax setting and prove, by establishing upper and lower bounds, that our
procedure is nearly optimal on anisotropic Hölder classes of functions for pointwise estimation.
The obtained rates also reveal the specific nature of regression for circular responses. Finally, a
numerical study is conducted, illustrating the good performances of our approach.

Keywords— circular data, nonparametric regression, warping method, kernel rule, adaptive minimax
estimation, Goldenshluger-Lepski procedure.

1 Introduction

Directional statistics is the branch of statistics which deals with observations that are directions. In this
paper, we will consider more specifically circular data which arises whenever using a periodic scale to measure
observations. These data are represented by points lying on the unit circle of R2 denoted in the sequel by S1.
Circular data are collected in many research fields, for example in ecology (animal orientations), earth sciences
(wind, ocean current directions, cross-bed orientations to name a few), medicine (circadian rhythm), forensics
(crime incidence) or social science (clock or calendar effects). Various comprehensive surveys on statistical
methods for circular data can be found in Mardia and Jupp [15], Jammalamadaka and SenGupta [11], Ley
and Verdebout [14] and recent advances are collected in Pewsey and Garćıa-Portugués [18]. Note that the
term circular data is also used to distinguish them from data supported on the real line R (or some subset of
it), which henceforth are referred to as linear data.

In the present work, we focus on a nonparametric regression model with a circular response and linear
predictor. Assume that we have an independent identically distributed (i.i.d in the sequel) sample {(Xi,Θi)}ni=1

distributed as (X,Θ), where Θ is a circular random variable, and X is a random variable with density fX
supported on R such that the cumulative distribution function of X is invertible on R. It means that fX
is positive on R and FX(R) = (0, 1). We aim at estimating a function m which contains the dependence
structure between the predictors Xi and the observations Θi.

Regression with circular response and linear covariates has been first and mostly explored from a para-
metric point of view. Pioneered contributions are due to Gould [10], Johnson and Wehlry [12] or Fisher and
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tien-dat.nguyen@math.u-psud.fr
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Lee [7]. The latter proposed the most popular link-based function (namely the function 2 arctan) to model the
conditional mean. Major difficulties, among others of such link-based models involve computational drawbacks
to estimate parameters as identified by Presnell et al. [21]. Presnell et al. [21] in turn suggested alternatively
a spherically projected multivariate linear model. Since then, numerous parametric approaches have been
proposed, we refer the reader to all the references in Pewsey and Garćıa-Portugués [18]. In order to get a more
flexible approach, nonparametric paradigm has been considered, first in the pioneering work by Di Marzio
et al. [16] and more recently in Meilán-Vila et al. [17] for the multivariate setting. Surprisingly enough, the
nonparametric point of view has only been considered in very few papers. Note that contrary to all works
aforementioned which classically focus on the condition mean (which is our goal as well) Alonso-Pena and
Crujeiras [1] proposed a nonparametric multimodal regression method for estimating the conditional density
when for instance the latter is highly skewed or multimodal. Estimation procedures developed in [16] or [17]
consist in estimating the arctangent function of the ratio of the trigonometric moments of Θ (more details
about this approach are given in the next section as it is the starting point of our procedure). More precisely,
in the case of pointwise estimation and covariates supported on [0, 1], Di Marzio et al. [16] investigated the
performances of a Nadaraya-Watson and a local linear polynomial estimators. Theoretically, for regression
functions being twice continuously differentiable, they obtained expressions for asymptotic bias and variance.
Their proofs are based on linearization of the function arctangent by using Taylor expansions, but no sharp
controls of the remainder terms in the expansions are obtained. Actually obtaining such controls would be
very tedious with such an approach based on Taylor expansions. As for the more recent work of Meilan Vila
et al. [17], they studied the multivariate setting [0, 1]d with the same estimators and proofs technics. In both
papers, neither rates of convergence nor adaptation are obtained and cross-validation is used to select the
kernel bandwidth in practice. By adaptation, we mean that the estimators do not require the specification of
the regularity of the regression function which is crucial from a practical point of view. In view of this, we
were motivated to fill the gap in the literature. Our goal is twofold: obtaining optimal rates of convergence
for predictors supported on R and adaptation for estimating m the regression function. To achieve this, we
propose a new strategy based on concentration inequalities along with warping methods.

Our contributions. Assuming that the cumulative distribution function (c.d.f.) of the design X is known
and invertible, warping methods used in this paper consists in introducing the auxiliary function g := m ◦
F<−1>
X , with F<−1>

X the inverse of FX . We then use classical kernel rules to estimate the function g in
the specific framework of circular data. Our procedure needs to select two bandwidths. Fully data-driven
selection of bandwidths is performed by using a Goldenshluger-Lepski type procedure [9]. Then, theoretical
performances are studied. We consider the minimax setting and prove by establishing upper and lower bounds
that our procedure is nearly optimal on anisotropic Hölder classes of functions for pointwise estimation. These
results are stated in Theorems 3.5 and 3.10 respectively. Then, we conduct a numerical study whose goal is
twofold. We first investigate the best tuning parameters of our procedure. Once tuned, our estimates are used
on artificial data and compared to other classical methods. The numerical study reveals the good performances
of our methodology.

Plan. In section 2, we explain how to take into account the circular nature of the response and then
propose our data-driven kernel estimator of the regression function m based on warping strategy and the
Goldenshluger-Lepski bandwidth selection rule. Section 3 contains the theoretical results. Section 4 presents
numerical results including simulations. Finally, all the proofs are deferred to Section 5.

Notations. It is necessary to equip the reader with some notations. In the sequel, a point on S1 will
not be represented as a two-dimensional vector w = (w2, w1)> with unit Euclidean norm but as an angle
θ = atan2(w1, w2) defined as follows:

Definition 1.1. The function atan2 : R2 \ (0, 0) 7→ [−π;π] is defined for any (w1, w2) ∈ R2 \ (0, 0) by

atan2(w1, w2) :=


arctan

(
w1

w2

)
if w2 ≥ 0, w1 6= 0

0 if w2 > 0, w1 = 0
arctan

(
w1

w2

)
+ π if w2 < 0, w1 > 0

arctan
(
w1

w2

)
− π if w2 < 0, w1 ≤ 0,

with arctan taking values in [−π/2, π/2]. In particular arctan(+∞) = π/2 and arctan(−∞) = −π/2.

In this definition, one has arbitrarily fixed the origin of S1 at (1, 0)> and uses the anti-clockwise direction as
positive. Thus, a circular random variable can be represented as angle over [−π, π). Observe that atan2(0, 0)
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is not defined. Hereafter, ‖·‖L1(R) and ‖·‖L2(R) respectively denote the L1 and L2 norm on R with respect to
the Lebesgue measure:

‖f‖L1(R) =

∫
R
|f(y)|dy, ‖f‖L2(R) =

(∫
R
|f(y)|2dy

)1/2

.

The L∞ norm is defined by ‖f‖∞ = supy∈R |f(y)|. Moreover, we denote ∗ the classical convolution defined
for functions f, g by f ∗ g(x) :=

∫
R f(x− y).g(y)dy, for x ∈ R. Finally, for α ∈ R, [α]+ := max {α; 0} and for

β > 0 bβc denotes the largest integer strictly smaller than β.

2 The estimation procedure

We denote FX : y ∈ R 7→ P(X ≤ y) the cumulative distribution function (c.d.f.) of X and in the sequel, we
assume that FX is known and is invertible, so that FX(R) = (0, 1).

After recalling the framework of circular data in Section 2.1, Section 2.2 is devoted to the construction of an
estimator for m(x), at a given point x ∈ R which will be fixed along this paper, using warped kernel methods.
Then, Section 2.3 presents a data-driven procedure for bandwidth selection by using the Goldenshluger-Lepski
methodology.

2.1 The framework of circular data

There is no doubt that, due to their periodic nature, circular data are fundamentally different from linear
ones, and thus need specific tools. To measure the closeness between two angles, we use the angular distance

dc(θ1, θ2) :=
(
1− cos(θ1 − θ2)

)
, θ1, θ2 ∈ [−π, π).

Notice that this angular distance corresponds to the usual Euclidean norm in R2. Indeed, the angles θ1 and θ2

determine the corresponding points (cos θ1, sin θ1) and (cos θ2, sin θ2) respectively on the unit circle S1. Then,
the usual squared Euclidean norm in R2 reads(

cos θ1 − cos θ2

)2
+
(

sin θ1 − sin θ2

)2
= 2.

[
1− cos(θ1 − θ2)

]
= 2.dc(θ1, θ2).

Hence, using the angular distance, we look for a function m minimizing the following risk:

L(m(X)) := E
[
1− cos(Θ−m(X))

∣∣X].
Minimizing E

[
1− cos(Θ−m(X))|X

]
with respect to m(X) ∈ [−π, π) is equivalent to maximizing E

[
cos(Θ−

m(X))|X
]

with respect to m(X) ∈ [−π, π). Now for x ∈ R, let

m1(x) := E
(

sin(Θ)|X = x
)

and m2(x) := E
(

cos(Θ)|X = x
)
. (1)

Moreover, write

E
[

cos(Θ−m(X))|X
]

= cos(m(X)).m2(X) + sin(m(X)).m1(X)

=
√

(m2(X))2 + (m1(X))2. cos(m(X)− γ),

where γ ∈ [−π, π) is defined by

cos(γ) :=
m2(X)√

(m2(X))2 + (m1(X))2
and sin(γ) :=

m1(X)√
(m2(X))2 + (m1(X))2

.

Thus, we have

argmin
m(X)∈[−π,π)

L(m(X)) = argmax
m(X)∈[−π,π)

cos(m(X)− γ) = γ = atan2
(
m1(X),m2(X)

)
. (2)

In conclusion, the circular nature of the response is taken into account by the arctangent of the ratio of the
conditional expectation of sine and cosine components of Θ given X and we tackle the problem by estimating
the function

m(x) = atan2(m1(x),m2(x)), x ∈ R,
with m1 and m2 defined in (1). For this purpose, we use warped estimators.
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2.2 Warping strategy

The popular Nadaraya-Watson (NW) methodology provides a natural estimator of m of the form

m̂NW
h : x 7−→

1
n

∑n
j=1 Θj .Kh(x−Xj)

1
n

∑n
j=1Kh(x−Xj)

,

with K : R→ R such that
∫
RK(y)dy = 1 and Kh(·) := 1

hK( ·h ), for some bandwidth h > 0. However, on the
one hand, the denominator which can be small may lead to some instability. On the other hand, as adaptive
estimation requires the data-driven selection of the bandwidth, the ratio form of the NW estimate indicates
that we should select two bandwidths: one for the numerator and one for the denominator. Consequently,
considering NW estimators for m1 and m2 involve four bandwidths. This makes the study of these estimators
quite intricate.

Warping methods consist in introducing the auxiliary function g := m ◦ F<−1>
X , with F<−1>

X the inverse
of FX . The strategy then boils down to first estimating g by say ĝ and then estimating the regression function
of interest m by ĝ ◦ FX . To deal with regression with random design, the warping strategy has been applied
for instance by Kerkyacharian and Picard [13], Pham Ngoc [19], Chagny [3] and Chagny et al. [5]. Among
the advantages of this method, let us mention that a warped kernel estimator does not involve a ratio, which
strengthens its stability whatever the design distribution, even when the design is inhomogeneous. Our fully
data-driven approach is based on the selection of two bandwidths that adapt automatically to the unknown
smoothness of functions g1 and g2.

We propose to adapt the strategy developed in the linear case by Chagny et al. in [5]. The warping device
is based on the transformation FX(Xi) of the data Xi, i = 1, . . . , n. We first define kernels considered in our
framework as follows.

Definition 2.1. Let K : R → R be an integrable function such that K is compactly supported, K ∈
L∞(R) ∩ L1(R) ∩ L2(R). We say that K is a kernel if it satisfies

∫
RK(y)dy = 1.

Now, let g1, g2 : (0, 1) 7−→ R be defined by

g1 := m1 ◦ F<−1>
X , and g2 := m2 ◦ F<−1>

X ,

so that m1 = g1 ◦ FX and m2 = g2 ◦ FX . Furthermore, setting for u ∈ (0, 1),

g(u) := atan2
(
g1(u), g2(u)

)
,

we observe that m = g ◦ FX . Now, for u ∈ (0, 1), we estimate g1(u) and g2(u) by

ĝ1,h1(u) :=
1

n

n∑
i=1

sin(Θi).Kh1(u− FX(Xi)) and ĝ2,h2(u) :=
1

n

n∑
i=1

cos(Θi).Kh2(u− FX(Xi)) (3)

respectively, where h1, h2 > 0 are bandwidths of kernels Kh1
(·) and Kh2

(·) respectively.
Now, we estime g by

ĝh(u) := atan2
(
ĝ1,h1(u), ĝ2,h2(u)

)
, u ∈ (0, 1), (4)

where we denote h := (h1, h2). Moreover, as a consequence, for x ∈ R, the estimators for m1 and m2 are

m̂1,h1
(x) := ĝ1,h1

(
FX(x)

)
=

1

n

n∑
i=1

sin(Θi).Kh1

(
FX(x)− FX(Xi)

)
, (5)

and

m̂2,h2
(x) := ĝ2,h2

(
FX(x)

)
=

1

n

n∑
i=1

cos(Θi).Kh2

(
FX(x)− FX(Xi)

)
. (6)

We then obtain an estimator of m(x) at x ∈ R by setting

m̂h(x) := atan2
(
m̂1,h1

(x), m̂2,h2
(x)
)

= ĝh
(
FX(x)

)
.
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2.3 Bandwidth selection

To study the pointwise quadratic-risk of the estimator m̂h(x) whose expression is

E
[(
m̂h(x)−m(x)

)2]
= E

[(
ĝh(FX(x))− g(FX(x))

)2]
,

we first focus on the estimator ĝh of g by studying the adaptive choice of bandwidths belonging to a convenient
grid Hn. To define the latter, we assume that the kernel K satisfies supp(K) ⊆ [−A,A] for some A > 0 and
we take hmax a constant such that FX(x)−A.hmax > 0 and FX(x) +A.hmax < 1. Then, we set

Hn :=

{
h = k−1 : k ∈ N∗, h ≤ hmax, n.h > max

(‖K‖2L2(R)

‖K‖2∞
; 1
)
. log(n)

}
. (7)

We have Card
(
Hn
)
≈ n/ log n. In the following, we apply the method proposed by Goldenshluger and Lepski

in [9] to select an optimal value for bandwidths h1 and h2 automatically. Let j ∈ {1, 2}. For hj ∈ Hn and
v ∈ (0, 1) we set

Aj(hj , v) := sup
h′j∈Hn

{∣∣ĝj,hj ,h′j (v)− ĝj,h′j (v)
∣∣−√Ṽj(n, h′j)}

+
, (8)

with Ṽj(n, h
′
j) := c0,j .

log(n). ‖K‖2L2(R)

n.h′j
, c0,j > 0 a tuning parameter and

ĝj,hj ,h′j (v) :=
(
Kh′j
∗ ĝj,hj

)
(v),

so that ĝj,hj ,h′j (v) = ĝj,h′j ,hj (v). Then, a data-driven choice of bandwidth hj is performed as follows:

ĥj = argmin
hj∈Hn

{
Aj(hj , v) +

√
Ṽj(n, hj)

}
. (9)

The criterion (9) is inspired from [9], in order to mimic the optimal ”bias-variance” trade-off in the decompo-
sition

E[|ĝj,hj (v)− gj(v)|2] = |E[ĝj,hj (v)]− gj(v)|2 + E[|ĝj,h1(v)− E[ĝj,hj (v)]|2] =: b2(hj , v) + V (hj , v).

It is common to use Ṽj(n, h
′
j) to provide an upper bound for the variance term V (hj , v) (see Section 5.2),

whereas the more involved task of the Goldenshluger-Lepski method is to provide an estimate for the bias
term by comparing pair-by-pair several estimators. In our framework, the bias term corresponds to

b(hj , v) = |E[ĝj,hj (v)]− gj(v)| =
∣∣(Khj ∗ gj

)
(v)− gj(v)

∣∣,
(see (22)), so it is natural to estimate it by an estimator of the form

∣∣(Khj ∗ ĝj,h′j
)
(v) − ĝj,h′j (v)

∣∣. Thus,

the estimator of the bias term is Aj(hj , v), defined in (8), where the second term
√
Ṽj(n, h′j) controls the

fluctuations of the first term.
Now, we define the kernel estimator of g(v) with data-driven bandwidths as follows:

ĝĥ(v) := atan2
(
ĝ1,ĥ1

(v), ĝ2,ĥ2
(v)
)
, (10)

where we denote ĥ := (ĥ1, ĥ2), and

ĝ1,ĥ1
(v) :=

1

n

n∑
i=1

sin(Θi).Kĥ1

(
v − FX(Xi)

)
, and ĝ2,ĥ2

(v) :=
1

n

n∑
i=1

cos(Θi).Kĥ2

(
v − FX(Xi)

)
. (11)

As a consequence, at x ∈ R, the adaptive estimators for m1 and m2 are

m̂1,ĥ1
(x) :=

(
ĝ1,ĥ1

◦ FX
)
(x) =

1

n

n∑
i=1

sin(Θi).Kĥ1

(
FX(x)− FX(Xi)

)
, (12)

and

m̂2,ĥ2
(x) :=

(
ĝ2,ĥ2

◦ FX
)
(x) =

1

n

n∑
i=1

cos(Θi).Kĥ2

(
FX(x)− FX(Xi)

)
. (13)

We finally define the adaptive estimator for m(x) at x ∈ R by

m̂ĥ(x) := atan2
(
m̂1,ĥ1

(x), m̂2,ĥ2
(x)
)
. (14)
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3 Theoretical results

3.1 Minimax rates of convergence

The minimax approach is a framework that shows the optimality of an estimate among all possible estimates.
The minimax pointwise quadratic risk for the estimator ĝĥ := atan2

(
ĝ1,ĥ1

, ĝ2,ĥ2

)
will be derived from the

following control of the pointwise quadratic risks of ĝ1,ĥ1
and ĝ2,ĥ2

.

Proposition 3.1. Consider the collection of bandwidths Hn defined in (7). Let j ∈ {1, 2} and q ≥ 1 and

assume that min {c0,1; c0,2} ≥ 16
(
2 + q

)2
.
(
1 + ‖K‖L1(R)

)2
. Then, for n sufficiently large, with a probability

larger than 1− 4.n−q,∣∣ĝj,ĥj (FX(x)− gj(FX(x))
∣∣ ≤ inf

hj∈Hn

{(
1 + 2. ‖K‖L1(R)

)
.
∥∥gj −Khj ∗ gj

∥∥
∞ + 3.

√
Ṽj(n, hj)

}
.

The proof of Proposition 3.1 is given in Section 5.4.1. Roughly speaking, in view of results of Section 5.1, the
right hand side of the inequality stated in Proposition 3.1 may be viewed as the bias-variance decomposition
of the pointwise quadratic-risk of the best warped-kernel estimate, up to a logarithmic term.

Since the function atan2(w1, w2) is undefined when w1 = w2 = 0, it is reasonable to consider the following
assumption:

Assumption 3.2. Assume that

|m1(x)| =
∣∣g1(FX(x))

∣∣ ≥ δ1 > 0, and |m2(x)| =
∣∣g2(FX(x))

∣∣ ≥ δ2 > 0.

In the minimax setting, we need some assumptions on the regularity of g1 and g2. Thus, we introduce the
following Hölder classes that are adapted to local estimation.

Definition 3.3. Let β > 0 and L > 0. The Hölder class H(β, L) is the set of functions f : (0, 1) 7−→ R, such
that f admits derivatives up to the order bβc, and for any (y, ỹ) ∈ (0, 1)2,∣∣∣∣ dbβcf(dy)bβc

(ỹ)− dbβcf

(dy)bβc
(y)

∣∣∣∣ ≤ L.∣∣ỹ − y∣∣β−bβc.
We also consider the following assumption on the kernel K:

Assumption 3.4. The kernel K is of order L ∈ R+, i.e.

(i) CK,L :=
∫
R(1 + |y|)L.|K(y)|dy <∞ ;

(ii) ∀k ∈ {1, ..., bLc},
∫
R y

k.K(y)dy = 0.

Now, we obtain an upper bound for the pointwise quadratic risk of our final fully data-driven estimator
m̂ĥ at x defined in (14):

Theorem 3.5. Let β1, β2, L1, L2 > 0. Suppose that g1 belongs to H(β1, L1), g2 belongs to H(β2, L2), the
kernel K satisfies Assumption 3.4 with an index L ∈ R+ such that L ≥ max(β1, β2). Let q ≥ 1, and suppose

that min {c0,1; c0,2} ≥ 16
(
2 + q

)2
.
(
1 + ‖K‖L1(R)

)2
. Then, under Assumption 3.2, for n sufficiently large,

E
[∣∣m̂ĥ(x)−m(x)

∣∣2] ≤ ( 1

δ2
2

+
1

δ2
1

)
.(C2

1 + C2
2 ).max

{
ψ2
n(β1), ψ2

n(β2)
}
,

where

ψn(β1) =
(

log(n)/n
) β1

2β1+1 , ψn(β2) =
(

log(n)/n
) β2

2β2+1 ,

C1 is a constant depending on β1, L1, c0,1,K and C2 is a constant depending on β2, L2, c0,2,K.

A proof of Theorem 3.5 is given in Section 5.4.2. Observe that if β1 = β2 = β, then we obtain the rate
ψn(β) = (log n/n)β/(2β+1), which is the optimal rate for adaptive univariate regression function estimation
and pointwise risk (see e.g. Section 2 in [2]). In this case, the obtained rate is much faster than the rate
(log n/n)β/(2β+2) obtained for bivariate regression function estimation in the isotropic case. This justifies the
introduction of specific methodologies for circular regression.

Remark 3.6. Eventually, to obtain the fully computable estimator, we replace the c.d.f. FX by its natural
estimate F̂n(y) := n−1

∑n
i=1 1Xi≤y. Following arguments of [4], this replacement should not change the final

rate of convergence of our nonparametric estimator.
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3.2 Minimax lower bounds

To establish minimax lower bounds, we need to consider a statistical model which relates the Θi’s and Xi’s,
namely we assume:

Θi = m(Xi) + ζi (mod 2π), i = 1, . . . , n (15)

where m is a circular regression function and the ζi’s are centered i.i.d. random angles, independent of the
Xi’s. We will assume that Model (15) satisfies the following assumption.

Assumption 3.7. The design points Xi’s are i.i.d. random variables with density µ(.) on [0, 1] such that
there exists µ0 <∞ and µ(x) ≤ µ0 ∀x ∈ [0, 1] and the errors ζi have common density pζ(.) on S1 with respect
to the Lebesgue measure on S1, verifying

∃ p∗ > 0,∃ y0 > 0 :

∫
pζ(u) log

pζ(u)

pζ(u+ y)
du ≤ p∗y2, ∀|y| ≤ y0. (16)

In the sequel, the function m belongs to the class Σ̃(β, L) defined as the set of functions f : [0, 1] 7−→ S1

such that the derivative f (l), l = bβc exists and verifies

|f (l)(x)− f (l)(y)| ≤ L|x− y|β−l, ∀x, y ∈ [0, 1].

Remark 3.8. For two classes of functions D and D′ such that D ⊂ D′, a lower bound for the minimax rate of
convergence for D will also be a lower bound for the minimax rate for D′. Hence, this justifies the restriction
of the study of the lower bound to circular functions m defined on [0, 1].

Remark 3.9. The classical von Mises density satisfies condition (16). See Equation (20) where we recall the
definition of the von Mises density.

We obtain the following lower bound:

Theorem 3.10. Let β > 0 and L > 0. Under Assumptions 3.7, we have

lim inf
n→∞

inf
Tn

sup
m∈Σ̃(β,L)

E
[
n

2β
2β+1 (Tn(x)−m(x))2

]
≥ c,

where c depends only on β, L, p∗ and µ0 and the infimum is taken over all possible estimates based on obser-
vations (Θi, Xi)i=1,...,n.

According to Remark 3.8, Theorem 3.10 entails that the lower bound for the minimax risk for functions

m : R 7−→ S1 such that m ∈ H(β, L) is n−
2β

2β+1 . Now let us connect this result to the upper bound obtained
in Theorem 3.5. As the function atan2 is infinitely differentiable on R∗ × R∗, and if FX is smoother than g1

and g2, then if one writes m(x) = atan2(g1(FX(x)), g2(FX(x)), the smoothness β of m will be the minimum
of the smoothness of g1 and the smoothness of g2. This shows that the rate achieved in Theorem 3.5 by our
estimator is optimal up to a log factor. We conjecture that the logarithmic term is unavoidable in minimax
rates even if it remains an open problem.

4 Numerical simulations

In this section, we implement some simulations to study the numerical performances of our procedure. We
consider three different regression models:

M1. Θ = atan2
(
2X − 1, X2 + 2

)
+ ζ (mod 2π), (17)

M2. Θ = atan2
(
− 2X + 1, X2 − 1

)
+ ζ (mod 2π), (18)

M3. Θ = arccos
(
X5 − 1

)
+ 3. arcsin

(
X3 −X + 1

)
+ ζ (mod 2π), (19)

where the circular error, ζ, is distributed according to a von Mises distribution vM(0, 10) and is independent
from X. Recall that the von Mises distribution vM(µ̃, κ̃) has density

θ ∈ [−π, π) 7−→ 1

2π.I0(κ̃)
. exp

(
κ̃. cos(θ − µ̃)

)
, (20)
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with I0(κ̃) the modified Bessel function of the first kind and of order 01, a location parameter µ̃ ∈ [−π, π) and
concentration κ̃ > 0. See e.g [14, Section 2.2.2]. In the sequel, for Models M1 and M2, we consider two cases:
X ∼ U([−5, 5]) and X ∼ N (0, 1.5). For model M3, we consider X ∼ U([0, 1]). Then, for different values of
n, we draw a sample

(
Θi, Xi

)
i=1,...,n

with the same distribution as (Θ, X). To implement the Goldenshluger-

Lepski methodology, we shall consider either the Gaussian kernel defined by y 7−→ K(y) =
1√
2π
.e−

y2

2 , or

the Epanechnikov kernel K defined by y 7−→ K(y) =
3

4
.(1 − y2).1|y|≤1. Moreover, we consider the following

collection of bandwidths Hn defined as

Hn :=

{
k−1 : k ∈ N, 1 ≤ k ≤ n

log(n)

}
.

Finally, we make simulations for the general case of unknown design distribution, i.e. the final estimators are

computed using y ∈ R 7−→ F̂n(y) :=
1

n

∑n
j=1 1Xj≤y instead of FX .

4.1 Practical calibration of tuning paremeters

In the bandwidth selection procedure described in Section 2.3, we need to tune two parameters c0,1 and c0,2
in order to find an optimal value of the quadratic pointwise risk

R :=
∣∣m̂ĥ(x)−m(x)

∣∣2 (21)

with m̂ĥ(x) = atan2
(
ĝ1,ĥ1

(F̂n(x)), ĝ2,ĥ2
(F̂n(x))

)
. To do this, we implement preliminary simulations to calibrate

c0,1 and c0,2 by only considering model M1. Figure 1 displays an illustration of our setting.
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(a) Model M1 : Xi ∼ U([−5, 5])

−3 −2 −1 0 1 2 3

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0

X

th
et

a.
an

gl
e

(b) Model M1 : Xi ∼ N (0, 1.5)

Figure 1: Illustration of model M1 with n = 200 for two different density functions of the design.
Simulated data (Θi)

n
i=1 are displayed in green points. The red curve represents the regression function

m, while the blue vertical line displays the point x = −2 and the orange vertical line displays the
point x = 1.25 where we aim at estimating m(x).

4.1.1 The case c0,1 = c0,2

To select ĥ1 and ĥ2, we first consider the case c0,1 = c0,2 = c0. For different sample sizes n ∈ {100; 200; 500; 1000},
we compute the risk R defined in (21)) as a function of c0 on the following discretization grid

Gc0 := {0.001; 0.0025; 0.005; 0.0075; 0.01; 0.025; 0.05; 0.075; 0.1; 0.2; 0.3; 0.4} .
1The modified Bessel function of the first kind and of order α ≥ 0, Iα(z) for z > 0, admits the integral representation

Iα(z) =
1

π

∫ π

0

exp
(
z. cos(θ)

)
. cos(αθ)dθ − sin(απ)

π

∫ ∞

0

exp
(
− z. cosh(y) − αy

)
dy.
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We denote R ≡ R(c0). The numerical illustrations are displayed in Figure 2 for x = −2 and in Figure 3 for
x = 1.25, respectively. To further study an influence of the kernel rule, we consider the Gaussian kernel. The
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(a) Xi ∼ N (0, 1.5)
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(b) Xi ∼ U([−5, 5])

Figure 2: Plot of the Monte Carlo estimation of the function c0 ∈ Gc0 7−→ R(c0), based on 50
runs, for x = −2, the Gaussian and the uniform designs and by using the Epanechnikov kernel for
n ∈ {100; 200; 500; 1000}. The red vertical line displays the point c0 = 0.04.
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(a) Xi ∼ N (0, 1.5)
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(b) Xi ∼ U([−5, 5])

Figure 3: Plot of the Monte Carlo estimation of the function c0 ∈ Gc0 7−→ R(c0), based on 50
runs, for x = 1.25, the Gaussian and the uniform designs and by using the Epanechnikov kernel for
n ∈ {100; 200; 500; 1000}. The red vertical line displays the point c0 = 0.04.

associated numerical illustrations are provided in Figure 4 for X ∼ U([−5, 5]) and for X ∼ N (0, 1.5). This
brief numerical study shows that the choice c0,1 = c0,2 = 0.04 is convenient for each numerical scheme.

4.1.2 The case c0,1 6= c0,2

We do no longer assume that c0,1 = c0,2. For n = 200, we compute the risk R defined in (21) as a function of
(c0,1, c0,2) on the following discretization grid

Gc0 := {0.001; 0.005; 0.01; 0.025; 0.05; 0.075; 0.1; 0.2; 0.3; 0.4} .

We denote R ≡ R(c0,1, c0,2). The associated numerical illustrations are provided in Figure 5 and Figure 6
for the case X ∼ N (0, 1.5) and X ∼ U([−5, 5]), respectively. Even if it is not the best one, the choice of
c0,1 = c0,2 = 0.04 is reasonable. For sake of simplicity, we fix c0,1 = c0,2 = 0.04 for subsequent numerical
simulations.
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(a) Model M1 : Xi ∼ U([−5, 5]).
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(b) Model M1 : Xi ∼ N (0, 1.5).

Figure 4: Plot of the Monte Carlo estimation of the function c0 ∈ Gc0 7−→ R(c0), based on 50
runs, for x = −2, the Gaussian and the uniform designs and by using the Gaussian kernel for
n ∈ {100; 200; 500; 1000; 2000}.
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Figure 5: 2D-represention of the Monte Carlo estimation of the function (c0,1, c0,1) ∈ Gc0 ×Gc0 7−→
R(c0,1, c0,2), based on 50 runs, for Model M1 with Xi ∼ N (0, 1.5), n = 200 at x = −2 and x = 1.25
by using the Epanechnikov kernel. We display the specific point c0,1 = c0,2 = 0.04.

4.2 Numerical results

We now illustrate the numerical performances obtained by our methodology for models M1, M2 and M3 by
using the Epanechnikov kernel. They are also compared to other approaches. A similar scheme is conducted
by using the Gaussian kernel. Remember that in the following numerical experiments, our estimate is tuned
with c0,1 = c0,2 = 0.04. We first display several graphs to illustrate numerical performances obtained by
our methodology, denoted GL, by using the Epanechnikov kernel. More precisely, we display boxplots in
Figures 7 and 8 summarizing our numerical results for Model M1 in the case X ∼ U([−5, 5]) and in the case
X ∼ N (0, 1.5), respectively. In both cases, for model M1, we estimate m(x) at x = −2 and at x = 1.25.
Figure 9 shows simulations for model M2 with X ∼ N (0, 1.5) and we estimate m(x) at x = 1.05. Figure 10
shows simulations for model M3 with X ∼ U([0, 1]) and we estimate m(x) at x = 0.95. Moreover, to make
a comparison with our adaptive estimator, as proposed in [16], we also compute the Nadaraya-Watson (NW)
estimator m̂NW

h and the version of the local linear (LL) estimator proposed by [16, Section 4.2]) denoted by
m̂LL
h . Cross-Validation is used to select the bandwidth parameter for m̂NW

h and m̂LL
h . Boxplots in Figures 7,

8, 9 and 10 show that the performances of our estimator are quite satisfying.
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Figure 6: 2D-represention of the Monte Carlo estimation of the function (c0,1, c0,1) ∈ Gc0 ×Gc0 7−→
R(c0,1, c0,2), based on 50 runs, for Model M1 with Xi ∼ U([−5, 5]), n = 200 at x = −2 and x = 1.25
by using the Epanechnikov kernel. We display the specific point c0,1 = c0,2 = 0.04.
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(b) Model M1: estimation at x = 1.25

Figure 7: Boxplots of the estimated risk with 50 runs for the GL, NW and LL methodologies for
n = 200 and X ∼ U([−5, 5]) by using the Epanechnikov kernel.

We finally repeat the previous numerical experiments but with the use of the Gaussian kernel: Figures 11
and 12 are the analogs of Figures 7 and 8. Figure 13a shows the numerical simulation for model M2 with
X ∼ N (0, 1.5) and we estimate m(x) at x = 1.05. Figure 13b shows the numerical simulation for model
M3 with X ∼ U([0, 1]) and we estimate m(x) at x = 0.95. These graphs show that the performances of our
adaptive estimator associated witth the Gaussian kernel are quite satisfying as well.

5 Proofs

Along this section, we fix x in R and we set ux := FX(x).
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Figure 8: Boxplots of the estimated risk with 50 runs for the GL, NW and LL methodologies for
n = 200 and X ∼ N (0, 1.5) by using the Epanechnikov kernel
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(a) Model M2: Xi ∼ N (0, 1.5)
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Figure 9: (a): Simulated data (Θi)
n
i=1 of Model M2 (green points) with n = 200 and Xi ∼ N (0, 1.5).

The red curve represents the true regression function m, while the blue vertical line displays the point
x = 1.05; (b): Boxplots of the estimated risk with 50 runs for the GL, NW and LL methodologies
by using the Epanechnikov kernel.

5.1 Preliminary results

In this section, we study several preliminary results for ĝ1,h1
and ĝ2,h2

defined in (3). First of all, via the
warping method, we observe

E
(
ĝ1,h1

(ux)
)

= E

[
1

n

n∑
k=1

sin(Θk).Kh1

(
ux − FX(Xk)

)]
= E

[
E
[

sin(Θ)|X
]
.Kh1

(
ux − FX(X)

)]
=

∫
R
E[sin(Θ)|X = y].Kh1

(
ux − FX(y)

)
.fX(y)dy

=

∫
R
m1(y).Kh1

(
ux − FX(y)

)
.fX(y)dy

=

∫
FX(R)

g1(w).Kh1

(
ux − w

)
dw.
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Figure 10: (a): Simulated data (Θi)
n
i=1 of Model M3 (green points) with n = 200 and Xi ∼ U([0, 1]).

The red curve represents the true regression function m, while the blue vertical line displays the point
x = 0.95; (b): Boxplots of the estimated risk with 50 runs for the GL, NW and LL methodologies
by using the Epanechnikov kernel.
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Figure 11: Boxplots of the estimated risk with 50 runs for the GL, NW and LL methodologies for
n = 200 and X ∼ U([−5, 5]) by using the Gaussian kernel.

Then, using the choice of hmax, since ux = FX(x) ∈ (0, 1) = FX(R) is fixed and Kh1

(
ux−w

)
= 0 for w ∈ (0, 1)

such that
∣∣ux − w∣∣ > A.hmax, we have∫

FX(R)

g1(w).Kh1

(
ux − w

)
dw =

∫ ux+A.hmax

ux−A.hmax

g1(w).Kh1

(
ux − w

)
dw =

(
Kh1 ∗ g1

)
(ux). (22)

Thus, we obtain
E
(
ĝ1,h1

(ux)
)

=
(
Kh1
∗ g1

)
(ux)

and similarly,
E
(
ĝ2,h2

(ux)
)

=
(
Kh2
∗ g2

)
(ux). (23)

We obtain upper bounds for the bias and variance terms.

Lemma 5.1. Suppose that g1 belongs to H(β1, L1) and g2 belongs to H(β2, L2), with L1, L2, β1, β2 ∈ R∗+.
Assume that the kernel K satisfies Assumption 3.4 with an index L ∈ R+ such that L ≥ max(β1, β2). Then,
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Figure 12: Boxplots of the estimated risk with 50 runs for the GL, NW and LL methodologies for
n = 200 and X ∼ N (0, 1.5) by using the Gaussian kernel.
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Figure 13: Boxplots of the estimated risk with 50 runs for the GL, NW and LL methodologies for
n = 200 by using the Gaussian kernel.

for any (h1, h2) ∈ H2
n,∣∣∣E(ĝ1,h1

(ux)
)
− g1(ux)

∣∣∣ ≤ CK,L.L1.h
β1

1 , and Var
(
ĝ1,h1

(ux)
)
≤
‖K‖2L2(R)

n.h1
,

∣∣∣E(ĝ2,h2(ux)
)
− g2(ux)

∣∣∣ ≤ CK,L.L2.h
β2

2 , and Var
(
ĝ2,h2(ux)

)
≤
‖K‖2L2(R)

n.h2
,

with CK,L the constant defined in Assumption 3.4.

The proof of Lemma 5.1 is given in Section 5.2.
We introduce in the sequel several events on which we will establish some concentration results for ĝ1,h1 and
ĝ2,h2

.

Definition 5.2. For n ∈ N∗, p ≥ 1, and h1, h2 > 0, we define for an arbitrary v ∈ FX(R) the following two
events

Ω1,n(v, h1) :=

{∣∣ĝ1,h1(v)− E[ĝ1,h1(v)]
∣∣ ≤ c1(p).

√
Ṽ1(n, h1)

}
and

Ω2,n(v, h2) :=

{∣∣ĝ2,h2
(v)− E[ĝ2,h2

(v)]
∣∣ ≤ c1(p).

√
Ṽ2(n, h2)

}
,
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with c1(p) satisfying c1(p).
√

min {c0,1; c0,2} ≥ 4p.
Furthermore, for L1, L2, β1, β2 > 0, we also introduce

E1,n(v, h1) :=
{∣∣ĝ1,h1

(v)− g1(v)
∣∣ ≤ Φ1(n, h1)

}
and E2,n(v, h2) :=

{∣∣ĝ2,h2
(v)− g2(v)

∣∣ ≤ Φ2(n, h2)
}

where

Φ1(n, h1) := c1(p).

√
Ṽ1(n, h1) + CK,L.L1.h

β1

1

and

Φ2(n, h2) := c1(p).

√
Ṽ2(n, h2) + CK,L.L2.h

β2

2 .

Then, the following proposition gives a concentration inequality for ĝ1,h1(ux) and ĝ2,h2(ux).

Proposition 5.3. For p ≥ 1 and bandwidths h1, h2 ∈ Hn (defined in (7)), we have:

P
((

Ω1,n(ux, h1)
)c)
≤ 2.n−p, and P

((
Ω2,n(ux, h2)

)c)
≤ 2.n−p.

Consequently, suppose further that g1 belongs to H(β1, L1), and g2 belongs to H(β2, L2), with L1, L2, β1, β2 ∈
R∗+ and the kernel K satisfies Assumption 3.4 with an index L ∈ R+ such that L ≥ max(β1, β2), then we get:

P
((
E1,n(ux, h1)

)c)
≤ 2.n−p and P

((
E2,n(ux, h2)

)c)
≤ 2.n−p.

The proof of Proposition 5.3 is given in Section 5.3.

5.2 Proof of Lemma 5.1

Proof. First, for the bias of ĝ1,h(ux) at ux = FX(x), using (22), we can write

E
(
ĝ1,h1(ux)

)
− g1(ux) =

1

h1
.

∫ ux+A.hmax

ux−A.hmax

K
(ux − z

h1

)
.g1(z)dz − g1(ux)

=

∫ A

−A
K(w).

(
g1(ux − h1.w)− g1(ux)

)
dw. (24)

Since g1 belongs to H(β1, L1), using a Taylor expansion for g1, we get for w ∈ [−A,A],

g1(ux − h1.w) = g1(ux) + g′1(ux).(−h1).w + ...+
(−h1.w)bβ1c

(bβ1c)!
.g

(bβ1c)
1 (ux − τ.h1.w), 0 ≤ τ ≤ 1.

Then, under Assumption 3.4 with an index L ∈ R+ satisfying L ≥ max(β1, β2), from (24) one gets∫ A

−A
K(w).

(
g1(ux − h1.w)− g1(ux)

)
dw

=

∫ A

−A
K(w).

(−h1.w)bβ1c

(bβ1c)!
.g

(bβ1c)
1 (ux − τ.h1.w)dw

=

∫ A

−A
K(w).

(−h1.w)bβ1c

(bβ1c)!
.
(
g

(bβ1c)
1 (ux − τ.h1.w)− g(bβ1c)

1 (ux)
)
dw.

This implies that with 0 ≤ τ ≤ 1, with CK,L the constant defined in Assumption 3.4,∣∣∣E(ĝ1,h1
(ux)

)
− g1(ux)

∣∣∣ ≤ ∫ A

−A
|K(w)|. |h1.w|bβ1c

(bβ1c)!
.
∣∣∣g(bβ1c)

1 (ux − τ.h1.w)− g(bβ1c)
1 (ux)

∣∣∣dw
≤
∫ A

−A
|K(w)|. |h1.w|bβ1c

(bβ1c)!
.L1.

∣∣τ.h1.w
∣∣β1−bβ1c

dw (since g1 ∈ H(β1, L1))

≤ L1.h
β1

1 .

∫ A

−A
|K(w)|.|w|β1dw

≤ L1.h
β1

1 .

∫ A

−A
|K(w)|.(1 + |w|)β1dw ≤ L1.h

β1

1 .CK,L.
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Similarly, we obtain for ĝ2,h2
: ∣∣∣E(ĝ2,h2

(ux)
)
− g2(ux)

∣∣∣ ≤ L2.h
β2

2 .CK,L.

For the variance of ĝ1,h1
(ux), one gets:

Var
(
ĝ1,h1(ux)

)
= E

[(
ĝ1,h1(ux)− E

(
ĝ1,h1(ux)

))2]
= Var

(
1

n
.

n∑
k=1

sin(Θk).Kh1

(
ux − FX(Xk)

))

≤ 1

n
.E
[(

sin(Θ)
)2
.
[
Kh1

(
ux − FX(X)

)]2]
≤ 1

n
.E
([
Kh1

(
ux − FX(X)

)]2) ≤ ‖K‖2L2(R)

n.h1
,

and similarly, for ĝ2,h2(ux). This concludes the proof of Lemma 5.1.

5.3 Proof of Proposition 5.3

We shall use the following version of Bernstein inequality (see [6, Lemma 2]).

Lemma 5.4 (Bernstein inequality). Let T1, . . . , Tn be i.i.d. random variables and Sn =
∑n
j=1

[
Tj − E(Tj)

]
.

Then, for any η > 0,

P
(∣∣Sn∣∣ ≥ n.η) ≤ 2.max

(
exp

(
− n.η2

4.V

)
, exp

(
− n.η

4.b

))
,

with Var(T1) ≤ V and |T1| ≤ b, where V and b are two positive deterministic constants.

Now, we can start to prove Proposition 5.3.

Proof of Proposition 5.3. We follow the procedure proposed in [6, Proposition 6]. First of all, we define random

variables Zk(ux) := cos(Θk).Kh2

(
ux−FX(Xk)

)
, for 1 ≤ k ≤ n, and hence, ĝ2,h2

(ux) =
1

n

∑n
k=1 Zk(ux). Notice

that E(Zk(ux)) =
(
Kh2
∗ g2

)
(ux) (see (23)). Since ‖K‖∞ < +∞, we then have for any v ∈ FX(R):

|Zk(v)| =
∣∣cos(Θk).Kh2

(
v − FX(Xk)

)∣∣ ≤ ‖K‖∞
h2

=: b(h2), (25)

and Var
(
Zk(v)

)
= n.Var

(
ĝ2,h2(v)

)
≤ n.

‖K‖2L2(R)

n.h2
=: n.V0(n, h2). Now, applying Lemma 5.4 to the Zk(v)’s,

we obtain for η(h2) > 0,

P
(∣∣∣ĝ2,h2

(v)− E
(
ĝ2,h2

(v)
)∣∣∣ ≥ η(h2)

)
= P

(∣∣∣ n∑
k=1

Zk(v)− E
(
Zk(v)

)∣∣∣ ≥ n.η(h2)

)

≤ 2.max

{
exp

(
−
n.
(
η(h2)

)2
4n.V0(n, h2)

)
; exp

(
−n.η(h2)

4b(h2)

)}
.

For p ≥ 1, choose η(h2) = c1(p).

√
Ṽ2(n, h2), with

Ṽ2(n, h2) = c0,2. log(n).V0(n, h2). (26)

Then,

P
(∣∣∣ĝ2,h2(v)− E

(
ĝ2,h2(v)

)∣∣∣ ≥ c1(p).

√
Ṽ2(n, h2)

)

≤ 2.max

exp

(
−n.c1(p)2.Ṽ2(n, h2)

4n.V0(n, h2)

)
; exp

−n.c1(p).

√
Ṽ2(n, h2)

4b(h2)

 . (27)
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We then choose c1(p).
+ First, c1(p) is chosen such that

n.c1(p)2.Ṽ2(n, h2)

4n.V0(n, h2)
=
n.c1(p)2.c0,2. log(n).V0(n, h2)

4n.V0(n, h2)
≥ p. log(n), (28)

that is c1(p) satisfies c1(p)2.c0,2 ≥ 4p.
+ Secondly, we can write

n.c1(p).

√
Ṽ2(n, h2)

4b(h2)
=
c1(p).

√
c0,2

4
.
√

log(n).
n.
√
V0(n, h2)

b(h2)

and for h2 ∈ Hn,

n.

√
V0(n, h2)

b(h2)
= n.

‖K‖L2(R)√
n.h2

.
h2

‖K‖∞
=
√
n.h2.

‖K‖L2(R)

‖K‖∞
>
√

log(n),

then, we have

n.c1(p).

√
Ṽ2(n, h2)

4b(h2)
=
c1(p).

√
c0,2

4
.
√

log(n).
n.
√
V0(n, h2)

b(h2)
≥
c1(p).

√
c0,2

4
. log(n) ≥ p. log(n), (29)

provided that c1(p).
√
c0,2 ≥ 4p. Note that this condition also ensures the constraint c1(p)2.c0,2 ≥ 4p.

Now, combining (28) and (29), we get from (27) for any p ≥ 1:

P
((

Ω2,n(ux, h2)
)c)

:= P
(∣∣∣ĝ2,h2

(ux)− E
(
ĝ2,h2

(ux)
)∣∣∣ > c1(p).

√
Ṽ2(n, h2)

)
≤ 2.n−p.

This implies that with probability larger than 1− 2.n−p, we have:∣∣ĝ2,h2
(ux)− E

(
ĝ2,h2

(ux)
)∣∣ ≤ c1(p).

√
Ṽ2(n, h2).

Then, with probability larger than 1− 2.n−p, we obtain∣∣ĝ2,h2(ux)− g2(ux)
∣∣ ≤ ∣∣ĝ2,h2(ux)− E

(
ĝ2,h2(ux)

)∣∣+
∣∣E(ĝ2,h2(ux)

)
− g2(ux)

∣∣
≤ c1(p).

√
Ṽ2(n, h2) + L2.h

β2

2 .CK,L.

Recall that Φ2(n, h2) = c1(p).

√
Ṽ2(n, h2) + L2.h

β2

2 .CK,L, therefore, we finally obtain for p ≥ 1 that

P
((
E2,n(ux, h2)

)c)
= P

(∣∣ĝ2,h2(ux)− g2(ux)
∣∣ > Φ2(n, h2)

)
≤ 2.n−p. (30)

By similar arguments we obtain the desired result for ĝ1,h1 . This concludes the proof of Proposition 5.3.

5.4 Proofs of main results

5.4.1 Proof of Proposition 3.1

We first have the following concentration result.

Corollary 5.5. Under the Assumptions of Proposition 3.1, for all h1, h
′
1, h2, h

′
2 ∈ Hn, for all p ≥ 1, for

ux = FX(x),

P
(∣∣ĝ1,h1,h′1

(ux)− E
[
ĝ1,h1,h′1

(ux)
]∣∣ > c1(p). ‖K‖L1(R) .

√
Ṽ1(n, h′1)

)
≤ 2.n−p,

and

P
(∣∣ĝ2,h2,h′2

(ux)− E
[
ĝ2,h2,h′2

(ux)
]∣∣ > c1(p). ‖K‖L1(R) .

√
Ṽ2(n, h′2)

)
≤ 2.n−p,

with c1(p) satisfying c1(p).
√

min {c0,1; c0,2} ≥ 4p.
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Proof of Corollary 5.5. We define random variables Z̃k(ux) := cos(Θk).
(
Kh′2

∗ Kh2

)(
ux − FX(Xk)

)
, for 1 ≤

k ≤ n, and hence, ĝ2,h2,h′2
(ux) =

1

n

∑n
k=1 Z̃k(ux). Since ‖K‖∞ < +∞, we then have:

∣∣∣Z̃k(ux)
∣∣∣ =

∣∣cos(Θk).
(
Kh′2
∗Kh2

)(
ux − FX(Xk)

)∣∣ ≤ ‖K‖∞ . ‖K‖L1(R)

h2
=: b̃(h2),

and Var
(
Z̃k(ux)

)
= n.Var

(
ĝ2,h2,h′2

(ux)
)
≤ n.

‖K‖2L1(R) . ‖K‖
2
L2(R)

n.h2
=: n.Ṽ0(n, h2).

Using similar arguments of the proof of Proposition 5.3, we obtain with a probability greater than 1− 2.n−p

that ∣∣ĝ2,h2,h′2
(ux)− E

[
ĝ2,h2,h′2

(ux)
]∣∣ ≤ ‖K‖L1(R) .c1(p).

√
Ṽ2(n, h2).

Similarly, we get the desired concentration for
∣∣ĝ1,h1,h′1

(ux) − E
[
ĝ1,h1,h′1

(ux)
]∣∣. This concludes the proof of

Corollary 5.5.

Now, we can start to prove Proposition 3.1.

Proof of Proposition 3.1. We follow the strategy proposed in [6, Theorem 2]. The target is to find an upper
bound for

∣∣ĝ2,ĥ2
(ux)− g2(ux)

∣∣. Let h2 ∈ Hn be fixed. We consider the following decomposition:∣∣ĝ2,ĥ2
(ux)− g2(ux)

∣∣ ≤ ∣∣ĝ2,ĥ2
(ux)− ĝ2,h2,ĥ2

(ux)
∣∣︸ ︷︷ ︸

=:Ig2,1

+
∣∣ĝ2,h2,ĥ2

(ux)− ĝ2,h2(ux)
∣∣︸ ︷︷ ︸

=:Ig2,2

+
∣∣ĝ2,h2(ux)− g2(ux)

∣∣.
By the definition of A2(h2, ux), we have

Ig2,1 =
∣∣ĝ2,ĥ2

(ux)− ĝ2,h2,ĥ2
(ux)

∣∣ =
∣∣ĝ2,ĥ2

(ux)− ĝ2,h2,ĥ2
(ux)

∣∣−√Ṽ2(n, ĥ2) +

√
Ṽ2(n, ĥ2)

≤ sup
h′2∈Hn

{∣∣ĝ2,h′2
(ux)− ĝ2,h2,h′2

(ux)
∣∣−√Ṽ2(n, h′2)

}
+

+

√
Ṽ2(n, ĥ2)

= A2(h2, ux) +

√
Ṽ2(n, ĥ2).

And similarly, by the definition of A2(ĥ2, ux),

Ig2,2 =
∣∣ĝ2,h2,ĥ2

(ux)− ĝ2,h2
(ux)

∣∣ ≤ sup
h′2∈Hn

{∣∣ĝ2,h′2,ĥ2
(ux)− ĝ2,h′2

(ux)
∣∣−√Ṽ2(n, h′2)

}
+

+

√
Ṽ2(n, h2)

= A2(ĥ2, ux) +

√
Ṽ2(n, h2).

Therefore, by using the definition of ĥ2, we get

Ig2,1 + Ig2,2 ≤ A2(h2, ux) +

√
Ṽ2(n, ĥ2) +A2(ĥ2, ux) +

√
Ṽ2(n, h2) ≤ 2.

[
A2(h2, ux) +

√
Ṽ2(n, h2)

]
.

Hence, we obtain ∣∣ĝ2,ĥ2
(ux)− g2(ux)

∣∣ ≤ 2.A2(h2, ux) + 2.

√
Ṽ2(n, h2) +

∣∣ĝ2,h2
(ux)− g2(ux)

∣∣. (31)

Now, to study A2(h2, ux), we can write:

ĝ2,h′2
(ux)− ĝ2,h2,h′2

(ux) = ĝ2,h′2
(ux)− E

[
ĝ2,h′2

(ux)
]
−
(
ĝ2,h2,h′2

(ux)− E
[
ĝ2,h2,h′2

(ux)
])

+ E
[
ĝ2,h′2

(ux)
]
− E

[
ĝ2,h2,h′2

(ux)
]
,
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and, we have E
[
ĝ2,h′2

(ux)
]

=
(
Kh′2

∗ g2

)
(ux) as well as E

[
ĝ2,h2,h′2

(ux)
]

= E
[
Kh′2

∗ ĝ2,h2
(ux)

]
=
(
Kh′2

∗Kh2
∗

g2

)
(ux).

Thus,

∣∣ĝ2,h′2
(ux)− ĝ2,h2,h′2

(ux)
∣∣−√Ṽ2(n, h′2) ≤

∣∣ĝ2,h′2
(ux)− E

[
ĝ2,h′2

(ux)
]∣∣−

√
Ṽ2(n, h′2)

(1 + ‖K‖L1(R))

+
∣∣ĝ2,h2,h′2

(ux)− E
[
ĝ2,h2,h′2

(ux)
]∣∣− ‖K‖L1(R) .

√
Ṽ2(n, h′2)

(1 + ‖K‖L1(R))

+
∣∣E[ĝ2,h′2

(ux)
]
− E

[
ĝ2,h2,h′2

(ux)
]∣∣.

However, for any h′2 ∈ Hn,∣∣E[ĝ2,h′2
(ux)

]
− E

[
ĝ2,h2,h′2

(ux)
]∣∣ =

∣∣Kh′2
∗
(
g2 −Kh2 ∗ g2

)
(ux)

∣∣ ≤ ‖K‖L1(R) . ‖g2 −Kh2 ∗ g2‖∞ .

Hence, incorporating this bound in the definition of A2(h2, ux), we obtain

A2(h2, ux) = sup
h′2∈Hn

{∣∣ĝ2,h′2
(ux)− ĝ2,h2,h′2

(ux)
∣∣−√Ṽ2(n, h′2)

}
+

≤ sup
h′2∈Hn

∣∣ĝ2,h′2
(ux)− E

[
ĝ2,h′2

(ux)
]∣∣−

√
Ṽ2(n, h′2)

(1 + ‖K‖L1(R))


+

(32)

+ sup
h′2∈Hn

∣∣ĝ2,h2,h′2
(ux)− E

[
ĝ2,h2,h′2

(ux)
]∣∣− ‖K‖L1(R) .

√
Ṽ2(n, h′2)

(1 + ‖K‖L1(R))


+

(33)

+ ‖K‖L1(R) . ‖g2 −Kh2
∗ g2‖∞ .

From Corollary 5.5, for h2, h
′
2 ∈ Hn,

P
(∣∣ĝ2,h2,h′2

(ux)− E
[
ĝ2,h2,h′2

(ux)
]∣∣ > c1(p). ‖K‖L1(R) .

√
Ṽ2(n, h′2)

)
≤ 2.n−p.

It implies that if we take c1(p) =
1

1 + ‖K‖L1(R)

and if c0,2 ≥ 16p2.
(
1 + ‖K‖L1(R)

)2
, then

P

 sup
h′2∈Hn

∣∣ĝ2,h′2
(ux)− E

[
ĝ2,h′2

(ux)
]∣∣−

√
Ṽ2(n, h′2)

(1 + ‖K‖L1(R))


+

> 0

 ≤ 2.
∑

h2∈Hn

n−p ≤ 2.n1−p,

as Card(Hn) ≤ n. In the same way for all h2 ∈ Hn,

P

 sup
h′2∈Hn

∣∣ĝ2,h2,h′2
(ux)− E

[
ĝ2,h2,h′2

(ux)
]∣∣− ‖K‖L1(R) .

√
Ṽ2(n, h′2)

(1 + ‖K‖L1(R))


+

> 0

 ≤ 2.n1−p.

Consequently, the following set

Ã2 :=

 sup
h′2∈Hn

∣∣ĝ2,h′2
(ux)− E

[
ĝ2,h′2

(ux)
]∣∣−

√
Ṽ2(n, h′2)

(1 + ‖K‖L1(R))


+

= 0


∩

∀h2 ∈ Hn, sup
h′2∈Hn

∣∣ĝ2,h2,h′2
(ux)− E

[
ĝ2,h2,h′2

(ux)
]∣∣− ‖K‖L1(R) .

√
Ṽ2(n, h′2)

(1 + ‖K‖L1(R))


+

= 0
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has probability greater than (1− 4.n2−p). Now, choose p = 2 + q and then c0,2 ≥ 16
(
2 + q

)2
.
(
1 + ‖K‖L1(R)

)2
.

Thus, we obtain that P
(
Ã2

)
> 1− 4.n−q.

Combining inequalities (31) and (32), we have on Ã2:∣∣ĝ2,ĥ2
(ux)− g2(ux)

∣∣ ≤ 2.A2(h2, ux) + 2.

√
Ṽ2(n, h2) +

∣∣ĝ2,h2
(ux)− g2(ux)

∣∣
≤ 2. ‖K‖L1(R) . ‖g2 −Kh2

∗ g2‖∞ + 2.

√
Ṽ2(n, h2) +

∣∣ĝ2,h2(ux)− g2(ux)
∣∣,

but still on Ã2, one gets
∣∣ĝ2,h2

(ux)− E
[
ĝ2,h2

(ux)
]∣∣−

√
Ṽ2(n, h2)

(1 + ‖K‖L1(R))
≤ 0, so

∣∣ĝ2,h2(ux)− g2(ux)
∣∣ ≤ ∣∣E[ĝ2,h2(ux)

]
− g2(ux)

∣∣+
∣∣ĝ2,h2(ux)− E

[
ĝ2,h2(ux)

]∣∣−
√
Ṽ2(n, h2)

(1 + ‖K‖L1(R))

+

√
Ṽ2(n, h2)

(1 + ‖K‖L1(R))

≤ ‖g2 −Kh2
∗ g2‖∞ +

√
Ṽ2(n, h2).

Therefore, on Ã2, we finally obtain∣∣ĝ2,ĥ2
(ux)− g2(ux)

∣∣ ≤ (1 + 2 ‖K‖L1(R)). ‖g2 −Kh2
∗ g2‖∞ + 3.

√
Ṽ2(n, h2).

By similar arguments, we obtain the desired result for ĝ1,ĥ1
(ux). This concludes the proof of Proposition 3.1.

5.4.2 Proof of Theorem 3.5

First, we establish a concentration result for ĝ1,ĥ1
(ux) and ĝ2,ĥ2

(ux) as follows:

Corollary 5.6. For β1, β2, L1, L2 > 0, suppose that g1 belongs to H(β1, L1) and g2 belongs to H(β2, L2).
Then, under the assumptions of Proposition 3.1, for q ≥ 1,

P
((
Ẽ1,n(ux, ĥ1)

)c)
:= P

(∣∣ĝ1,ĥ1
(ux)− g1(ux)

∣∣ > C1.ψn(β1)
)
≤ 4.n−q,

P
((
Ẽ2,n(ux, ĥ2)

)c)
:= P

(∣∣ĝ2,ĥ2
(ux)− g2(ux)

∣∣ > C2.ψn(β2)
)
≤ 4.n−q,

where C1 is a constant (depending on β1, L1, c0,1,K) and C2 is a constant (depending on β2, L2, c0,2,K). In

the previous expressions, ψn(β1) =
(

log(n)/n
) β1

2β1+1 and ψn(β2) =
(

log(n)/n
) β2

2β2+1 .

Proof of Corollary 5.6. Since g1 belongs to H(β1, L1), from Lemma 5.1, we have

‖g1 −Kh1 ∗ g1‖∞ ≤ L1.h
β1

1 .CK,L.

From Proposition 3.1, this implies that with a probability greater than 1− 4.n−q, one gets for any h1 ∈ Hn:∣∣ĝ1,ĥ1
(ux)− g1(ux)

∣∣ ≤ (1 + 2 ‖K‖L1(R)

)
.L1.h

β1

1 .CK,L + 3.

√
Ṽ1(n, h1). (34)

In (34), we take h1 so that h−1
1 is an integer and h1 of order

( log(n)

n

) 1
2β1+1

. Since 1/(2β1 + 1) < 1, h1 ∈ Hn,
for n large enough. As a result, we obtain with probability greater than 1− 4.n−q, that∣∣ĝ1,ĥ1

(ux)− g1(ux)
∣∣ ≤ C1.ψn(β1),

with a constant C1 (depending on β1, L1, c0,1,K) and ψn(β1) =
(

log(n)/n
) β1

2β1+1 .
By similar arguments, we obtain the desired result for ĝ2,ĥ2

(ux). This concludes the proof of Corollary 5.6.
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Now, we start to prove Theorem 3.5.

Proof of Theorem 3.5. We have E
[∣∣m̂ĥ(x)−m(x)

∣∣2] = E
[∣∣ĝĥ(ux)−g(ux)

∣∣2]. First, on the event Ẽ2,n(ux, ĥ2)∩

Ẽ1,n(ux, ĥ1), for n sufficiently large satisfying C2.ψn(β2) ≤ δ2/2 and C1.ψn(β1) ≤ δ1/2, we have
∣∣ĝ2,ĥ2

(ux)−

g2(ux)
∣∣ ≤ C2.ψn(β2) <

∣∣g2(ux)
∣∣

2
and

∣∣ĝ1,ĥ1
(ux)−g1(ux)

∣∣ ≤ C1.ψn(β1) <

∣∣g1(ux)
∣∣

2
. Thus, we get ĝ2,ĥ2

(ux).g2(ux) >

0 and ĝ1,ĥ1
(ux).g1(ux) > 0. Then, we have

E
[∣∣ĝĥ(ux)− g(ux)

∣∣2.1Ẽ2,n(ux,ĥ2)∩Ẽ1,n(ux,ĥ1)

]
= E

[∣∣∣atan2
(
ĝ1,ĥ1

(ux), ĝ2,ĥ2
(ux)

)
− atan2

(
g1(ux), g2(ux)

)∣∣∣2.1Ẽ2,n(ux,ĥ2)∩Ẽ1,n(ux,ĥ1)

]
= E

[∣∣∣ arctan
( ĝ1,ĥ1

(ux)

ĝ2,ĥ2
(ux)

)
− arctan

(g1(ux)

g2(ux)

)∣∣∣2.1Ẽ2,n(ux,ĥ2)∩Ẽ1,n(ux,ĥ1)

]
≤ 2.E

[∣∣∣ arctan
( ĝ1,ĥ1

(ux)

ĝ2,ĥ2
(ux)

)
− arctan

( g1(ux)

ĝ2,ĥ2
(ux)

)∣∣∣2.1Ẽ2,n(ux,ĥ2)∩Ẽ1,n(ux,ĥ1)

]
(35)

+ 2.E
[∣∣∣ arctan

( g1(ux)

ĝ2,ĥ2
(ux)

)
− arctan

(g1(ux)

g2(ux)

)∣∣∣2.1Ẽ2,n(ux,ĥ2)∩Ẽ1,n(ux,ĥ1)

]
.

For n sufficiently large,
∣∣ĝ2,ĥ2

(ux)
∣∣ ≥ ∣∣g2(ux)

∣∣ − ∣∣g2(ux) − ĝ2,h(ux)
∣∣ > δ2 − C2.ψn(β2) ≥ δ2/2 on the event

Ẽ2,n(ux, ĥ2), and using the 1-Lipschitz continuity of arctan, we get for the first term in (35), since on

Ẽ1,n(ux, ĥ1) one has
∣∣ĝ1,ĥ1

(ux)− g1(ux)
∣∣ ≤ C1.ψn(β1)

E
[∣∣∣ arctan

( ĝ1,ĥ1
(ux)

ĝ2,ĥ2
(ux)

)
− arctan

( g1(ux)

ĝ2,ĥ2
(ux)

)∣∣∣2.1Ẽ2,n(ux,ĥ2)∩Ẽ1,n(ux,ĥ1)

]
≤ 4

δ2
2

.E
[∣∣∣ĝ1,ĥ1

(ux)− g1(ux)
∣∣∣2.1Ẽ2,n(ux,ĥ2)∩Ẽ1,n(ux,ĥ1)

]
≤ 4

δ2
2

.E
[
C2

1 .ψn(β1)2.1Ẽ2,n(ux,ĥ2)∩Ẽ1,n(ux,ĥ1)

]
≤ 4

δ2
2

.C2
1 .ψn(β1)2.P

(
Ẽ2,n(ux, ĥ2) ∩ Ẽ1,n(ux, ĥ1)

)
≤ 4

δ2
2

.C2
1 .ψn(β1)2.

Moreover, for the second term in (35), since
g1(ux)

ĝ2,ĥ2
(ux)

.
g1(ux)

g2(ux)
> 0 on Ẽ2,n(ux, ĥ2), we have

E
[∣∣∣ arctan

( g1(ux)

ĝ2,ĥ2
(ux)

)
− arctan

(g1(ux)

g2(ux)

)∣∣∣2.1Ẽ2,n(ux,ĥ2)∩Ẽ1,n(ux,ĥ1)

]
= E

[∣∣∣ arctan
( ĝ2,ĥ2

(ux)

g1(ux)

)
− arctan

(g2(ux)

g1(ux)

)∣∣∣2.1Ẽ2,n(ux,ĥ2)∩Ẽ1,n(ux,ĥ1)

]
≤ 1∣∣g1(ux)

∣∣2 .E[∣∣∣ĝ2,ĥ2
(ux)− g2(ux)

∣∣∣2.1Ẽ2,n(ux,ĥ2)∩Ẽ1,n(ux,ĥ1)

]
≤ 1

δ2
1

.E
[
C2

2 .ψn(β2)2.1Ẽ2,n(ux,ĥ2)∩Ẽ1,n(ux,ĥ1)

]
≤ 1

δ2
1

.C2
2 .ψn(β2)2,

by using Corollary 5.6.
Therefore, on the event Ẽ2,n(ux, ĥ2) ∩ Ẽ1,n(ux, ĥ1), for n sufficiently large such that C2.ψn(β2) ≤ δ2/2 and
C1.ψn(β1) ≤ δ1/2, we obtain

E
[∣∣ĝĥ(ux)− g(ux)

∣∣2.1Ẽ2,n(ux,ĥ2)∩Ẽ1,n(ux,ĥ1)

]
≤ 8.

( 1

δ2
2

+
1

δ2
1

)
.(C2

1 + C2
2 ).max

(
ψn(β1)2, ψn(β2)2

)
.
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On the other hand, on the complementary
(
Ẽ2,n(ux, ĥ2)

)c∪(Ẽ1,n(ux, ĥ1)
)c

, using the fact that
∣∣atan2(w1, w2)

∣∣ ≤
π, ∀(w1, w2), we can simply obtain an upper-bound as follows:

E
[∣∣ĝĥ(ux)− g(ux)

∣∣2.1(
Ẽ2,n(ux,ĥ2)

)c
∪
(
Ẽ1,n(ux,ĥ1)

)c]
= E

[∣∣∣atan2
(
ĝ1,ĥ1

(ux), ĝ2,ĥ2
(ux)

)
− atan2

(
g1(ux), g2(ux)

)∣∣∣2.1(
Ẽ2,n(ux,ĥ2)

)c
∪
(
Ẽ1,n(ux,ĥ1)

)c]
≤ 4π2.P

((
Ẽ2,n(ux, ĥ2)

)c)
+ 4π2.P

((
Ẽ1,n(ux, ĥ1)

)c) ≤ 2.4π2.4.n−q,

by Corollary 5.6. For q ≥ 1, we get that n−q is negligible in comparison with C2
1 .ψn(β1)2 = C2

1 .
( log(n)

n

) 2β1
2β1+1

and C2
2 .ψn(β2)2 = C2

2 .
( log(n)

n

) 2β2
2β2+1

. This concludes the proof of Theorem 3.5.

5.4.3 Proof of Theorem 3.10

Before tackling the proof of Theorem 3.10, the next lemma shows that the von Mises density with zero mean
direction satisfies condition (16).

Lemma 5.7. The von Mises density with mean direction µ and concentration parameter κ satisfies condition
(16).

Proof of Lemma 5.7. We recall the expression of the von Mises density with mean direction µ ∈ [−π, π) and
concentration parameter κ > 0 :

fvM (x) = c(κ)eκ cos(x−µ)1x∈[−π,π], x ∈ R

with c(κ) a normalizing constant. Let us prove that fvM satisfies:

∃p∗ > 0 :

∫ π

−π
fvM (x) log

fvM (x)

fvM (x+ y)
dx ≤ p∗y2,

for all y ∈ R. We have that∫ π

−π
fvM (x) log

fvM (x)

fvM (x+ y)
dx = c(κ)κ

∫ π

−π
eκ cos(x−µ)(cos(x− µ)− cos(x+ y − µ))dx

= 2c(κ)κ sin
y

2

∫ π

−π
eκ cos(x−µ) sin(x− µ+

y

2
)dx

= 2c(κ)κ sin
y

2

∫ π

−π
eκ cos(x−µ)

(
sin(x− µ) cos

y

2
+ sin

y

2
cos(x− µ)

)
dx

= 2c(κ)κ
(

sin
y

2

)2
∫ π

−π
eκ cos(x−µ) cos(x− µ)dx︸ ︷︷ ︸

=C(κ)>0

≤ 2c(κ)κC(κ)
y2

4

for all y ∈ R. Then, with

p∗ =
c(κ)κC(κ)

2
,

we have for any y ∈ R, ∫ π

−π
fvM (x) log

fvM (x)

fvM (x+ y)
dx ≤ p∗y2.
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Proof of Theorem 3.10. To prove the lower bound stated in Theorem 3.10, we follow the lines of Section 2.5
in [22] for the regression at a point. The differences with our problem lie in the circular response and the
randomness of the Xi’s.

We consider m0(x) = 0 and m1(x) = LhβnK(x−x0

hn
) with hn = c0n

− 1
2β+1 and K : R 7−→ S1 satisfying:

K ∈ Σ̃(β, 1/2) ∩ C∞(R), K(u) > 0 ⇐⇒ u ∈]− 1/2, 1/2[.

Such functions K exists. For instance, for a sufficiently small a > 0, one can take

K(x) = a exp

(
− 1

1− 4x2

)
1[−0.5;0.5](x).

We have now to check three points which are developed in the sequel.

1. Let us prove that mj ∈ Σ̃(β, L). For l = bβc we have

m
(l)
1 (x) = Lhβ−ln K(l)

(
x− x0

hn

)
then, with u = x−x0

hn
and u′ = x′−x0

hn
,

|m(l)
1 (x)−m(l)

1 (x′)| = Lhβ−ln |K(l)(u)−K(l)(u′)|
≤ Lhβ−ln |u− u′|β−l/2 = L|x− x′|β−l/2.

Then, m1 ∈ Σ̃(β, L).

2. Let us show that |m0(x0)−m1(x0)| ≥ 2sn. We have

|m0(x0)−m1(x0)| = |m1(x0)| = LhβnK(0) = Lcβ0K(0)n−
β

2β+1 ,

then the condition is fulfilled with sn = 1
2Lc

β
0K(0)n−

β
2β+1 =: Aψn.

3. Using the classical reduction to a two test hypotheses problem for the pointwise regression problem, we
get for any estimator Tn:

sup
m∈Σ̃(β,L)

Em[ψ−2
n |Tn −m(x0)|2] ≥ A2 max

m∈{m0,m1}
Pm(|Tn −m(x0)| ≥ Aψn)

≥ A2

2
EX1,...,Xn

[
Pm0

(|Tn −m0(x0)| ≥ Aψn|X1, . . . , Xn)

+Pm1
(|Tn −m1(x0)| ≥ Aψn|X1, . . . , Xn)

]
≥ A2

2
EX1,...,Xn

[
inf
ψ

{
Pm0(ψ 6= 0|X1, . . . , Xn)

+Pm1
(ψ 6= 1|X1, . . . , Xn)

}]
, (36)

where infψ denotes the infimum over all tests ψ taking values in {0, 1}.
Now let us fix the Xi’s. The minimum average probability pe,1 is defined as (see page 116 in [22]):

pe,1 :=
1

2
inf
ψ

{
Pm0

(ψ 6= 0|X1, . . . , Xn) + Pm1
(ψ 6= 1|X1, . . . , Xn)

}
.

We have for the Kullback Leibler divergence (still with the Xi’s fixed)

K(Pm0
,Pm1

) =

∫
log

(
dPm0

dPm1

)
dPm0

=

n∑
i=1

∫
log

pζ(y)

pζ(y −m1(Xi))
pζ(y)dy. (37)

There exists n0 such that ∀n > n0, we have nhn ≥ 1 and LhβnKmax ≤ y0 where Kmax = maxxK(x).
Using (37) and (16), we have:
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K(Pm0
,Pm1

) ≤ p∗
n∑
i=1

m2
1(Xi)

≤ p∗L2h2β
n K

2
max

n∑
i=1

1{|Xi−x0hn
|≤ 1

2}.

Now taking the expectation and using that the density of the Xi’s is bounded by µ0, we get:

EX1,...,XnK(Pm0
,Pm1

) ≤ p∗L2K2
maxh

2β
n nP

(∣∣∣∣X1 − x0

hn

∣∣∣∣ ≤ 1

2

)
≤ p∗L2K2

maxµ0h
2β+1
n n.

For α < 2 log(2), since hn = c0n
− 1

2β+1 , setting

c0 =

(
α

p∗µ0L2K2
max

) 1
2β+1

,

we get that
EX1,...,XnK(Pm0 ,Pm1) ≤ α.

As in Lemma 2.10 of [22], we introduce the function H(x) = −x log(x)− (1−x) log(1−x) for x ∈ (0, 1)
and H(0) = H(1) = 0. Inequality (2.70) of [22] with M = 1 gives

EX1,...,Xn [H(pe,1)] ≥ log(2)− 1

2
EX1,...,XnK(Pm0

,Pm1
) ≥ log(2)− α

2
,

since EX1,...,XnK(Pm0
,Pm1

) ≤ α. Since H is concave, H(EX1,...,Xn [pe,1)]) ≥ EX1,...,Xn [H(pe,1)] and

EX1,...,Xn [pe,1] ≥ H−1
(

log 2− α

2

)
> 0,

with, for any t > 0, H−1(t) = min{p ∈ (0, 1
2 ] : H(p) ≥ t}. Hence we deduce using (36)

sup
m∈Σ̃(β,L)

Em
[
ψ−2
n |Tn −m(x0)|2

]
≥ A2H−1

(
log 2− α

2

)
,

where the right hand side is a positive constant. This concludes the proof of Theorem 3.10.

6 Conclusion

Considering nonparametric regression for circular data, we derive minimax convergence rates and prove near
optimal properties of our kernel estimate combined with a warping strategy on anisotropic Hölder classes of
functions for pointwise estimation. The bandwidth parameter is selected by using a data-driven Goldenshluger-
Lepski type procedure. After tuning hyperparameters of our estimate, we show that it remains very competitive
with respect to existing methods.

As a natural extension, it could be very challenging to investigate our regression problem with a response
on the sphere S2 or more generally on the unit hypersphere Sd−1. The case of predictors X ∈ Sd−1 and a
response Θ ∈ Sd−1 has been tackled in [8]. The spherical context is of course more complicated than the
circular one and the arctangent function approach used here is not easily generalizable in the spherical setting.
In [8], Di Marzio et al. proposed a local constant estimator by smoothing on each component of the response.
Once again no rates of convergence were obtained. Hence, in a future work, a first task would be to obtain
convergence rates and then investigate adaptation issue.
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Statist., 49(2): 569-609, 2013.

[7] N.I. Fisher and A.J. Lee. Regression models for angular responses. Biometrics, 48: 665-677, 1992.

[8] M. Di Marzio, A. Panzera and C.C. Taylor. Nonparametric Regression for Spherical Data. Journal of
the American Statistical Association, 109:748-763, 2014.

[9] A. Goldenshluger and O. Lepski. Bandwidth selection in kernel density estimation: oracle inequalities
and adaptive minimax optimality. Ann. Statist, 39(3): 1608-1632, 2011.

[10] A.L. Gould. A regression technique for angular variates. Biometrics, 25: 683-700, 1969.

[11] S.R. Jammalamadaka and A. SenGupta. Topics in Circular Statistics. World Scientific, Singapore, 2001.

[12] R.A. Johnson and T.E. Wehlry. Some angular-linear distributions and related regression models. Journal
of the American Statistical Association, 73: 602-606, 1978.

[13] G. Kerkyacharian and D. Picard. Regression in random design and warped wavelets. Bernoulli 10(6):1053-
1105, 2004.

[14] C. Ley and T. Verdebout . Modern Directional Statistics. (1st ed.). Chapman and Hall/CRC, 2017.

[15] K.V. Mardia and P.E. Jupp. Directional Statistics. New York, NY: John Wiley, 2000.

[16] M. Di Marzio, A. Panzera and C.C. Taylor. Non-parametric regression for circular responses. Scandinavian
Journal of Statistics, 40: 238-255, 2013.

[17] A. Meilán-Vila, M. Francisco-Fernández, R.M. Crujeiras and A. Panzera. Nonparametric multiple regres-
sion estimation for circular response. TEST, 30: 650-672, (2021).
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