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Multitask diffusion adaptation over networks
with common latent representations

Jie Chen, Member, IEEE, Cédric Richard, Senior Member, IEEE, Ali H. Sayed, Fellow Member, IEEE

Abstract—Online learning with streaming data in a distributed
and collaborative manner can be useful in a wide range of
applications. This topic has been receiving considerable attention
in recent years with emphasis on both single-task and multitask
scenarios. In single-task adaptation, agents cooperate to track
an objective of common interest, while in multitask adaptation
agents track multiple objectives simultaneously. Regularization
is one useful technique to promote and exploit similarity among
tasks in the latter scenario. This work examines an alternative
way to model relations among tasks by assuming that they all
share a common latent feature representation. As a result, a new
multitask learning formulation is presented and algorithms are
developed for its solution in a distributed online manner. We
present a unified framework to analyze the mean-square-error
performance of the adaptive strategies, and conduct simulations
to illustrate the theoretical findings and potential applications.

Index Terms—Multitask learning, distributed optimization,
common latent subspace, online adaptation, diffusion strategy,
collaborative processing, performance analysis.

I. INTRODUCTION

Multi-agent networks usually consist of a large number of
interconnected agents or nodes. Interconnections between the
agents allow them to share information and collaborate in
order to solve complex tasks collectively. Examples abound
in the realm of social, economic and biological networks.
Distributed algorithms over such networks offer a valuable
alternative to centralized solutions with useful properties such
as scalability, robustness, and decentralization. When endowed
with adaptation abilities, these algorithms enable agents to
continuously learn and adapt in an online manner to con-
cept drifts in their data streams [2], [3]. Broadly, distributed
strategies for online parameter estimation can be applied to
single-task or multi-task scenarios. In the first case, agents
cooperate with each other to estimate a single parameter
vector of interest, such as tracking a common target. Reaching
consensus among the agents is critical for successful inference
in these problems. In the multitask case, the agents cooperate
to estimate multiple parameter vectors simultaneously, such as
tracking a collection of targets moving in formation [4].
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Extensive studies have been conducted on adaptive dis-
tributed strategies for single-task problems. Existing tech-
niques include incremental [5]-[8], consensus [9]-[11], and
diffusion strategies [1], [2], [12]-[17]. Incremental techniques
require determining a cyclic path that runs across all nodes,
which is generally a challenging (NP-hard) task to perform.
Besides, feature makes the incremental strategies sensitive
to link failures and problematic for adaptation. Consensus
techniques aim to reach an agreement among nodes on the
estimate of interest via local information exchanges, but they
have been shown [2], [3] to suffer from instability prob-
lems when used in the context of adaptive networks due to
an inherent asymmetry in the update equations. Diffusion
techniques, on the other hand, have been shown to have
superior stability and performance ranges [18] than consensus-
based implementations. For these reasons, we shall focus on
diffusion-type implementations in this paper.

Besides single-task scenarios, there are also applications
where it is desirable to estimate multiple parameter vectors
at the same time, rather than promote consensus among all
agents [19]. For example, geosensor networks that monitor
dynamic spatial fields, such as temperature or windspeed
variations in geographic environments, require node-specific
estimation problems that are able to take advantage of the
spatial correlation between the measurements of neighboring
nodes [20], [21]. A second example is the problem of col-
laborative target tracking where agents track several objects
simultaneously [4], [19]. Motivated by these applications,
there have been several variations of distributed strategies
to deal with multitask scenarios as well. Existing strategies
mostly depend on how the tasks relate to each other and
on exploiting some prior information. In a first scenario,
nodes are grouped into clusters, and each cluster of nodes
is interested in estimating its own parameter vector. Although
clusters may generally have distinct though related estimation
tasks to perform, the nodes may still be able to capitalize on
inductive transfer between clusters to improve their estimation
accuracy. Multitask diffusion strategies were developed to
perform estimation under these conditions [4], [22]. One useful
way to do so is to employ regularization. A couple of other
useful works have also addressed variations of this scenario
where the only available information is that clusters may exist
in the network but nodes do not know which other nodes
share the same estimation task [23]—[25]. In [26], the authors
use multitask diffusion adaptation with a node clustering
strategy to identify a model between the gait information and
electroencephalographic signals. In [27], the authors consider
the framework in [4] to devise a distributed strategy that
allows each node in the network to locally adapt inter-cluster
cooperation weights. The authors in [28] promote cooperation
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between clusters with ¢1-norm co-regularizers. They derive a
closed-form expression of the proximal operator, and introduce
a strategy that also allows each node to automatically set
its inter-cluster cooperation weights. The works in [29], [30]
propose alternative node clustering strategies. In a second
scenario, it is assumed that there are parameters of global
interest to all nodes in the network, a collection of parameters
of common interest within sub-groups of nodes, and a set
of parameters of local interest at each node. A diffusion
strategy was developed to perform estimation under these con-
ditions [31], [32]. Likewise, in the works [33]—[35], distributed
algorithms are derived to estimate node-specific parameter
vectors that lie in a common latent signal subspace. In another
work [36], the diffusion LMS algorithm is extended to deal
with structured criteria built upon groups of variables, leading
to a flexible framework that can encode various structures
in the parameters. An unsupervised strategy to differentially
promote or inhibit collaboration between nodes depending on
their group is also introduced.

Alternatively, in recent years, there has been an increasing
interest in modeling relations between tasks by assuming that
all tasks share a common feature representation in a latent sub-
space [37]-[39]. The authors in [38] proposed a non-convex
method based on Alternating Structure Optimization (ASO)
for identifying the task structure. A convex relaxation of
this approach was developed in [40]. In [39], the authors
showed the equivalence between ASO, clustered multitask
learning [41], [42] and their convex relaxations. The effi-
ciency of such task relationships has been demonstrated in
these works for clustering and classification problems. In our
preliminary work [1], we introduced this framework within the
context of distributed online adaptation over networks. Useful
applications can be envisaged. First, consider the case where
the common subspace is spanned by certain selected columns
of the identity matrix. This means that a subset of the entries
of the parameter vector to be estimated are common to all
nodes while no further restriction is imposed on the other
entries. Another example concerns beamforming for antenna
arrays with a generalized side-lobe canceller (GSC). The latent
subspace corresponds to the space where interfering signals
reside [43]. A third example deals with cooperative spectrum
sensing in cognitive radios, where the common latent subspace
characterizes common interferers [31].

Drawing on these motivations, this paper deals with dis-
tributed learning and adaptation over multitask networks with
common latent representation subspaces. Algorithms are de-
signed accordingly, and their performance analyzed. The con-
tributions of this work include the following main aspects:

o We formulate a new multitask estimation problem, which
assumes that all tasks share a common latent subspace
representation in addition to node-specific contributions.
Additional constraints can be incorporated if needed. This
work contrasts with earlier works [4], [28], where the
inductive transfer between learning tasks is promoted by
regularizers. It also differs from [31], which considers
direct models by stacking local and global variables in
an augmented parameter vector. Moreover, the work [38]
uses a similar inductive transfer model but the common

latent subspace is unknown and embedded into a joint
estimation process. Our work is the first one to introduce
an online estimation algorithm over networks. Estimating
the common latent subspace of interest within this context
is a challenging perspective.

¢ We explain how this formulation can be tailored to fit
individual application contexts by considering additional
model constraints. We illustrate this fact by considering
two convex optimization problems and the associated
distributed online algorithms. The first algorithm is a gen-
eralization in some sense of the diffusion LMS algorithm,
which can be retrieved by defining the low-dimensional
common latent subspace as the whole parameter space.
The second algorithm uses /o-norm regularization to
account for the multitask nature of the problem. This
opens the way to other regularization schemes depending
on the application at hand.

o We present a unified framework for analyzing the perfor-
mance of these algorithms. This framework also allows
to address the performance analysis of the multitask
algorithms in [4], [19], [44], [45] in a generic manner,
though these analyses were performed independently of
each other in these works.

The rest of the paper is organized as follows. Section II
introduces the multitask estimation problem considered in this
paper. Then, two distributed learning strategies are derived in
Section IIT by imposing different constraints on common and
node-specific representation subspaces. Section IV provides a
general framework for analyzing distributed algorithms of this
form. In Section V, experiments are conducted to illustrate
the characteristics of these algorithms. Section VI concludes
the paper and connects our work with several other learning
strategies.

Notation. Normal font = denotes scalars. Boldface small let-
ters  denote vectors. All vectors are column vectors. Boldface
capital letters X denote matrices. The asterisk (-)* denotes
complex conjugation for scalars and complex-conjugate trans-
position for matrices. The superscript (-) " represents transpose
of a matrix or a vector, and ||-| is the fs-norm of its
matrix or vector argument. Re{-} and Im{-} denote the real
and imaginary parts of their complex argument, respectively.
Matrix trace is denoted by trace(-). The operator col{-} stacks
its vector arguments on the top of each other to generate a
connected vector. The operator diag{-} formulates a (block)
diagonal matrix with its arguments. Identity matrix of size
N x N is denoted by Iy. Kronecker product is denoted by
®, and expectation is denoted by E{-}. We denote by N}, the
set of node indices in the neighborhood of node %, including
k itself, and |\ its set cardinality.

II. MATCHED SUBSPACE ESTIMATION OVER MULTITASK
NETWORKS

A. Multitask estimation problems over networks

Consider a connected network composed of N nodes. The
problem is to estimate an L X 1 unknown vector wy, at each
node k£ from collected measurements. At each time n, node k
has access to local streaming measurements {dy(n), Tk},
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where di(n) is a scalar zero-mean reference signal, and xy ,,
is a 1 x L zero-mean row regression vector with covariance
matrix R, = E{wznmkn} > (. The data at agent k and
time n are assumed to be related via the linear model:

di(n) = zp pwi + 2K (n) (1)

where w¢, is an unknown complex parameter vector, and zj (n)
is a zero-mean i.i.d. noise with variance ag)k = E{|zr(n)|?}.
The noise signal zx(n) is assumed to be independent of
any other signal. Let Ji(w) be a differentiable convex cost
function at agent k. In this paper, we shall consider the mean-
square-error criterion:

Je(w) = E{|dx(n) — o nw|*} )

It is clear from (1) that each Ji(w) is minimized at wg. We
refer to each parameter wy, to estimate (or model in a more
general sense) as a task. Depending on whether the minima of
all Ji(w) are achieved at the same w¢, or not, the distributed
learning problem can be single-task or multitask oriented [4].
With single-task networks, all agents aim at estimating the
same parameter vector w° shared by the entire network, that

is,
wy, = w° 3)

forall k € {1, ..., N}. Several popular collaborative strategies,
such as diffusion LMS [1], [2], [13], [14], were derived to
address this problem by seeking the minimizer of the following
aggregate cost function:

N
JEP (w) = " Ji (w) (4)
k=1

in a distributed manner. Since the individual costs (2) admit
the same solution, w*? is also the solution of (4). It has been
shown that using proper cooperative strategies to solve (4) can
improve the estimation performance [2], [3].

With multitask networks, each agent aims at determining a
local parameter vector wy,. It is assumed that some similarities
or relations exist among the parameter vectors of neighboring
agents so that cooperation can still be meaningful, namely,

w) ~ w§ if £ € N, (3)

where the symbol ~ refers to a similarity relationship in
some sense, which can be exploited to enhance performance.
Depending on the problem characteristics, this property can
be promoted in several ways, e.g., by introducing some reg-
ularization term, or by assuming a common latent structure.
Networks may also be structured into clusters where agents
within each cluster estimate the same parameter vector [4],
[44].

B. Node-specific subspace constraints

Although agents aim to estimate distinct minimizers wy,
exploiting relationships between solutions can make cooper-
ation among agents beneficial. Regularization is one popular
technique for introducing prior information about the solution.
It can improve estimation accuracy though it may introduce
bias [4], [19], [46]. In this paper, we explore an alternative

strategy that assumes that the hypothesis spaces partially over-
lap. Specifically, we assume that each w? can be expressed in
the form:

wi = Ou’ + €, (6)

where ®u° is common to all nodes with ® denoting an
L x M matrix with known entries and «° an unknown M X 1
parameter vector (common to all nodes), and where €, is an
unknown node-specific component. We assume that matrix
® = [01,...,0)] is full-rank with M < L. Overcomplete
sets of column vectors {61,...,0/} may be advantageous
in some scenarios but this usually requires to impose further
constraints such as sparsity over u°. We shall not discuss
this case further in order to focus on the main points of the
presentation. Model (6) means that all tasks share the same
parameter vector @u°, which lies in the subspace spanned by
columns of ®. This subspace representation can be useful in
several applications. For instance, consider the case where ©
is composed of selected columns of the identity matrix I.
This means that a subset of the entries of w¢ are common to
all agents while no further assumptions are imposed on the
other entries. This situation is a natural generalization of the
single-task scenario. Another example concerns beamforming
problems with a generalized sidelobe canceller (GSC), where
® acts as a blocking matrix to cancel signal components
that lie in the constraint space [43]. In machine learning,
formulation (6) is referred to as the alternating structure
optimization (ASO) problem [38], [39]. The subspace © is,
however, learnt simultaneously via a non-convex optimization
procedure. In what follows, we shall assume that ® is known
by each agent.

Before proceeding further, we clarify the difference between
model (6) addressed here and in our preliminary work [1],
and the model studied in [31], [32], [35], [47], [48]. In these
last works, the authors consider particular information access
models where global and local components are assumed to
be related to distinct regressors. The centralized problem can
then be formulated by stacking the global and local regressors,
and by considering a parameter vector augmented accordingly.
In our work, motivated by applications of the latent space
model in batch-mode learning, we address the problem where
the parameter vectors to be estimated lie in global and local
latent subspaces. We do not need to distinguish explicitly
between global and local regressors. Instead, as shown in the
sequel, some extra conditions are needed so that model (6)
is identifiable. Among other possibilities, we shall investigate
two strategies where constraints on © and €} are imposed.

Replacing (6) into (2), the global cost function is expressed
as a function of a common parameter uw and node-specific
perturbations {ex}_;:

N
T (u {er i) = Y E{lde(n) — zpn(Ou+er)} (7)
k=1

We expect the estimation of wj, by each agent to benefit
from the cooperative estimation of w. Problem (7) is still
insufficient for estimating the tasks {w¢ }. This is because the
decomposition wy = © u + € is not unique. Indeed, given
any optimum solution {@, €}, and any s = Oz, we can
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generate another optimum solution by considering the shift
{u — x, €, + s}. This ambiguity prevents us from deriving
collaboration strategies based on w. From the point of view
of convex analysis, the Hessian matrix of (7) is rank deficient
and no unique solution exists.

III. PROBLEM FORMULATIONS AND SOLUTION
ALGORITHMS

Problem (7) can be modified to make it well-determined
and more meaningful. In this section, among other possibil-
ities, we investigate two strategies that consist of imposing
further constraints and derive the corresponding distributed
algorithms. These two formulations guarantee the uniqueness
of the solution and have clear interpretations.

A. Node-specific subspace constraints

We restrict the node-specific components {€;}7_; to lie in
the complementary subspace to span(®). The problem can be
formulated as:

min  JE (u, {ex} o
u{er}n_, ( i=1) (8)
subject to €, € span(®,), Vk=1,...,N

where the L — M columns of matrix &, span the comple-
mentary subspace to span(@®), that is, @* @ = 0. We write:

€r =01 & 9
where &, is a column vector of size (L — M). Now, replac-

ing (9) into (8), the optimization problem becomes uncon-
strained and the objective function is given by:

Aoy

N
ZE{|dk — 2 (Ou+ 0. €,)°}

ngob (

WE

i E{|dy(n)} + uw'©" (Y Ra)Ou

b
Il
—

MZH

N
+3° 60" R, 10 ¢, + 2Re{u*@* Z Rx,k@lsk}

1 =

_ 2Re{ Zpdz k@u} - 2Re{ Zpdr kQLﬁk}

k=1 =1

>
Il

(10)

where R, j, = E{mk nThon } is the covariance matrix of xj ,,
and pg, = E{dx(n ! k. n} is the covariance vector between
the input data xy,, and the reference output data di(n).
Lemma 1: Problem (8) has a unique solution with respect to
w and {e }7_, if the perturbations {€;})_, lie in a subspace
orthogonal to span(©®). [ |
Proof of Lemma 1 is provided in Appendix A. We shall now
derive a distributed algorithm to seek the minimizer of (8).
Focusing on the terms that depend on wu in (10), and setting
parameters £, to their optimum values £7, we consider first

the global cost function over the variable wu:

N
ngob( ) Z (u e R, k@u+2Re{ *@*RT,k®L€Z}
k=1

—2Re{p5, 1 Ou} + u(£D))

Y

I
Djz

k=1

where g5 (£7) collects all the terms depending only on &
in (10). The term Zg LE{|di(n)|?} is discarded because
it is constant with respect to the arguments w and {&,}_;.
Since J2°°(u) has a unique minimizer for all nodes over the
network, we can use a single-task adapt-then-combine (ATC)
diffusion strategy to estimate u® [13], [15]. We introduce a
right-stochastic matrix C' with nonnegative entries cg; such

that:
N
Z =

With each node k, we associate the local cost over the

variable u:
1
ok g ok Jue(u
LENG

and ¢ =0 if k ¢ N} (12)

13)

Observe that Y r_ Ji%5 (u) = JE°(u) because matrix C is
right-stochastic. Since JEIOb(u) is quadratic with respect to u,

it can be expressed at each node k as follows:

ngob(u) loc Z loc
loc - (14)
+ Z H’lL u ||V2 ]loc
t#£k

where V2%, denotes the Hessian matrix of J\°(u) with
respect to u, and ||ul|% is the squared norm of w weighted
by any positive semi-definite matrix X, i.e., 2 = u*Su.
Following an argument based on the Rayleigh-Ritz character-
ization of eigenvalues [13, Sec. 3.1], we approximate V*J,%

by a multiple of the identity matrix, so that [|u —u®(|3; ju ~
u,l
ber||u — u®||?.
Minimizing (14) in two successive steps yields:
Pron = ki1 — (V5 (1) (15)
Uk = B+ 10 Y ben (U — g 1) (16)

0k

where p is a positive step size. Its choice to ensure stability
of the algorithm will be elaborated on later in Sec. IV. Now,
note the following. First, iteration (16) requires knowledge
of w°, which is not available. Each node ¢ has a readily
available, however, an approximation for u°, which is d),w.
Therefore, we replace u® by ¢, ,, in (16). Second, ¢, ,, at
node k is generally a better estimate for u® than wy ,_;
since it is obtained by incorporating information from the
neighbors through (15). Therefore, we replace uy ,,—1 by ¢y, ,,
in (16). Then, absorbing coefficients by into another set of
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nonnegative coefficients that satisfies:

N
Y ap =1, and agy =0if £ &N, (17)
=1

which means that matrix A with entries ay; is left-stochastic,
using an instantaneous approximation of the gradient, and
limiting the summation in (16) to the neighbors of node /¢
(see [13], [15] for more details on a similar derivation in the
context of single-task diffusion strategies), we can update uy, ,,
as follows:

B = Ukm1+ 1 > con® T}, [de(n) — Tpn (OUpn_1)
LeENE

—20n(018,-1)] (18

Uk, = Z aek Py (19)

LENT,

where ;. ,,_; is an estimate for the unknown minimizer £j,
to be evaluated as explained further ahead in (21).

Focusing on the terms that depend on {&,}&_, in (10), and
setting parameter u to its optimum value u°, we consider the
global cost function over the variables &,

TEP (e )

=3 (601 R10.6, + 2Re[ €101 R, 0u)

—2 Re{pZI,kQLgk}> + g (u®)

=

(20)

I
] =

Je k(&)

£
Il
-

where g;.(£7) collects all the terms depending only on u°
in (10). Now since the parameters &, are node-specific, if
no further constraints are imposed, they can be updated
independently of each other via an LMS-type update:

Ek,n = €k7n71

" @1)
=+ MQka,n [dk ('fl) - mk,n(®uk,n—l+ ®L£k,'n—1):|

At each time instant n, node k£ updates its parameters wy n—1
and & k.n—1 using (18)—(19) and (21), respectively. The local
estimate wy, 5, is then given by:

wk,n == ®uk,n + ®L€k,n (22)

It is interesting to note that we can rewrite the algorithm
without using the auxiliary variables wy,, and {€; ,,}7_,, by
substituting the relations:

Uk.n = (@*@)_1@*wk,n
€ =(0101) 10wy,

(23)
(24)

into (18)—(19) and (21), respectively. Selecting C = Iy to
avoid exchanging raw data and node-specific components, we
can implement the update of wy, ,—1 to an intermediate value

Py, as follows:

(@)
wk,n = ed)k,n + el-gk,n
b * *
2 Oup,i + ©.&, 1+ M[(@@ +0.07)

X @] i) = @ (O 1 +© 1€y, )]

=Wy n-1+ pSexy , [dr(n) — Thpwrn-1] (25

with S¢ = OO + ©, 0" . For step (a), we use (22)
with the intermediate value ¢y, ,, of ug, in (18) and & ,,.
Step (b) follows from their adaptation steps (18) and (21).
Now substituting (19) in (22) to aggregate the intermediate
estimates of wy,,, from the neighbors of node k, we arrive at
the combination step:

Wik.n (2) ®uk,n + ®L€k,n
9 0Y 4 (070) 0%, +0.(010.)" 07 %,
LeENE

- Z aEkP@¢Z,n +P@L¢k,n
ZE./\/.IC

where Pg = ©(©*0)'1@" and Pg, = I, — Pg are the
projection matrices over subspaces ® and ©® . For step (c),
we use (23)—(24) with the intermediate estimate 1) ko Finally,
we arrive at the ATC strategy summarized in Algorithm 1.

The first step in (28) is an adaptation step where node k
uses the data realizations {dy(n), zy »} to update its existing
estimate wy, ,—1 to an intermediate value ) k.- All other
nodes in the network are performing a similar step. The second
step in (29) is an aggregation step. To update its intermediate
estimate to wy, ,, each node k combines the existing estimates
of its neighbors in the common latent subspace ® to build up
a common representation, and refines it with a node-specific
value in © . In the special case when A = I, so that no
information exchange is performed, the ATC strategy reduces
to a non-cooperative solution where each node k runs its own
individual descent algorithm.

Matrix S in the adaptation step (28) is positive-definite. It
arises from the calculation of the gradient of (10) with respect
to w and &,,. The algorithm can be simplified by replacing Se
by I in (28) without compromising the convergence of the
method (as analyzed further ahead in Section IV). We then
arrive at the recursion:

(26)

Ypp = Wit + pxy, [dr(n) — Tppwi o] (27)

Strictly speaking, observe that S = I, if, and only if, the
columns of ® and ®, form an orthonormal basis of R”.
Note that the adaptation step (27) is the LMS solution for
minimizing the cost in (10) with respect to wy.

Before leaving this section, we would like to point out
that the algorithm described in [31], which addresses direct
models by stacking global and local variables in an augmented
parameter vector, may be used to solve problem (8), provided
that an appropriate variable change is performed in order to
make the latent variables uy, ,, and & ko explicit in wy, ;. The
resulting algorithm has the same performance as Algorithm 1
defined by (28), (29), but, obviously, they do not have the
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Algorithm 1: ATC diffusion LMS with node-specific
subspace constraints

Parameters: Preset
- positive step-size p for all agents;
- left-stochastic combination matrix A;
- full-rank matrix © with columns {61,...,0,}.
Initialization: Set initial weights wy, ¢ = O for all
ke{l,.., N}
Algorithm: At each time instant n > 1, and for each
agent k, update wy, ,, as:

wk‘m = wk’v"—1+:uS@ "B;:,n [dk(n) - mk,nwk,n—l]

(28)

Wi,p = Z akPe, ., + Po, Yy, (29)

LEN,

same form since they do not operate in the same domain. This
structural difference has a major consequence for Algorithm 1.
As already explained, it can be further tuned by replacing
the matrix Sg in (28) by any positive definite matrix while
ensuring convergence of the method. This extra degree of
freedom will be taken into account in the analysis of the
algorithm, where the only condition on Sg is to be positive
definite. We will also show that setting Sg to I, besides
simplifying Algorithm 1, can greatly improve its performance.

B. Node-specific subspace constraints with norm-bounded
projections

The second formulation we consider is to relax the con-
straint that node-specific components {€,}~_, must lie in
span(@® ). We now assume that they are norm-bounded in
some sense. The problem is formulated as follows:

min  J¥ (u, {e, } 1
o fnin, (u, {ex}i=1)

N N 30)
subject to Z |Peer|?® < vi, Z |Pe, exl|* < 1o

k=1 k=1
Since the objective function and the constraints are convex
in (u,{e;}1_,), the constrained problem (30) can be formu-
lated as a regularized optimization problem that consists of
minimizing a global cost of the form [49]:

ngnb<u, {ek}fev:l) = ZE{\dk(n) — T (Ou + €k)|2}
k=1

N N
+m Z |Poer|® + 12 Z |Pe, €xl?

k=1 k=1
€2V
where 77 and 72 are positive regularization parameters that are

related to the bounds ;7 and vs.

Lemma 2: Problem (30) has a unique solution with respect
to u and {e;}i_;. [ |
Proof of Lemma 2 is provided in Appendix B. Other norms
such as the general ¢, ;-norm may be used with € in (30),
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depending on the application. Some form of regularization on
w may also be included. However, using the /2-norm with €
in (30) enables us to solve the problem with respect to wy,
without using the auxiliary variables w and {€;}7_,. Indeed,
let us rewrite (31) as follows:

N
JE (4 L} ) = ZE{\dk(n) —zp wi)?}
k=1

N N (32)
+m Y [IPe(wp — Ou)|® + 02 Y [|[Pe, will?
k=1 k=1
The optimality condition relative to u gives:
N
> 0 Po(w) — Ou’) =0 (33)
k=1

from which the optimal parameter vector u° can be expressed as:

N
o 1 * —1 *_ .0
u® = N};(Q 0) e w] (34)

Substituting (34) into (32), and using that Pg is Hermitian
and idempotent (i.e., Pg = P2®), yields:

N
yelob ({wk}lk\le) — ZE{|dk(n) — wk,nwk|2}
k=1

N 1 N 2 N
+m Yy HPG)wk N Zpe’weH +m2 ) |[Pe. w?
k=1 (=1 k=1
(35)

Node k can apply a steepest-descent iteration to minimize the
cost in (35) with respect to {wy, }1_,. Computing the gradient
vector of (35) we get:

N
1
Vb — [(Rm,kwk — Puz) + M (Powy, — N ;Pewz)

+ 772P®ka} (36)

Starting from an initial condition wy, o, we arrive at the
steepest descent iteration:

Wi = Wrp—1 — [(Rx,kwk,n—l —Py.) + M Po Wi pn1

N
1
— pm (Pewkmq N ; Pewz,nq) 37

This iteration indicates that the update term involves adding
two correction terms to wy, ,—1. Among many other forms, we
can implement the update in two successive steps by adding
one correction term at a time:

,l[]k,7n = wk,n—l

— (R i1 = Pas) + 1 Po, Wi 1| (39)

wk}ﬂ’L = ’lkaL

N
— um (P(awk,nﬂ - % Z Pewz,nq) (39)

(=1
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Step (38) updates wy ,—1 to an intermediate value w,w.
We now revise (38)—(39) to achieve a diffusion LMS type
algorithm. The intermediate value 1, ,, at node ¢ is generally
expected to be a better estimate for w? than wy ,,—1 since it is
updated by the first step (38). Therefore, we replace wy ,—1
by 1, ,, in the second step (39) as follows to get:

N
1
WEn = wk,n — KU <P@¢k,n - N ZP@¢Z,n)
=1

N
= (,(/)k,n_ P@¢k,n)+ ((1 _Mnl)P@’lpk,n—i_Z % w@,n)
o

Observe that Pe, ¥y, ,, = ¥y, ,,— Pe vy, ,,, and introduce the
coefficients ag, = % for £ # k, and apy = 1 — py + 52
We get:

N

win = Pe ¥, + g axPev,,
=1

(41)

Considering that each node in the network can only share
information with its neighbors, and using instantaneous ap-
proximations for R, ; and p,,, we arrive at:

'wkm = (IL - MnQP@L)wkz,nfl
+ /‘mz,n [dk (n) - mk,nwk,n—l] (42)
Wi,p = Z akPe, ., + Po, Yy, (43)

eGNk

with apr = 1 — pumy + % and ag, = % for £ € N, and
¢ # k. Note that, for sufficiently small st]f\:/p—sizes g, these
coefficients are nonnegative and satisfy >, ; ag, = 1 for all
k. We will treat these coefficients as free parameters that can
be chosen by the designer according to these conditions (i.e.,
nonnegative coefficients that add up to one on each column of
matrix A). We summarize this statement in Algorithm 2.

Algorithms 1 and 2 employ the same aggregation step
in (29) and (45). Node k£ combines the intermediate estimates
of its neighbors in the common subspace ® without affecting
the local contribution in the complementary subspace ® | . The
norm constraint (30) in ®, leads to a leaky-LMS alike term
in the adaptation step (44).

Let us now examine two special cases of Algorithm 2.
First, in the case where ® = 0, problem (31) reduces to a
regularized least-mean squares problem with wj; = €. That
is, the algorithm reduces to the non-cooperative leaky-LMS
algorithm. On the other hand, if ® = I, the algorithm
reduces to diffusion LMS.

Before leaving this section, we briefly discuss the complex-
ity of Algorithms 1 and 2. Both algorithms have the same
adapt-then-combine structure as the diffusion LMS except that
each node needs to project data on ® and ® . This means
that each node k only needs to update the L x 1 parameter
vectors 1y, , and wy, ,, at each time instant. Next, each node &
needs to transmit wy, ,, to its |NVi| — 1 neighbors. A projection
performed by a matrix-vector product has a computational
complexity of O(Llog, L) [50]. All the other operations
performed by each node have a complexity of O(L).

Algorithm 2: ATC diffusion LMS with node-specific
subspace constraints (norm-bounded projections)

Parameters: Preset
- positive step-size p for all agents;
- full-rank matrix @ with columns {61,...,0}.
Initialization: Set initial weights wy, ¢ = O for all
k=1,...,N.
Algorithm: For each instant n > 1, and for each
agent k, update wy, p—1:

"pk',n = (IL - MUQP@L)wk',n—l
+ py, , [de(n) — T pwin-1] (44)

= Z wrPoty, + Po, ¥, (45)
LeEN

IV. PERFORMANCE AND CONVERGENCE ANALYSES

In this section, we examine the convergence properties and
network performance of the proposed adaptive strategies. We
shall first describe a convergence framework for a family of
distributed algorithms, where Algorithms 1 and 2 are special
cases. Quantities specifically related to Algorithms 1 or 2 will
be distinguished by superscripts (1) and (?), respectively.

In order to perform the analysis, we collect information
from across the network into block vectors and matrices. Let
us denote by w,, and w? the block weight vector at instant n
and the block optimum weight vector, both of size LN x 1,
that is

(46)
47

. 7wN,n}
Swit

We denote the difference between the optimum w{, and the
instantaneous estimate wy, ,, by:

wy, = col{wy p, ..

w = col{wy,..

Vin = w(]; — Wk,n (48)

We collect the weight error vectors vy, ,, from across all nodes
into the block weight error vector:

v, =col{vy p,..., VN R} (49)

Assumption 1: (Independent inputs) The regression vectors
Ty, arise from a stationary random process that is temporally
stationary, white, and independent over space with R, =
E{z} @ ,} > 0. A direct consequence of this condition is
that xy, ,, is independent of v, ., for all £ and m < n.

A. Mean weight behavior analysis

The estimation error in (28) and (44) can be rewritten as a
function of vy,

di(n) — Tp Wi n—1 = 2k(N) + ThnVin—1 (50)

In what follows, we first show that the weight error update
relations for both Algorithms 1 and 2 are of the form:

v, = Bpyvp_1—pg, —r, (28

with B,, an LN x LN time-dependent matrix, g,, an LN x
1 zero-mean time-dependent vector, and = a constant LN x
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1 vector. Consequently, it will be possible to represent their
mean weight behavior in the form of a state-transition equation
with a bounded driving term:

E{v,} = BE{v,_1} -7 (52)

with B =E{B,,_1}. Let H, , be the block diagonal matrix
of size LN x LN, and p,, ,, the vector of length LN x 1,
defined as follows:

H,, £ diag{a:?na:l)n, ol w}‘\,naan} (53)

Poxn £ col{z; (n)w?n, ce ZN(n)w}kVn} (54)
The expectation of H, , and p,, ,, are given by:

H, 2 E{H,,}=diag{R,1,...,Rn2} (55

Poo 2 E{p.; n} =0 (56)

1) Mean weight behavior of Algorithm I: Define the inter-
mediate weight error vector v, :

¢k,n = wz - d’k,n

(57)

and collect these vectors from across all nodes into the block
weight error vector:

17)n = COI{{/;an R ’LZNJL}

Subtracting wj, from both sides of the update relation (28),
and using relation (50), leads to the update equation for 1,

;pn = (ILN - UDS@HIJL)Un—l - /UDS@pzx,n (59

where Dg, = diag{Se,...,Se} is an LN x LN block
diagonal matrix with Sg as diagonal entries. Let A = AQI .
Defining Dpg, and Dpg, ~as the LN x LN block diagonal
matrices with Pg and Pg, as diagonal entries, respectively,
equation (29) can be written in vector form as:

wy, = (ATDP(-) +DP®L)¢1’L

Subtracting w® from both sides of the above expression, we
have:

v, = (./‘lTDp9 +Dp@J_ )’I,En*(ATDp@ +Dp@J_ 7ILN)’wO
(61)
Combining this equation with (59), the weight error update
relation can be written in a single expression:
Up = (-ATDP@ + DP@L) [(ILN - /’LDS@Hx,n)’Unfl
~1DseP.yn| — (AT —ILn)Dpow’ (62)

(58)

(60)

Now we denote several terms in the weight error expres-
sion (62) by:

B\ = (A"Dpg,+Dp, )Iin — pDsgH,,) (63)

97(11) _ (ATDP@ +DP@J_)DS®pz:E,n (64)
r) = (AT — I.n)Dpow®, (65)
and the associated expected values:
BY £E{B}}
= (.ATDP6 +DP@L)(ILN —uDgoH;)  (66)
gM L2E{g =0 (67)

With the above notation, the weight error update relation (62)
can be written as:

vy =BWM v, —pugh —rW® (68)

Taking the expectation on both sides of (68), and using
Assumption 1, we arrive at the mean weight behavior for

Algorithm 1:
E{v,} = BY E{v, 1} —r® (69)

2) Mean weight behavior of Algorithm 2: Subtracting w§,
from both sides of the update relation (44), and using rela-
tion (50), yields:

¥, =T - pneDpe  — pH g ) V-1
- /’L(pzw,n - 772DP®L wo)
Subtracting w® from both sides of (45), we have:
Up = (ATDP@ -“DPQL )’IZH— (ATDp® —l-Dp@L—ILN)’wO
(71)
Combining this equation with (70), the weight error update
relation can be written in a single expression:

Un :(ATDP@ +DP@J_) [(ILN *,UJTIQDP@,J_*,UHr,n)vn—l

— 1Py — 12 Dpe w°)] — (A" — I n)Dpg w’
(72)

where we used the fact that I.xy = Dpg + DpeL . Next, we
denote several terms in the weight error expression (72) by:

B = (A"Dpo+Dp, )ILn—mwDpe —pHy ) (73)

(70)

g® = (AT Dp, + Dpel)pzw,n (74)
7“(2) = (AT — ILN)DP@’UJO
— (A" Dpg + Dpy )Dpy w®  (75)

and the associated expected values:
B® £ 5{B?)

= (A"Dpe+Dpo, )(In—2Dpe, —pnHy) (76)
g £ E{gg)} =0 (77)

With the above notation, the weight error update relation (72)
can be written as:

o =B v, gl —r® (78)

Taking the expectation on both sides of (78), and using As-
sumption 1, we get the mean weight behavior of Algorithm 2:

E{v,} = B E{v,_;} —r? (79)

3) Stability in the mean: The mean-weight error recur-
sions (69) and (79) are of the same form as (52). The
convergence of such recursive state-transition equations, with a
bounded driving term, is determined by the stability of matrix
B. Algorithm parameters should be chosen to satisfy the mean
stability condition p(B) < 1, where p(-) denotes spectral
radius of its matrix argument. In this case, the bias of the
algorithm will be given by:

lim E{v,} =

n— oo

—(ILN —B)717' (80)
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We shall now establish two results that provide ranges for
selecting the step size u to ensure convergence in the mean
for each algorithm.

Theorem 1: (Stability in the mean for Algorithm 1) Assume
data model (1) and Assumption 1 hold. We select a doubly
stochastic matrix A. Assume {®, ©® } forms an orthonormal
basis of IR”. Then, for any initial condition, Algorithm 1
asymptotically converges in the mean if the step-size satisfies:

2
maXxy )\max (Rx,k‘ )

0<p< (31)

where A\pax () denotes the maximum eigenvalue of its matrix
argument.

Proof: The convergence of (69) is determined by the
stability of matrix B M) The required mean stability condition

is met by selecting u so that:
p((ATDpg + Dpo )Ly —pSeH,)) <1 (82)

Let = col{z,,...,
We have:

|(A"Dpg + Dpg, )|/

N N 2
:ZHZaﬁP@w]——l—P@Lwi

i=1 j—l
Z(HZ%Pe%H +Pe.a?) @4

Given that A is left stochastic, namely, ZN
aj; > 0, Jensen’s inequality guarantees:

N , N ,
HZ% P@%‘H <> ajil|Pe;]|
j=1 Jj=1

Consequently, the quantity in (84) can be upper-bounded as
follows:

@y } be any block vector of size LN x 1.

(83)

1 a5 = 1 with

(85)

N N 2
3 (|30 Per,

=1

+[|Po. @)

.

1

N JN ) N )
SZZ ajil|Pex;||” + > ||Pe.=:|”  (86)

i=1j=1 i=1

N
23 |Poy|? +ZHP@L:&H (87)

j=1 =1

= ||a|? (88)

where for step (a) we use that A is right stochastic, namely,

Zf\;l a;; = 1. We conclude that:
|A"Dp, + Dpg, || <1 (89)

We know that the spectral radius of any matrix X satisfies
p(X) < || X]||, for any induced norm. Then we have:

p((A'Dpy + Dpo )Ty — nSeH.))

<||ATDp + Doy, || |1 — nSoHL||  ©0)
(89)

The mean stability condition is thus met by selecting p so that:
||ILN - ‘LLS@HQ;H < 1. In the case where {®,0} forms
an orthonormal basis of IR”, then Se = I,. This leads us to
the condition in (81).
|
Theorem 2: (Stability in the mean for Algorithm 2) Assume
data model (1) and Assumption 1 hold. We select a doubly
stochastic matrix A. Then, for any initial condition, Algo-
rithm 2 asymptotically converges in the mean if the step-size
satisfies:
2

maxy Amax(ﬁQP@J_ + RT,k)

0<pu< 92)

Proof: The convergence of (79) is determined by the

stability of matrix B @, Considering that:

p((A"Dpg + Dpe )TN — 2 Dpg |
<|[Trn — pn2 Dpe, — nH ||

- ,LLHz)) 93)

since A" Dpg + D Po, || <1, the mean stability condition
is met by selecting p so that ||ILN pnz Dpeg —pHy H <L
This leads us to the condition in (92). Furthermore, by
Weyl’s theorem, we have Ayax(n2Pe, + Rek) < n2 +
Amax(Rz k) since Pg, and R, ) are Hermitian matrices and
Amax(Pe, ) = 1. This leads to the sufficient condition:

2
T2 + maxp Amax(Rm,k)

0<pu< %94)
|
B. Mean-square error behavior analysis

We now study the mean-square error behavior of Algo-
rithms 1 and 2. To this end, we consider the general update
relation (52) since both algorithms are of this form. From (51),
the squared norm ||v, ||% of the weight vector v,, weighted by
any positive semi-definite matrix X, i.e.,
satisfies the following relation:

lvnl% = lva-1lB: 28, — 12 lgale + 75
—2Re{r*E¥B,v,_1} — 2uRe{g; X (B,v,—1 — T)}

95)

Under the independence assumption, and considering that g,,
includes the zero-mean noise term z, which is independent
of any other signal, taking expectations of both sides of (95)
leads to:

E{lval%} = E{lvn-1ll%} + 4° trace{SE{g,,g; }}

96
+ 7|3 — 2Re{E{r*=B,v,_1}} (96)

In the above expression, X is any positive semi-definite matrix
that the user is free to choose in order to derive different
performance metrics, and ¥’ = E{BXB, }. Let G be the
expected value of E{g, g} in the second term on the RHS
of (96). For the two presented algorithms, G is respectively
given by:

G = (A" Dp, + Dp, )Ds.diag{o? | R, 1,
02 NRon} D5 (A" Dpo+Dpg )"
G = diag{o? | R, 1,...,02 yRo N}

C)
(98)
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With G, equation (96) is expressed as:

E{[lval%} = E{lva-15%} + p’trace {SG} + [|r (5

—2Re{r*S BE{v,_1}} .

Vectorizing matrices X and ¥’ by o =
vec(X'), it can be verified that:

vec(X) and o’ =

o =Ko (100)
where the (LN)? x (LN)? matrix K is given by:
K=FE{B) @B}~ B' @ B (101)

The above approximation can be used provided that the step
size is sufficiently small so that the influence of the second-
degree term in p can be neglected [13]. Equation (99) can then
be expressed as:

E{llvnllz} = E{llvn-illko} + 8510 (102)

where we use the notation ||-||s and ||-||, interchangeably, and
Sn_1 = Vvec (,u2 G+rr*—2Re{B E{vn_l}r*}) (103)

Theorem 3: (Mean-square stability) Assume data model (1)
and Assumption 1 hold. Assume further that the step size p is
sufficiently small to guarantee the stability in the mean of the
algorithms, and to ensure that (102) can be used as a reason-
able representation for the evolution of the (weighted) mean-
square error. Mean-square stability of cooperative algorithms
characterized by (51) requires the step-size u to be chosen
such that it ensures the stability of matrix K (in addition to
the mean stability condition p(B) < 1).

Proof: Tterating (102) starting from n = 0, we find that

n
Eflloal} = lvolliero + Y 8T Ko
1=1

(104)

with initial condition vqg = w°—w,. Provided that K is stable,
the first term on the RHS of (104) converges to zero as n —
00. We know from (52) that E{v,,} is bounded because (52)
is a BIBO stable recursion with a bounded driving term 7. The
second term on the RHS of (104) then converges as n — oo.
We conclude that E{|v,||2} converges to a bounded value as
n — oo, and the algorithm is mean-square stable. ]
Theorem 4: (Transient MSD) Consider a sufficiently small
step size u to ensure mean and mean-square stabilities. The
MSD learning curve ¢, = - E{[|v,||?} of the cooperative algo-
rithms characterized by (51), obtained by setting 3 = %I LN
evolves according to the following recursion for n > 1:

Cn="Cn-1+ %[(7%71 + Snfl)TVCC(ILN)

(105)
(106)

2
- ||’U0H(I<LN)2—K)K"*10-]

Yo=Ky, 1+ (K —Inye) sn1

with initial conditions (o = % [lvol|* and v, = 0.

Proof: Comparing (104) at instants n and n — 1, we can
relate E{||v,||%} and E{||v,_1]|2} as follows:

Ellvnlls} = E{lvn-1la} = llvollfy,, . x)xn1o

n ) n—1 )

+ Z sy K'lo— Z sy 1 K 'a
=1 =1

= E{llon1l2} — llvoll?r,, . xorcn1o

n n—1

—1—32710'—1—2 s K lo— Z s] | K7 l'o
i=2 i=1

(107)

Introducing the notation

il , n-l T
Vo= [P sl KT s KT aos)
1=2 i=1
we can reformulate the recursive expression (107) as follows:

E{llval3} = E{llvn-1]5} — Hvollﬁf(mzfx)mfla
+ (771,—1 + sn—l)TU (109)
Yo=K"v, 1+ (K —In3) 851 (110)

with v, = 0. To derive the transient curve for the MSD,
replace o by +-vec{I n}. ]

Corollary 1: (Steady-state MSD) If the step size is cho-
sen sufficiently small to ensure mean and mean-square con-
vergence, then the steady-state MSD, defined as (, =
lim, o Cp, 1S given by:

(oo = %s; (Inyz — K) 'vec(ILy)
with 8o, = limy, o0 S, determined by (103), using E{v.} =
lim,, o E{v, } determined by (80).

Proof: From expression (102), we get:

(111)

: 2 _ T
T Efflonll?y, - xet=sLe (12

Observe that the MSD calculation requires us to choose o that
satisfies:

1
(I(LN)2 — K)G’ = NVCC(ILN) (113)

This leads to expression (111). |

V. SIMULATIONS

In this section, we report simulation results that illustrate
the theoretical results. All agents were initialized with zero
parameter vectors wyo = 0 for all k. Simulated curves
were obtained by averaging over 100 runs as we obtained
sufficiently smooth curves to check the consistency with
theoretical results.

A. Algorithm validation

We considered a network consisting of 12 agents with
interconnections shown in Fig. 1(a). The parameter vectors
to be estimated were of length L = 5. The input data
were generated from circularly-symmetric zero-mean complex
Gaussian distributions. White input data were considered first,
by setting:

Ry =015 (114)
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Next, correlated input data, characterized by the following
covariance matrix, were considered:

_ 2
Rx,k = Jz,kX

1 —4+.3j 2—-.15 .1-—.055 .02+ .02j
—4— 3§ 1 —4+ .35 2-.1j .1-.055
2415 —4-—.3; 1 —4+ 35 2-.1j
1+4.055 2+4.15 —.4-—.3; 1 —44 .35
02—.02j .1+.05 2+.15 —.4-.3j 1

(115)

with j = y/—1 the imaginary unit. The modeling noises 2,
were i.i.d. zero-mean circularly-symmetric Gaussian variables,
independent of any other signals. The variances 0925, . and
O’ik were sampled from ¢/(0.8,1.2) and ¢/(0.18,0.22), re-
spectively. Their values are shown in Fig. 1(b). We considered
two sets of subspace basis vectors. The first set is the standard
basis:

@1 = [61,62,.. (116)

where e; denotes a vector of length N with 1 at the ith
entry and 0 otherwise. Its orthogonal complementary subspace
is spanned by ©1,; = [ea41,...,er]. This setup can be
interpreted as a variable selection process for information
exchange, where the first M entries of the optimal parameter
vectors are identical across the network. Parameter M was
set to 3. The second set of basis vectors is a complex
Vandermonde matrix:

'76M}7

1 1 1
e
eI (L=11 =i (L—1)2 =i (L-1)vn
117
with ¢, = 2"?sin@. Matrix © can represent the array

manifold of a uniform linear array (ULA) with inter-element
space d, operating at wavelength A\, with impinging signal
directions of angles 6. Parameter M was set to 3, with
0, = %, 0o = 7, 05 = % and d = % We considered three
settings to validate the theoretical results.

In the first setting, we assumed that model (6) matches the
observation data. The entries of the coefficient vectors u® and
&7 were sampled from the Gaussian distribution A(0,1). The
step-size parameter p for Algorithm 1 was successively set to
0.01 and 0.02. A uniform combination matrix A with ag, =
|Ni|~! was used. With ©y, note that matrix Sg is equal to
I;. With ©,, it was successively set to @O + ©, O as
in (29), and to I5. The transient behavior and the steady-state
MSD were determined theoretically. The results with subspace
settings ®; and ©,, for white and correlated input data, are
shown in Fig. 2. It can be observed that setting Sg to I for
©®, leads to a better convergence behavior. For Algorithm 2,
we did not set the parameter 7; explicitly but we used the
same combination matrix A as for Algorithm 1. Parameters
(1, m2) were set to (0.02,0.01) with white input data. With
correlated input data, the following combinations (i, 72) were
considered: {(0.01,0.01);(0.01,0.02); (0.02,0.01)}. The re-
sults are shown in Fig. 3. The simulation results match the
theoretical results, and illustrate the trade-off between the
convergence speed and the steady-state MSD. It can also be
observed with Algorithm 2 that a small value for 7, is prefer-
able since constraining the norm of node-specific components

in the complementary subspace ©' introduces a bias that
can degrade the performance. As leaky-LMS, this kind of
regularization can improve the stability of the algorithm for
some particular problems and practical applications, at the
cost of an extra estimation bias. We then considered another
scenario in order to illustrate the interest of the extra degree of
freedom provided by 72 in Algorithm 2. Experimental setups
were left unchanged with correlated inputs except for the
entries of &5, which were sampled from Gaussian distribution
N(0,0.01). We successively set 72 to 0, 0.1 and 1 in order
to progressively constrain the variance of &;. Note that with
ny = 0, Algorithm 2 reduces to Algorithm 1. The results
with ®; and ©; are provided in Fig. 4. The result with non-
cooperative LMS is also provided as a reference.

In the second setting, we assumed that the node-specific
components €} in (6) do not strictly lie in the complementary
subspace ©*. To evaluate the robustness of our algorithms
and the power of the analytical models, we set:

€, =0Ov; +0,&; (118)

where v{ are zero-mean circular Gaussian variables. This
setting refers to a non-ideal situation because components
O(u® + v7) lie in span(®) but differ from one node to
another. The entries of u® and v{ were sampled from Gaussian
distributions A(0,1) and N(0,0.01), respectively. The step-
size p was set to 0.01 for Algorithms 1 and 2. Parameter 7
in Algorithm 2 was set to 0.01. Subspace ®; and white input
signals were considered to test the model. The transient behav-
ior and the steady-state MSD were determined theoretically.
The simulation results provided in Fig. 5 match the theoretical
results, and illustrate that cooperation among nodes can still
be beneficial when optimal solutions in the subspace ® are
different but close to each other. This is another illustration of
the conclusion reached in [19] for single-task diffusion LMS
operating in multitask environments.

In the third setting, we exploited the leaky property of
Algorithm 2 to promote its use in real applications. It is
well known that the (non-cooperative) leaky LMS algo-
rithm introduces an estimation bias compared to the (non-
cooperative) LMS, but improves its robustness when applied to
practical applications [51]. In particular, it avoids the so-called
weight-drift problem of the LMS algorithm [52]. To highlight
this phenomenon in the context of diffusion adaptation, we
assumed that, say, the last tap/channel of node #1 was failing
to work and was providing consistent null-valued readings,
i.e., [n1]s = 0 for all n. We also assumed that, e.g., finite-
precision effect was corrupting the combination step (29),
or (45), with an additive non-zero mean disturbance q;. The
poor conditioning of regressors associated with a non-zero
mean disturbance is known to possibly lead to a weight-drift
problem. We considered the same experimental setup as in the
first experiment with the standard basis ®;. We picked each
entry of the random vectors g, according to the Gaussian
distribution A/(10~4,1078). We set 0y to 0.1. All the vectors
wy, were initialized to 0. Fig. 6 shows the behavior of the
weight vector at node #1 for (a) Algorithm 1 with Sg = I5,
and (b) Algorithm 2. We can observe the drift of the 5" entry
of w; with Algorithm 1. Algorithm 2 alleviates this effect.
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Fig. 1. Network topology and input-noise variances.
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B. Target localization

We now consider a target localization problem. Cooperative
localization with a diffusion strategy was already addressed
in the case of a single target [13], and of multiple nearby
targets [4]. We focus here on the case where targets lie in a
manifold.

To make the presentation clearer, we assumed that the
targets were collinear in IR®. Their locations were estimated
by the network with 100 nodes shown in Fig. 7(a). Each
node randomly selected a target to localize. Let R be a
member of the rotation group SO(3) defined by the matrix
R = R,(0,)R,(6,) R.(6.), where R,(0,), R,(0,) and

10 T T T T T i T
esesemenenees Simulated transient MSD

Theoretical transient MSD

i Theoretical steady-state MSD|

1= 0.02, n, = 0.01, correlated input
= 0.01, 7, = 0.01, correlated input
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20 -
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0 500 1000 1500 2000 2500 3000 3500 4000
Iteration n

(b) Using Os.

Learning curves and model validation of Algorithm 2 with different settings.

R.(0,) are rotation matrices that rotate vectors by an angle
of 0,4, around x, y and z axis, respectively. The coordinate
vector wy of each target ¢ was generated as follows:

’I.UZ = R172u+6q’l”3 (119)

where R, 5 is the matrix composed of the first and second
columns of R, and r3 corresponds to the third column
of R. As illustrated in Fig. 7(b), this model means that all
targets lie on a common line defined by point R;su and
direction vector 3. Parameter ¢, characterizes the location
of each target ¢ on this line. We considered the problem of
estimating « (common to all targets) and the parameters ¢,
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o, = 0.3, respectively. We ran the (non-cooperative) LMS
algorithm at each node, and Algorithm 1, with ® = R;,
r3. The step-size p was set to 0.1. A uni-
form combination matrix A with ag, = |[Nj|~! was used
for Algorithm 1, where |A| denotes the cardinality of the
neighborhood of node k. Figure 8(a) compares the MSD of
these strategies. Figures 8(b) and 8(c) show one realization of
the target locations estimated with the (noncooperative) LMS
algorithm and Algorithm 1. This experiment illustrates the
advantage of cooperative strategies over the non-cooperative

Fig. 4. Learning curves and model validation of the algorithms using &, with small variances.
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Fig. 5. Learning curves of the algorithms using &, with small variances.

for seven targets. We set the angles and the parameter vectors
in (119) as follows:
™ s

™
w:—’ :—7 227 12
0. = 3 Oy = 3 0. = 7 (120)
v=[12]" (121)
61:0,62:1,63:3,64:4,65:7,66:7.5,67:9
(122)

The distance between each agent k and target g can be
expressed in the inner product form:

Tkqg = Tig(Wy — Py,) (123)

where p;, is the location of agent k, and xy, is the unit-norm
row vector pointing from p;, to wg. We assumed that agents
were aware of their location py. Let dyg = Thg + Tig Py»
that is, diq = T wg. The problem was to estimate 'wg from
noisy streaming measurements {diq(n), Zrqn} collected by
each agent k, and governed by the linear model [13]:

diq(n) = Tpgnwy + Zkq(n)
with
Tign = [1 — Br(n)] Trq + wi‘q diag{ag1(n), age(n)} (124)

with zi4(n) a zero-mean temporally and spatially i.i.d. Gaus-
sian noise of variance o2. As shown in (124), the measured
direction vector x, ,, was assumed to be a noisy realization
of the unit-norm vector pointing from p, to wg, with :L'ﬁq a
unit-norm orthogonal contribution to .. Random variables
ag1(n), aga(n), Br(n) and z;(n) were zero-mean Gaussian
with standard deviation o,, = 04, = 0.1, g = 0.001 and

VI. CONCLUSION AND PERSPECTIVES

In this paper, we formulated an online multitask adaptation
problem that assumes that all tasks share a common latent
feature representation, locally refined by node-specific contri-
butions. This model can be extended into interesting direc-
tions by imposing new constraints, depending on applications.
Based on this principle, we derived two cooperative algorithms
and analyzed their performance. Although this work considers
that common representation subspaces are known a priori, it
paves the way towards more general frameworks.

APPENDIX A
PROOF OF LEMMA 1

The uniqueness of the solution of (8) follows from the
strict convexity of (10), which is ensured by the positive
definiteness of its Hessian matrix. For the quadratic cost (10),
the Hessian matrix with respect to the vector of stacked
variables col{u,&,,...,&x} is block diagonal [3, App. B,
with blocks given by the following matrix X and its transpose:

VQngOb — X 0
0 X'
with
O (XN R, 4)® | ®R,10 ©*R, NO
e ©* R0 O R;10
©* R, n© 0

©' R, N©®
¢!

where ® and ® ; have full column rank. The positive definite-
ness of (125) can be checked by verifying the positive defi-
niteness of each term ®* R, ;,© and of the Schur complement
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relative to the block diagonal corner of X, namely, [53]

Schur(X)

N
=> [0"R,,©0-0"R, 0, (0] R, 0,) 'O R, ;0]

(126)

where each inverse (@ R, ;©,) ! exists since ©, has
full column rank. Each term inside the summation (126) is
positive definite since it is the Schur complement of the block
O®*R, 1, © in the positive definite matrix:

<S§jfjf2, e )—[@ ©."R, 1[0 ©,]>0

(127)
This guarantees the positive definiteness of (126). It follows
that the cost in (10) is strictly convex and has a unique

minimizer.

APPENDIX B
PROOF OF LEMMA 2

Without loss of generality, assume that n; > 72. Otherwise,
replace (129) by:

N
T (u, {exiy) = > E{|dr(n) — k.0 (Ou + )]}
k=1

N

N
+m Y llerll? + (2 —m) Y |IPe, el
k=1 k=1
(128)

Recalling that Pg, = I';, — Pe, the objective function (31)
can be written as follows:

N
ngob(u, {ﬁk}{cvzl) = ('rh — 7]2) Z HP@EkHQ
k=1

N

N
+ ) E{ldr(n) — @xn(Ou+ )} + 12 ) [lexl?
k=1 =1

glob
Jl

(129)

The uniqueness of the minimizer of (31) follows from its
strict convexity. For the quadratic cost in (129), the Hes-
sian of Jlglob with respect to the vector of stacked variables

col{u,€1,...,ex} is again block diagonal, with its blocks
determined by the matrix Y below and its transpose:
lob Y 0O
V2 = [ 0 vT ] (130)
with
9*(2;9\]:11%1,1@)9 ‘ O"R, 1 O“R, N

R, 10 Ryq+mn21 0
Y = .

Rz,Ne 0 Rz,N +7]21

(131)

The positive definiteness of (130) can be checked by verifying
the positive definiteness of each term R, j, + 72 I and of the
Schur complement relative to the right block diagonal corner
in (130), namely, [53]

Schur(Y)
N
=> [0"R,1®—0"R, i (Ry i + n2I) 'R, O] (132)
k=1
Since they are positive definite, each covariance matrix R, j
can be decomposed as follows:

Rm,k = Uk diag{Ak,l,...,)\k’L}U,*c (133)

where the )\ ; are the eigenvalues of R, j, which are real
and positive, and U}, is the corresponding matrix of eigen-
vectors. Since Uy, is an orthonormal matrix, each term in the
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summation (132) can be written as:
O R,1©—O"R, 1 (R, +n2I) 'R, ;,©

2 2
:@*Udiag{kk,l = AL

*
Ak,aitn2’ " - )\k‘L+772}U ©>0

(134)

S ARL

Since O has full column rank, the above matrix and the Schur
complement (132) are positive definite. In addition, the block
diagonal matrix diag{ R, 1+mn21,..., Ry n+n21} is positive
definite. Finally, since (11 — 72) Zgzl | Poex|? in (129) is
convex, problem (129) is strictly convex and problem (30) has
a unique solution.
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