
HAL Id: hal-03633910
https://hal.science/hal-03633910v1

Submitted on 7 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Design Methodology for the Gaussian KLMS
Algorithm

P. Pedrosa, J. Bermudez, Cédric Richard

To cite this version:
P. Pedrosa, J. Bermudez, Cédric Richard. A Design Methodology for the Gaussian KLMS Algorithm.
2017 25th European Signal Processing Conference (EUSIPCO), Aug 2017, Kos, France. pp.2634-2638,
�10.23919/EUSIPCO.2017.8081688�. �hal-03633910�

https://hal.science/hal-03633910v1
https://hal.archives-ouvertes.fr


A Design Methodology for the
Gaussian KLMS Algorithm

P. Pedrosa(1,2), J. C. M. Bermudez(2), C. Richard(3)

(1)Instituto de Telecomunicações, Lisbon, Portugal
(2)Universidade Federal de Santa Catarina, Florinanópolis, SC, Brazil

(3)Université de Nice Sophia-Antipolis, CNRS, France

ppedrosa@lx.it.pt j.bermudez@ieee.org cedric.richard@unice.fr

Abstract—The Gaussian kernel least-mean-square (Gaussian
KLMS) algorithm has been studied under different implementa-
tion conditions. Though analytical models that predict its behav-
ior are available, methodologies for determining the algorithm
parameter values to satisfy given design criteria is still missing
from the literature. In this paper we propose, test, and validate
a methodology for the design of the Gaussian KLMS algorithm.
Designing the algorithm consists in selecting adequate values
for its free parameters from available theoretical performance
models. These parameters comprise the filter length, the adaptive
step-size, and the kernel bandwidth. The objective is to achieve
specific design objectives, e.g., fast convergence time, good steady-
state performance and/or reduced computational load. These
goals are quantified in terms of different performance measures.
Particularly, the time to convergence, the residual mean-squared-
error (MSE), and the filter order.

I. INTRODUCTION

Nonlinear adaptive filtering in reproducing kernel Hilbert

spaces (RKHS) has been shown to be an effective technique

to solve important nonlinear estimation problems. It has been

applied to different domains such as system identification,

noise cancellation, echo control, among others [1].

Linear adaptive filters are simple to implement. However,

their design can be quite complex as they are time-variant,

stochastic in nature, and have weight updates that are nonlinear

in the input signal [2]. That is why deriving good analytical

models for the behavior of adaptive algorithms under different

application environments is so important. The design challenge

becomes significantly more complex for nonlinear adaptive

filters, as the dependence of the performance measures on the

filter parameters tends to be highly nonlinear even for ana-

lytical models derived under several approximations. Hence,

having good analytical models for nonlinear adaptive filter

behavior does not imply having good design methodologies.

This is generally true for any type of nonlinear adaptive filter.

One type of solution that has been attracting a lot of interest

in the recent years is the kernel-based nonlinear adaptive

algorithm.

The simplest and more popular kernel-based adaptive al-

gorithm is certainly the Gaussian KLMS. Its behavior has

This work was partially supported by Conselho Nacional de Desenvolvi-
mento Cientı́fico e Tecnológico (CNPq) under the projects 400566/2013-3 and
307071/2013-8. P. Pedrosa would like to acknowledge the support of Fundação
para a Ciência e a Tecnologia (FCT) under project UID/EEA/50008/2013.

been studied in the last few years under different operating

conditions. For instance, the KLMS asymptotic behavior has

been studied in [3] for small step-sizes. A statistical analysis

was performed in [4], resulting in recursive expressions for the

mean weight error vector and the mean-square error (MSE)

for Gaussian inputs. In [5] a similar analysis has been carried

out considering a pre-tuned dictionary, a condition that is

attractive to reduce the on-line computational complexity. This

analysis has led to accurate analytical models for algorithm

performance, conditioned on the dictionary. In [6], the need

for an on-line dictionary update was studied in the event of a

non-stationary environment.

One aspect that has not been considered in these works

is how to choose the parameters of the KLMS algorithm to

obtain a desired performance. Considering the complexity of

the KLMS algorithm behavior, this question has no simple

response.

The implementation in the RKHS requires the choice of

an additional parameter (the kernel bandwidth). Moreover,

the relationships between the performance measures and the

design parameters become highly nonlinear, making analytical

solutions virtually impossible. Hence, the design methodology

must rely on a set of design curves relating the performance

measures with the different parameters for the problem at

hand.

This work addresses the design of the KLMS algorithm

using a pre-tuned dictionary and a Gaussian kernel based on

the analytical model derived in [5]. The parameters to be

specified are the filter length, the adaptation step-size, and

the kernel bandwidth, whereas the performance measures are

the convergence speed, and the residual excess mean square

estimation error. Design examples are presented to illustrate

the application of the proposed methodology, which is then

validated against simulation results obtained through Monte

Carlo techniques.

This work is organized as follows. After the introduction

in Sec. I, we present the KLMS algorithm in Sec. II. The

evaluation of the algorithm performance with respect to its

design parameters is conducted in Sec. III, and the design

methodology proposed, tested, and validated in Sec. IV. Sec. V

concludes the paper.



u(n)

φ(u(n))

+

−

v(n)

e(n)

+

+

d(n)

ψ(u(n))κω(n)

Nonlinear system

Adaptive algorithm

X → H α(n)

Fig. 1. Nonlinear adaptive filtering using reproducing kernels in Hilbert
spaces.

II. THE KERNEL LMS ALGORITHM

Consider the nonlinear estimation problem depicted in

Fig. 1. The input vectors u(n) are assumed zero-mean, sta-

tionary and Gaussian with autocorrelation matrix Ruu. Vector

κω(n) = [κ(u(n),uω1) · · · κ(u(n),uωm)]� is the finite

dimension mapping of the input vector u(n) into the RKHS

with kernel κ : U × U → R. The set {uωi
: i = 1, . . . ,m}

contains the elements of the so-called dictionary [5]. The

desired signal is given by d(n) = φ(u(n)) + v(n), with

v(n) being and additive zero-mean Gaussian observation noise

with variance σ2
v . The nonlinear adaptive filter output is given

by ψ(u(n)) = κ�
ω (n)α =

∑m
i=1 αiκ(u(n),uωi

), where

α = [α1 · · · αm]� is the adaptive filter weight vector. The

estimation error is e(n) = d(n)− ψ(u(n)).
From this description we see that the nonlinear estimation in

RKHS with a finite dimensional dictionary depicted in Fig. 1

can be interpreted as a linear signal estimation problem in

which the input signal vector u(n) has been mapped onto a

RKHS, which is characterized by the chosen kernel and by

the dictionary. We consider in this work the Gaussian kernel

κ(ui,uj) = exp

(
−‖ui − uj‖2

2ξ2

)
(1)

where ξ is the kernel bandwidth. The input vector to the

adaptive filter is κω(n). The weight update equation for KLMS

with step-size η is given by [4]

α(n+ 1) = α(n) + ηe(n)κω(n) (2)

and the properties of the nonlinear mapping from u(n) into

κω(n) and its effects on the algorithm performance must be

taken into account for design.

A. Optimal Solution

Conditioned on the adaptive weights, the estimation error

at instant n is given by

e(n) = d(n)− ψ(u(n))

= d(n)−
m∑
i=1

αiκ(u(n),uωi
)

= d(n)−α�κω(n). (3)

Squaring both sides of (3), and taking the expected value

leads to the MSE,

JMSE(n) = E{e2(n)}
= E{d2(n)} − 2p�

dκα+α�Rκκα (4)

where pdκ = E{d(n)κω(n)} is the cross-correlation vector

between the desired output and the kernelized input vector

κω(n), and Rκκ = E{κω(n)κ
�
ω (n)} is the input autocorrela-

tion matrix conditioned on the chosen dictionary.

The optimal weights αo are given by [4], [5]

αo = argmin
α

JMSE(n) = R−1
κκpdκ. (5)

Using (5) in (4) results in the minimum MSE (MMSE)

Jmin = E{d2(n)} − p�
dκR

−1
κκpdκ. (6)

B. Mean-squared Error Analysis

The expression of Rκκ = E{κω(n)κ
�
ω (n)} has been

determined in [5], and its (i, j)th entry is given by

[Rκκ]ij =
∣∣∣I + 2

ξ2Ruu

∣∣∣− 1
2 ×

exp

(
− 1

4ξ2

[
2‖ūωij‖(2) − ‖ūωij‖2(I−ξ2R−1

uu/2)
−1

])
.

(7)

where ūωij � uωi +uωj and ‖ūωij‖(2) � ‖uωi‖2 + ‖uωj‖2.

Defining the weight error vector v(n) = α−αo, a recursive

update for the lexicographic representation of its correlation

matrix Cv(n) = E{v(n)v�(n)} was obtained in [5] as

cv(n+ 1) = Gcv(n) + η2Jminrκκ (8)

where rκκ is the lexicographic representation of Rκκ, and

matrix G = I − η(G1 + G2) + η2G3, where I is the

(m2 ×m2) identity matrix, G1 = I ⊗Rκκ, with ⊗ denoting

the Kronecker product, G2 = Rκκ ⊗ I , and G3 with

entries [G3]i+(j−1)m,l+(p−1)m =
[
K(ij)

]
lp

for i, l, j, p =

{1, 2, . . . ,m} and matrix K(ij) has its (l, p)th entry given

by [K(ij)]lp = E{κωi(n)κωj (n)κωl
(n)κωp(n)} such that [5]

[K(ij)]lp =
∣∣∣I + 4

ξ2Ruu

∣∣∣− 1
2 ×

exp

(
− 1

8ξ2

[
4‖ūωijlp

‖(2) − ‖ūωijlp
‖2
(I−ξ2R−1

uu/4)
−1

])
.

(9)

where ūωijlp
� uωi + uωj + uωl

+ uωp and ‖ūωijlp
‖(2) �

‖uωi
‖2 + ‖uωj

‖2 + ‖uωl
‖2 + ‖uωp

‖2.

The MSE can be written as

JMSE(n) = Jmin +Trace{RκκCv(n)}. (10)

The last term in (10) is the excess MSE (EMSE).

Observing that cv(n) = cv(n+1) = cv(∞) in steady-state,

and solving (8) for cv(∞) yields

cv(∞) = η2Jmin(I −G)−1rκκ. (11)

Using the matrix form of (11) in (10) yields the residual

MSE,

JMSE(∞) = Jmin +Trace{RκκCv(∞)}. (12)



C. Algorithm stability

The stability limit ηmax can be obtained by imposing the

condition that the eigenvalues of matrix G in (8) be within

the unit circle. For a fixed dictionary, the stability limit of the

KLMS algorithm can be well approximated by [2]

ηmax =
2

tr{Rκκ} . (13)

III. ALGORITHM PERFORMANCE EVALUATION

To illustrate the impact of each design parameter on the

filter performance, we evaluate a set of performance measures

with respect to different design parameters using the analytical

KLMS model in [5] on a classical nonlinear signal estimation

problem.

A. Design Parameters and Performance Measures

The typical design parameters for linear LMS are the

filter length and the step-size. Things become more complex

in KLMS design since the properties of the input vector

correlation matrix depend on the kernel bandwidth due to the

mapping to the RKHS. Hence, besides the filter length m (or

dictionary size, in the KLMS context) and the step-size η,

one needs to choose the kernel bandwidth ξ. Moreover, the

relationships connecting these parameters and the performance

measures become highly nonlinear in KLMS.

The performance measures used in design may vary de-

pending on the application. However, most of the times one

is concerned about steady-state MSE and convergence time.

Hence, we approach design with the objective of obtaining a

residual MSE below a specified value in a reduced number

of iterations. To consider the latter requirement, we define the

objective measure of time to convergence as the number of

iterations nε given by

nε � min
n

{JMSE(n) ≤ (1 + ε)JMSE(∞)}. (14)

B. Nonlinear Signal Estimation Problem

Consider an input sequence

u(n) = ρu(n− 1) + σu

√
1− ρ2w(n), (15)

with w(n) i.i.d. zero-mean Gaussian with variance σ2
w = 1,

and a nonlinear system defined as{
y(n) = 0.5u(n)− 0.3u(n− 1)

d(n) = y(n)− 0.5y(n)2 + 0.1y(n)3 + v(n)
(16)

with v(n) a zero-mean Gaussian noise with variance σ2
v =

2.5×10−3. The input vector is u(n) = [u(n) u(n−1)]�, and

the reference signal is d(n). We set σu = 0.5 and ρ = 0.5.

The dictionary elements are the farthest m equidistant points

taken from a [−3σu, 3σu]×[−3σu, 3σu] grid. We consider val-

ues of m ∈ {4, 9, 16, 25, 36}. Such fixed grid dictionaries have

been verified to yield very reasonable filter performances [5].

More complex dictionary design approaches could also be

considered [1], [7], as long as the dictionary is designed offline

and remains fixed during operation. Finally, we consider

adaptive step-size values η = rηmax with r ∈ {0.1, 0.25, 0.5}.

0.5 1 1.5 2 2.5 3 3.5 4
10-3

10-2

10-1

Fig. 2. Minimum MSE vs. the kernel bandwidth.

C. Performance Curves

Fig. 2 shows the curves, obtained using (6), for the MMSE

Jmin as a function of ξ for the different dictionary sizes.

The power of d(n) and the cross-correlation vector pdκ were

estimated from d(n) through Monte Carlo simulations. Rκκ

was determined using (7). Notice that Jmin is a function of

both m and ξ. We will sometimes express this dependence

as Jmin(m, ξ) for clarity. Moreover, Jmin lower bounds the

MSE performance of the algorithm, i.e., Jmin ≤ JMSE(∞).
The dashed horizontal line indicates the value of Jmax, the

limiting MSE value specified for the design (see Sec. IV).

Fig. 3 shows the residual MSE, JMSE(∞), as a function of ξ
for different values of m and η (three values for each m). Each

JMSE(∞) curve is traced using (6), (9), (11) and (12). Again,

this dependency of the performance measure on the design

parameters can be made explicit writing JMSE(∞)(m, ξ, η).
Inspecting the figure, we see that larger step-sizes lead to

poorer adaptation and that filters with larger dictionaries

tend to perform better. Regarding the value of ξ, increasing

it beyond a certain value will have no significant impact

on JMSE(∞). However we will soon see that the time to

convergence increases with ξ in that range.

Fig. 4 shows the time to convergence nε as a function of

ξ for different values of m and η. The curves were plotted

using (10), (12), and (14). The dashed horizontal lines indicate

examples of limiting values nmax for the intended times to

convergence (see Sec. IV). The dependency of nε on the design

parameter can be explicitly stated by writing nε(m, ξ, η).
Fig. 4 shows that the nε curves typically assume a U-shape

that raises or falls inversely to the value of η centered at

some value of ξ. Also, the U-shape widens as the value of

η increases.

It is important to note that, contrary to the linear case, the

conclusions reached above are valid for the nonlinear system

(16), but cannot in general be assumed for any other system.

Hence the importance of the proposed design methodology

based on a set of design curves. The methodology is detailed

in the next section.



0.5 1 1.5 2 2.5 3 3.5 4
10-3

10-2

10-1

Fig. 3. Residual MSE vs. the kernel bandwidth.

0.5 1 1.5 2 2.5 3 3.5 4
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Fig. 4. Time to convergence vs. the kernel bandwidth with the steady-state
entry-instant parameter ε = 0.1.

IV. DESIGN METHODOLOGY

Suppose we want to design KLMS for the problem de-

scribed in Section III-B with JMSE(∞) < Jmax and nε <
nmax. Then, we may determine from Fig. 2 a minimum

dictionary size m and a range of values of ξ complying

with the MSE constraint. The JMSE(∞) curves in Fig. 3

allow the determination of the maximum value of η so that

JMSE(∞) < Jmax for each combination of dictionary size

m and kernel bandwidth ξ. Finally, Fig. 4 can be used to

determine the constraints on the range of values for ξ as a

function of the desired time for convergence ηε, given choices

of values for m and η. Interestingly, increasing the step-size

increases also the robustness of the design to the choice of ξ,

as it leads to wider U-shaped nε curves.

We now detail the proposed methodology for designing

the Gaussian KLMS algorithm with speed and adaptation

constraints.

A. Speed and Adaptation Constrained Design

Start by setting the following design constraints:

i) {Jmin, JMSE(∞)} < Jmax;

ii) nε < nmax;

and then take the following steps:

1) Choose an m = minitial;

2) Choose an interval X0 so that ξ ∈ X0;

3) Evaluate Jmin(m, ξ) (Eqs. (6), and (7));

4) Define X1 = {ξ|Jmin(m, ξ) < Jmax}. If X1 = ∅, m =
m+ 1 and return to 2);

5) Choose η = ηinitial < ηmax;

6) Evaluate JMSE(∞)(m, ξ, η) (Eqs. (6), (9), (11), and

(12));

7) Define X2 = {ξ|JMSE(∞)(m, ξ, η) < Jmax}. If X2 =
∅, reduce η and return to 6);

8) Evaluate nε(m, ξ, η) (Eqs. (10), (12), and (14));

9) Define X3 = {ξ|nε(m, ξ, η) < nmax}. If X3 = ∅, relax

design constraints or use another algorithm.

B. Test and Validation

Consider the experimental set-up described in Sec. III-B and

the corresponding design figures, Fig. 2-Fig. 4. Consider also

that our design requires Jmax = 1.75σ2
v , and the minimum

possible time for convergence. Then, Fig. 2 shows that any

value of m ∈ {4, 9, 16, 25, 36} can be associated to some

ξ ∈ [0.1, 4] so that Jmin(m, ξ) < Jmax. Note that m = 4
would have been excluded if we had specified Jmax =
3 × 10−3. Inspecting Fig. 3, we see that the interval ξ ∈ X2

can be defined graphically for each pair (m, η) by identifying

the minimum value of ξ for which the JMSE(∞)(m, ξ, η)
curve remains below the straight line Jmax. TABLE I lists the

possible design parameters values after Step 4 and after Step 7.

The impact of the step-size value on filter performance

is quantified evaluating first JMSE(∞)(m, ξ, η) and then

nε(m, ξ, η) (Fig. 3 and Fig. 4, respectively). As an example, we

see in Fig. 3 that all curves associated to step-size η = 0.5ηmax

stay above Jmax = 1.75σ2
v for all m ∈ {4, 9, 16, 25, 36}, and

ξ ∈ [0.1, 4]. Thus, all tuples (m, ξ, η) with η = 0.5ηmax are

discarded. Again, these results are listed in TABLE I.

The final design results are listed in TABLE II for three

different values of nmax. Intervals X3 shown in the two

rightmost columns were obtained following the proposed

design methodology. Column Analysis was obtained using

the theoretical model in [5], and column Simulation from

Monte Carlo simulation. Comparing the ranges of kernel

bandwidth values found analytically and through simula-

tion we see that the mismatch between them are clearly

acceptable for design purposes, with the former being

slightly conservative. Furthermore, only two valid design

modes were not successfully identified, namely, (m, η, ξ) =
{(16, 0.1ηmax, [0.46, 0.78]); (36, 0.1ηmax, [0.31, 0.49])}.

Interestingly, the smallest value in X3 results either from

evaluating JMSE(∞)(m, ξ, η) (being thus the same as in X2),

or from evaluating nε(m, ξ, η). In the latter case it is the

choice of nmax that dictates the smallest value in X3. The



1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10-3

10-2

10-1

Fig. 5. Analytical and simulated learning curves.

largest value in X3 results typically from the convergence

speed constraint.

Given the information in TABLE II, one may decide which

set of parameters will be employed in the design. A typical

design decision is to opt for the best possible estimation accu-

racy, given that the convergence time is within the acceptable

range. We assume that convergence must be achieved before

2500 iterations. Hence, choosing for instance m = 9 for the

dictionary, we may choose η = 0.1ηmax, which will lead to

a lower residual MSE than η = 0.25ηmax, and ξ = 0.92
to be somewhere near the center of the available interval.

Other design options could be made using the options in

TABLE II. Fig. 5 shows the evolution of the MSE (Monte

Carlo simulation with 1000 runs) for the chosen parameters,

where one can readily verify that the design specifications have

been met.

TABLE I
SPEED AND ADAPTATION CONSTRAINED DESIGN

AFTER STEP 4 AND STEP 7
σ2
v = 2.5× 10−3 , Jmax = 1.75σ2

v , X0 = [0.1, 4]

m ξ ∈ X1 η/ηmax ξ ∈ X2

4 [1.30, 4] 0.1 [1.89, 4]
9 [0.60, 4] 0.25 [0.66, 4]

0.1 [0.62, 4]
16 [0.39, 4] 0.25 [0.43, 4]

0.1 [0.40, 4]
25 [0.29, 4] 0.25 [0.32, 4]

0.1 [0.30, 4]
36 [0.23, 4] 0.25 [0.25, 4]

0.1 [0.23, 4]

V. CONCLUSIONS

In this paper we proposed, tested, and validated a novel

methodology for the design of the Gaussian KLMS algorithm

for specified performance limits. The proposed methodology

is based on existing theoretical analytical models for the

algorithm performance and on graphical representations of the

existing nonlinear dependencies among parameters and per-

formance measures. This methodology determines appropriate

TABLE II
SPEED AND ADAPTATION CONSTRAINED DESIGN

AFTER STEP 9
ε = 0.1, σ2

v = 2.5× 10−3 , Jmax = 1.75σ2
v , X0 = [0.1, 4]

nmax m η/ηmax ξ ∈ X3

Analysis Simulation

7500 4 0.1 [1.89, 3.62] [1.93, 3.86]
9 0.25 [0.66, 1.60] [0.66, 1.86]

0.1 [0.70, 1.39] [0.65, 1.64]
16 0.25 [0.43, 0.99] [0.43, 1.34]

0.1 [0.40, 0.86] [0.40, 1.09]
25 0.25 [0.32, 0.88] [0.32, 1.13]

0.1 [0.30, 0.72] [0.30, 0.95]
36 0.25 [0.25, 0.77] [0.25, 1.06]

0.1 [0.23, 0.59] [0.24, 0.87]
5000 4 0.1 [1.89, 3.26] [1.93, 3.44]

9 0.25 [0.66, 1.51] [0.66, 1.69]
0.1 [0.75, 1.30] [0.69, 1.49]

16 0.25 [0.43, 0.93] [0.43, 1.10]
0.1 [0.40, 0.78] [0.40, 0.96]

25 0.25 [0.32, 0.81] [0.32, 0.99]
0.1 [0.30, 0.66] [0.30, 0.84]

36 0.25 [0.25, 0.68] [0.25, 0.92]
0.1 [0.29, 0.52] [0.24, 0.74]

2500 4 0.1 [1.89, 2.73] [1.93, 2.85]
9 0.25 [0.72, 1.35] [0.66, 1.43]

0.1 [0.80, 1.16] [0.74, 1.25]
16 0.25 [0.43, 0.83] [0.43, 0.92]

0.1 [−] [0.46, 0.78]
25 0.25 [0.32, 0.69] [0.32, 0.80]

0.1 [0.40, 0.51] [0.30, 0.59]
36 0.25 [0.25, 0.56] [0.25, 0.69]

0.1 [−] [0.31, 0.49]

values for the design parameters aiming at specific project

goals defined by a desired steady-state performance and a

maximum convergence time. We have shown that the proposed

methodology leads to the identification of appropriate sets

of design parameters satisfying the established constraints. A

detailed example illustrates the usefulness of the methodology

for design purposes.

REFERENCES

[1] W. Liu, J. C. Prı́ncipe, and S. Haykin, Kernel Adaptive Filtering.
Hoboken, New Jersey: John Wiley & Sons, Inc., 2010.

[2] S. Haykin, Adaptive Filter Theory, 4th ed. Upper Saddle River, New
Jersey: Prentice Hall, 2002.

[3] W. Liu, P. P. Pokharel, and J. C. Prı́ncipe, “The Kernel Least-Mean-Square
Algorithm,” IEEE Trans. Signal Process., vol. 56, no. 2, pp. 1633–1642,
Feb. 2008.

[4] W. Parreira, J. C. M. Bermudez, C. Richard, and J.-Y. Tourneret, “Stochas-
tic behavior analysis of the Gaussian kernel least-mean-square algorithm,”
IEEE Trans. Signal Process., vol. 60, no. 5, pp. 2208–2222, May 2012.

[5] J. Chen, W. Gao, C. Richard, and J. C. M. Bermudez, “Convergence
analysis of kernel LMS algorithm with pre-tuned dictionary,” in Proc.
of the 2014 IEEE International Conference on Acoustics, Speech, and
Signal Processing. Florence, Italy: IEEE, 2014, pp. 7243–7247.

[6] W. Gao, J. Chen, and C. Richard, “Online Dictionary Learning for Kernel
LMS,” IEEE Trans. Signal Process., vol. 62, no. 11, pp. 2765–2777, Feb.
2014.

[7] C. Richard, J. C. M. Bermudez, and P. Honeine, “Online Prediction of
Time Series Data With Kernels,” IEEE Trans. on Signal Process., vol. 57,
no. 3, pp. 1058–1067, 2009.


