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Kernel-based nonlinear mixing models have been applied to unmix spectral information of hyperspectral images when the type of mixing occurring in the scene is too complex or unknown. Such methods, however, usually require the inversion of matrices of sizes equal to the number of spectral bands. Reducing the computational load of these methods remains a challenge in large scale applications. This paper proposes a centralized band selection (BS) method for supervised unmixing in the reproducing kernel Hilbert space (RKHS). It is based upon the coherence criterion, which sets the largest value allowed for correlations between the basis kernel functions characterizing the selected bands in the unmixing model. We show that the proposed BS approach is equivalent to solving a maximum clique problem (MCP), i.e., searching for the biggest complete subgraph in a graph. Furthermore, we devise a strategy for selecting the coherence threshold and the Gaussian kernel bandwidth using coherence bounds for linearly independent bases. Simulation results illustrate the efficiency of the proposed method.

I. INTRODUCTION

The unmixing of spectral information acquired by hyperspectral sensors is at the core of many remote sensing applications such as land use analysis, mineral detection, environment monitoring and field surveillance [START_REF] Bioucas-Dias | Hyperspectral remote sensing data analysis and future challenges[END_REF], [START_REF] Manolakis | Detection algorithms for hyperspectral imaging applications[END_REF]. Such information is typically mixed at the pixel level due to the low resolution of hyperspectral devices or because distinct materials are combined into a homogeneous mixture [START_REF] Keshava | Spectral unmixing[END_REF]. The observed reflectances then result from mixtures of several pure material signatures present in the scene, called endmembers. Considering that the endmembers have been identified, hyperspectral unmixing (HU) refers to estimating the proportional contribution of each endmember to each pixel in a scene.
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among several endmembers, as may happen in some vegetation areas [START_REF] Ray | Nonlinear spectral mixing in desert vegetation[END_REF]. In such situations, nonlinear mixing models must be considered [START_REF] Dobigeon | Nonlinear unmixing of hyperspectral images: Models and algorithms[END_REF], [START_REF] Heylen | A review of nonlinear hyperspectral unmixing methods[END_REF]. Several model-based nonlinear HU methods assume prior knowledge of the mixing that actually occurs in the scene, e.g., see [START_REF] Dobigeon | Nonlinear unmixing of hyperspectral images: Models and algorithms[END_REF]- [START_REF] Altmann | Supervised nonlinear spectral unmixing using a postnonlinear mixing model for hyperspectral imagery[END_REF]. However, the complexity of real mixing mechanisms, and the lack of prior knowledge about them in many practical applications has led to the consideration of flexible nonlinear mixing models that can model generic nonlinear functions. Many model-free nonlinear HU strategies have been proposed, including classification of abundances coefficients [START_REF] Li | Abundance estimation from hyperspectral image based on probabilistic outputs of multi-class support vector machines[END_REF], graph-based approximate geodesic distances [START_REF] Heylen | Non-linear spectral unmixing by geodesic simplex volume maximization[END_REF], [START_REF] Heylen | A distance geometric framework for nonlinear hyperspectral unmixing[END_REF], and kernel-based algorithms [START_REF] Wu | A kernel spatial complexity-based nonlinear unmixing method of hyperspectral imagery[END_REF]- [START_REF] Altmann | Nonlinear spectral unmixing of hyperspectral images using gaussian processes[END_REF]. Kernel methods provide a non-parametric representation of functional spaces, and can model nonlinear mixings of arbitrary characteristics [START_REF] Dobigeon | Nonlinear unmixing of hyperspectral images: Models and algorithms[END_REF], [START_REF] Heylen | A review of nonlinear hyperspectral unmixing methods[END_REF], [START_REF] Wu | A kernel spatial complexity-based nonlinear unmixing method of hyperspectral imagery[END_REF]- [START_REF] Chen | Nonlinear estimation of material abundances in hyperspectral images with 1 -norm spatial regularization[END_REF], [START_REF] Ammanouil | Nonlinear unmixing of hyperspectral data with vector-valued kernel functions[END_REF].

Kernel-based methods are efficient machine learning techniques [START_REF] Vapnik | The nature of statistical learning theory[END_REF]- [START_REF] Suykens | Least Squares Support Vector Machines[END_REF] that consist mainly of linear algorithms operating in high dimensional reproducing kernel Hilbert spaces (RKHS), into which the data have been mapped using kernel functions [START_REF] Vapnik | The nature of statistical learning theory[END_REF]. Working in such high dimensional feature spaces is possible due to the so-called kernel trick, which allows the computation of inner products in the feature space through a kernel function in the input space [START_REF] Aronszajn | Theory of reproducing kernels[END_REF]. A limitation of kernel methods for HU is that they usually require the inversion of matrices whose dimensions equal the number of spectral bands. Thus, reducing their computational cost remains a challenge for their use in large-scale applications.

A possible way of reducing computational cost is to perform band selection (BS) prior to unmixing [START_REF] Chang | Hyperspectral data processing -Algorithm design and analysis[END_REF]. The literature proposes many BS strategies including information-based methods [START_REF] Feng | Mutual-informationbased semi-supervised hyperspectral band selection with high discrimination, high information, and low redundancy[END_REF], [START_REF] Zhu | Unsupervised hyperspectral band selection by dominant set extraction[END_REF], band prioritization techniques [START_REF] Chang | Progressive band selection of spectral unmixing for hyperspectral imagery[END_REF], [START_REF] Sun | Exemplar component analysis: A fast band selection method for hyperspectral imagery[END_REF], sparsity promoting methods [START_REF] Zare | Hyperspectral band selection and endmember detection using sparsity promoting priors[END_REF], [START_REF] Yuan | Hyperspectral band selection by multitask sparsity pursuit[END_REF], spectral distance strategies [START_REF] Chang | Progressive band selection of spectral unmixing for hyperspectral imagery[END_REF], [START_REF] Tian | A method to compute the n-dimensional solid spectral angle between vectors and its use for band selection in hyperspectral data[END_REF], and a combination of manifold ranking and saliency detection [START_REF] Wang | Salient band selection for hyperspectral image classification via manifold ranking[END_REF]. However, most efforts were focused on discriminating endmembers since these methods deal with the classification of spectral patterns, see e.g. [START_REF] Feng | Mutual-informationbased semi-supervised hyperspectral band selection with high discrimination, high information, and low redundancy[END_REF], [START_REF] Yuan | Hyperspectral band selection by multitask sparsity pursuit[END_REF], [START_REF] Yuan | Dual-clustering-based hyperspectral band selection by contextual analysis[END_REF] and references therein. When the objective is to unmix spectral information, subspace projection techniques [START_REF] Bioucas-Dias | An overview on hyperspectral unmixing: Geometrical, statistical, and sparse regression based approaches[END_REF] tend to be preferred over BS [START_REF] Chang | Progressive band selection of spectral unmixing for hyperspectral imagery[END_REF], [START_REF] Zare | Hyperspectral band selection and endmember detection using sparsity promoting priors[END_REF], [START_REF] Ball | Hyperspectral pixel unmixing via spectral band selection and dc-insensitive singular value decomposition[END_REF], [START_REF] Chang | Constrained band selection for hyperspectral imagery[END_REF] for reducing the complexity of linear unmixing processes. The reason is that high dimensional data in linearly-mixed images are confined to a low-dimensional simplex defined by the endmembers [START_REF] Keshava | Spectral unmixing[END_REF]. However, the simplex property is not preserved in the presence of nonlinearly-mixed pixels [START_REF] Dobigeon | Nonlinear unmixing of hyperspectral images: Models and algorithms[END_REF], rendering projection techniques less attractive.

In [START_REF] Zhu | Unsupervised hyperspectral band selection by dominant set extraction[END_REF], [START_REF] Yuan | Hyperspectral band selection by multitask sparsity pursuit[END_REF], [START_REF] Yuan | Dual-clustering-based hyperspectral band selection by contextual analysis[END_REF], the authors propose different unsupervised BS strategies for classification of spectral patterns. A multitask sparsity pursuit (MTSP) criterion is used in [START_REF] Yuan | Hyperspectral band selection by multitask sparsity pursuit[END_REF], while clustering is used in [START_REF] Yuan | Dual-clustering-based hyperspectral band selection by contextual analysis[END_REF]. In [START_REF] Zhu | Unsupervised hyperspectral band selection by dominant set extraction[END_REF], the authors combine a graph-based formulation with structure-aware measures for band informativeness and independence. They provide an efficient global search strategy using a dominant set extraction technique. Concerning BS techniques applied to HU, the authors in [START_REF] Ball | Hyperspectral pixel unmixing via spectral band selection and dc-insensitive singular value decomposition[END_REF] select bands by applying the unmixing algorithm to a cross validation set. A discrimination metric is then applied, which is based on the root mean square error of the abundance estimates. In [START_REF] Zare | Hyperspectral band selection and endmember detection using sparsity promoting priors[END_REF], simultaneous band selection and endmember detection is proposed based on the ICE algorithm, which performs a least squares minimization of the residual sum of squares (RSS). The progressive band selection (PBS) algorithm [START_REF] Chang | Progressive band selection of spectral unmixing for hyperspectral imagery[END_REF], sequentially selects bands that were previously ranked according to a prioritization criterion such as entropy or variance 1 . This method also applies a decorrelation procedure to eliminate highly correlated adjacent bands, and exploits the virtual dimension (VD) [START_REF] Chang | Estimation of number of spectrally distinct signal sources in hyperspectral imagery[END_REF] to determine upper and lower bounds for the number of bands to select. The PBS method offers good performance for linear unmixing problems.

All the band selection approaches discussed above were proposed for unmixing of linearly mixed hyperspectral images. Their application to HU of nonlinearly mixed images is not trivial, especially considering the interplay of the choice of number of bands and the actual BS in determining unmixing quality. Recently, we presented initial results on a BS method to reduce the computational complexity of kernelbased nonlinear HU [START_REF] Imbiriba | Band selection in RKHS for fast nonlinear unmixing of hyperspectral images[END_REF]. The method in [START_REF] Imbiriba | Band selection in RKHS for fast nonlinear unmixing of hyperspectral images[END_REF] employs the kernel k-means algorithm to identify clusters of spectral bands in the corresponding RKHS. The cluster prototypes are then the selected bands. This method reduces significantly the computation time required for nonlinear unmixing without compromising the accuracy of abundance estimation. In this approach, however, bands are selected based solely on the distances between the RKHS images of the input vectors, neither as a function of the resulting accuracy of the unmixing procedure, nor as a function of the reconstruction error of any band from the bands in the dictionary. In addition, it requires an a priori definition of the final number of bands. Hence, some cluster prototypes can be close to others and degrade problem conditioning if this parameter is overestimated. To the best of our knowledge, [START_REF] Imbiriba | Band selection in RKHS for fast nonlinear unmixing of hyperspectral images[END_REF] is the only method available in the literature for kernel-based nonlinear unmixing of hyperspectral data with band selection in the RKHS.

In this paper we propose new coherence-based approaches for band selection in the RKHS for application in kernel-based supervised nonlinear unmixing of hyperspectral images. The main advantage of a coherence-based method with respect to the approach in [START_REF] Imbiriba | Band selection in RKHS for fast nonlinear unmixing of hyperspectral images[END_REF] is that it seeks a reduced number of bands that are able to represent well all the other bands in the RKHS (in the sense of the reconstruction error of any band from the bands in the dictionary) without requiring extensive calculations for selecting the basis elements. The effectiveness of the coherence criterion for online prediction of time series has been verified, for instance, in [START_REF] Richard | Online prediction of time series data with kernels[END_REF].

Initially, we introduce an automatic parameter selection strategy to be employed in the band selection and unmixing algorithms. Using this parameter set, we then propose a new greedy band selection algorithm. This greedy approach is appropriate for online settings due to its reduced complexity. Though it leads to significant complexity reductions with similar performance when compared to the full band unmixing, the online constraint requires a sequential dictionary construction, what may preclude the examination of a large amount of possibilities. We then address offline band selection problem by formulating it as a maximum clique problem. This new formulation allows a systematic search for the largest number of bands required to form a linearly independent RKHS basis for a given coherence level. The new method results in dictionaries of kernel functions, and thus spectral bands, that are less coherent than those obtained using kernel k-means initialized with dictionaries of the same size. The application of this method is verified to lead to better average performance than those obtained using either kernel k-means or the proposed greedy algorithm, with nonlinear unmixing performance equivalent to the full band solution.

This paper is organized as follows. Section II reviews the main concepts of hyperspectral image unmixing and two popular nonlinear mixing models that will be used to generate synthetic data for the simulations presented in Section VII. Section III reviews least-square support vector regression applied to hyperspectral unmixing and the SK-Hype algorithm for nonlinear unmixing. This algorithm will be used to compare the nonlinear unmixing results obtained using all the spectral bands and performing band selection prior to unmixing. Section IV introduces an original parameter selection strategy to be employed in the band selection algorithms. The new methodology aims to select a reduced number of bands that are able to represent well all the other bands in the RKHS (in the sense of the reconstruction error of any band from the bands in the dictionary) and that does not require extensive calculations for selecting the elements of this basis. Using this dictionary construction methodology, Section V proposes a new greedy band selection algorithm. Then, in Section VI we show that the band selection problem can be formulated as a maximum clique problem, which leads to a novel batch algorithm for band selection. Section VII presents simulation results with synthetic and real data to illustrate the performances of the proposed band selection methods.

II. HYPERSPECTRAL IMAGES AND UNMIXING

Observed pixels in HIs are usually modeled as a function, possibly nonlinear, of the endmembers and an additive noise that accounts for the measurement noise plus a modeling error, namely,

r = ψ(M ) + e (1) 
where r = [r 1 , . . . , r L ] is a vector of observed reflectances in L spectral bands, M = [m 1 , . . . , m R ] is the L × R matrix of R endmembers, whose i-th column m i corresponds to an endmember, e is a white Gaussian noise (WGN) vector, and function ψ represents an unknown mixing mechanism. Several models of the form (1) were proposed in the literature,

A. The linear mixing model

The linear mixing model (LMM) considers only interactions of light rays with a single material, neglecting interactions between light and several materials [START_REF] Keshava | Spectral unmixing[END_REF]. The LMM assumes that r is a convex combination of the endmembers, namely, r = M α + e subject to 1 α = 1 and α 0

where α = [α 1 , . . . , α R ] denotes the vector of abundances of each endmember in M , and is the entrywise ≥ operator.

Being proportions, the entries of α cannot be negative and should sum to one. The observation r in the -th wavelength of (2) can be written as

r = m λ α + e (3) 
where m λ denotes the -th row of M written as a column vector. In the noiseless case (e = 0), the sum-to-one and positivity constraints over α in [START_REF] Manolakis | Detection algorithms for hyperspectral imaging applications[END_REF] restrict the data to a simplex whose vertices are the endmembers.

B. Nonlinear mixing models

Most unmixing techniques require the definition of a mixing model that analytically describes how the endmembers combine to form the mixed spectrum r. Ideally, mixing models should be physically motivated, linking its parameters to physical phenomena. Physically motivated models exist. For instance, [START_REF] Hapke | Bidirectional reflectance spectroscopy, 1, Theory[END_REF] provides a description of the mixing mechanism that is based on radiative transfer, and that can accurately describe the light scattering happening in the observed scene. Unfortunately, however, such physically motivated models tend to lead to very complex unmixing problems. Hence, most HI unmixing methods rely on models that include reasonable simplifying assumptions and that lead to manageable unmixing problems.

Several nonlinear models have been proposed to describe complex mixing mechanisms [START_REF] Dobigeon | Nonlinear unmixing of hyperspectral images: Models and algorithms[END_REF], [START_REF] Heylen | A review of nonlinear hyperspectral unmixing methods[END_REF]. We now review two popular models that will be used later. These models permit the generation of synthetic images with a controlled level of nonlinearity that can be used to assess the performance of the proposed methods. The level of performance assessment using real images is compromised by the uncertainties of the actual mixing details (lack of ground truth).

The generalized bilinear model (GBM) [START_REF] Halimi | Nonlinear unmixing of hyperspectral images using a generalized bilinear model[END_REF], [START_REF] Jutten | Advances in nonlinear blind source separation[END_REF] is defined as follows:

r = M α + R-1 i=1 R j=i+1 δ ij α i α j m i m j + e subject to 1 α = 1 and α 0 (4)
where each parameter δ ij ∈ [0, 1] characterizes the interaction of endmembers m i and m j , and denotes the Hadamard product. For simplicity, we shall consider a simplified version of this model where all the bilinear terms in (4) are weighted by a single parameter δ = δ ij for all (i, j).

The post nonlinear mixing model (PNMM) [START_REF] Jutten | Advances in nonlinear blind source separation[END_REF] is defined as follows:

r = g(M α) + e (5)
where g is a nonlinear function applied to the noiseless LMM. Thanks to function g, the PNMM specifies a large family of nonlinear mixing models via a single expression. For instance, the PNMM considered in [START_REF] Chen | Nonlinear estimation of material abundances in hyperspectral images with 1 -norm spatial regularization[END_REF] is given by

r = (M α) ξ + e (6) 
where (v) ξ denotes the exponentiation applied to each entry of v. For ξ = 2, (6) is a bilinear model closely related to the GBM but without a linear term. The PNMM has been explored with different forms for g [START_REF] Altmann | Nonlinearity detection in hyperspectral images using a polynomial post-nonlinear mixing model[END_REF], [START_REF] Altmann | Supervised nonlinear spectral unmixing using a polynomial post nonlinear model for hyperspectral imagery[END_REF].

The GBM and the PNMM models essentially describe situations where the light interacts first with an endmember, and then with a second one, before being captured by the hyperspectral sensor. Other nonlinear models can be considered depending on the characteristics of the scene [START_REF] Halimi | Nonlinear unmixing of hyperspectral images using a generalized bilinear model[END_REF], [START_REF] Jutten | Advances in nonlinear blind source separation[END_REF], [START_REF] Fan | Comparative study between a new nonlinear model and common linear model for analysing laboratory simulated-forest hyperspectral data[END_REF]- [START_REF] Broadwater | A comparison of kernel functions for intimate mixture models[END_REF]. More importantly, information about these characteristics is usually missing, and it makes sense to consider nonparametric models that do not rely on strong assumptions.

III. LS-SVR FOR HYPERSPECTRAL UNMIXING

Kernel-based methods consist of mapping observations from the original input space into a feature space by means of a nonlinear function. Nonlinear regression problems can be addressed in an efficient way in this new space as they are converted to a linear problem. We shall now review the main definitions related to RKHS [START_REF] Smola | A tutorial on support vector regression[END_REF], [START_REF] Kimeldorf | Some results on Tchebycheffian spline functions[END_REF]- [START_REF] Schölkopf | A Generalized Representer Theorem[END_REF].

A. Mercer kernels and RKHS

The theory of positive definite kernels emerged from the study of positive definite integral operators [START_REF] Mercer | Functions of positive and negative type and their connection with the theory of integral equations[END_REF], and was further generalized for the study of positive definite matrices [START_REF] Moore | On properly positive hermitian matrices[END_REF]. It was established that, to every positive definite function

κ : M × M → R (7) 
defined over a non-empty compact M ⊂ R d , there corresponds one and only one family of real-valued functions on M that defines a Hilbert space H endowed with an unique inner product •, • H and the associated norm • H , and admitting κ as a reproducing kernel [START_REF] Aronszajn | Theory of reproducing kernels[END_REF]. This means that κ(•, m) ∈ H for all m ∈ M, and has the reproducing property defined as:

ψ(m) = ψ, κ(•, m) H (8) 
for all ψ ∈ H and m ∈ M. Replacing ψ by κ(•, m ) in ( 8) leads to:

κ(m, m ) = κ(•, m), κ(•, m ) H (9) 
for all m, m ∈ M. Equation ( 9) is the origin of the now generic denomination reproducing kernel to refer to κ. Note that H can be restricted to the span of {κ(•, m) : m ∈ M} because, according to the reproducing property (8), nothing outside this set affects ψ evaluated at any point of M. Let us denote by ϕ the map from M to H that assigns κ(•, m) to m.

Relation (9) implies that κ(m, m ) = ϕ(m), ϕ(m ) H .
This means that the kernel κ evaluates the inner product of any pair of elements of M mapped into H without any explicit knowledge of ϕ or H. This principle is called the kernel trick. Several kernel functions have been considered in a variety of applications during the past two decades [START_REF] Schölkopf | Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond[END_REF]. Among the most frequently used kernels, we highlight the Gaussian kernel:

κ(m, m ) = exp - m -m 2 2σ 2 ( 10 
)
where σ is the kernel bandwidth.

B. The Representer Theorem

The BS method proposed in this paper is based on the approximation of functions in a RKHS. The following is a well known result for nonlinear regressions using reproducing kernels.

Let κ : M × M → R be a kernel, and let H be the RKHS associated with it. Consider the least-squares approach to solve the problem of determining a function ψ(•) of H that minimizes the sum of L squared errors e between samples r of the desired response and the corresponding model output samples

ψ(m ) = ψ(•), κ(•, m ) H , namely, min ψ∈H L =1 |r -ψ(m )| 2 . ( 11 
)
By virtue of the representer theorem [START_REF] Schölkopf | A Generalized Representer Theorem[END_REF], the function ψ(•) of H minimizing ( 11) can be written as a kernel expansion in terms of available data:

ψ(•) = L =1 α κ(•, m ). ( 12 
)
Regarding the hyperspectral unmixing problem, consider an observation r at the -th wavelength, that is, the -th entry of r, and the column vector m λ of the R endmember signatures at the -th wavelength, that is, the (transposed) -th row of M . By analogy with the LMM (3), we write:

r = ψ(m λ ) + e (13) 
with ψ a real-valued function in a RKHS H that characterizes the nonlinear interactions between the endmembers, and e an additive noise at the -th band. The next section describes the classical application of a kernel method to nonlinear unmixing of hyperspectral data. Different kernel-based unmixing methods could be considered. As the focus of this work is on the improvement that can be obtained using BS prior to unmixing, we consider a single state-of-the-art nonlinear unmixing algorithm (the SK-Hype), which been shown to provide good unmixing performance [START_REF] Dobigeon | Nonlinear unmixing of hyperspectral images: Models and algorithms[END_REF], [START_REF] Chen | Nonlinear unmixing of hyperspectral data based on a linear-mixture/nonlinear-fluctuation model[END_REF], [START_REF] Chen | Nonlinear estimation of material abundances in hyperspectral images with 1 -norm spatial regularization[END_REF].

C. LS-SVR: least squares support vector regression

In order to estimate ψ in the least squares sense, we can formulate the following convex optimization problem, also called LS-SVR [START_REF] Suykens | Least Squares Support Vector Machines[END_REF]:

min ψ∈H 1 2 ψ 2 H + 1 2µ L =1 e 2
such that e = r -ψ(m λ ), = 1, . . . , L.

Consider the Lagrangian function

L(ψ, e, β) = 1 2 ψ 2 H + 1 2µ L =1 e 2 - L =1
β (e -r +ψ(m λ )).

(15) where β = [β 1 , . . . , β L ] is the vector of Lagrange multipliers. Using the directional derivative with respect to ψ [START_REF] Kadri | General framework for nonlinear functional regression with reproducing kernel hilbert spaces[END_REF], the conditions for optimality with respect to the primal variables ψ and e are given by

ψ * = L =1 β κ(•, m λ ) (16) 
e * = µβ (17) 
Substituting ( 16) and ( 17) in [START_REF] Chen | Nonlinear unmixing of hyperspectral data based on a linear-mixture/nonlinear-fluctuation model[END_REF], we obtain the following function to be maximized with respect to β:

L(ψ * , e * , β) = - 1 2 β (K + µI) β + β r, ( 18 
)
where K is the Gram matrix whose (i, j)-th entry is defined by κ(m λi , m λj ). Now we can state the following dual problem:

β * = arg max β - 1 2 β (K + µI) β + β r. ( 19 
)
Its solution is obtained by solving the linear system:

-I K + µI r β = 0. (20) 
Although the formulation ( 14)-( 19) allows one to address an estimation problem in H by solving the linear system [START_REF] Smola | A tutorial on support vector regression[END_REF], this approach is computationally demanding since it involves the inversion of L × L matrices. This issue is critical, as modern hyperspectral image sensors employ hundreds of contiguous bands with an ever increasing spatial resolution. Hence, it is of major interest to consider band selection techniques that lead to significant computational cost reduction without noticeable quality loss. Considering ( 16), a possible strategy is to focus on a reduced-order model of the form:

ψ = j∈I D β j κ(•, m λj ) (21) 
where

I D ⊂ {1, . . . , L} is an M -element (M < L) subset of indexes. We shall call D = {κ(•, m λj )} j∈I D the dictionary.
This reasoning is well established in the study of representation of nonlinear functions in a RKHS, and directly applies to the solution of the LS-SVR. The observed hyperspectral image is a nonlinear function of the L rows m λ , = 1, . . . , L, of M , and kernel-based nonlinear unmixing algorithms rely on a good representation of this nonlinear function in the RKHS. Also, LS-SVR performs unmixing by maximizing convex criteria in this RKHS. Finally, the representer theorem establishes that the optimal solution can be written as a linear combination of kernelized inputs, in our case kernelized bands as shown in [START_REF] Chen | Nonlinear estimation of material abundances in hyperspectral images with 1 -norm spatial regularization[END_REF]. Hence, a good strategy to construct I D in ( 21) is to seek a reduced set of linearly independent functions κ(•, m λj ), j ∈ I D that could be linearly combined to reconstruct any κ(•, m λj ), j / ∈ I D with a reduced error.

One low complexity criterion that can be used to this end is the coherence [START_REF] Richard | Online prediction of time series data with kernels[END_REF], as will be shown latter. Now, to solve the hyperspectral nonlinear unmixing problem frequently requires a formulation that includes the possibility of estimating the abundances associated with each endmember. This is not possible using the cost function [START_REF] Li | Blind nonlinear hyperspectral unmixing based on constrained kernel nonnegative matrix factorization[END_REF], which is not parameterized by the endmember abundances. The next section briefly reviews the SK-Hype algorithm [START_REF] Chen | Nonlinear unmixing of hyperspectral data based on a linear-mixture/nonlinear-fluctuation model[END_REF], which addresses this limitation by adding an extra linear term to the cost function and by introducing a new parameter u to adequately distribute the solution of the optimization problem between the linear and the nonlinear contributions.

D. The SK-Hype Algorithm

This section reviews the SK-Hype algorithm 2 for nonlinear unmixing of HIs [START_REF] Chen | Nonlinear unmixing of hyperspectral data based on a linear-mixture/nonlinear-fluctuation model[END_REF]. It generalizes the LS-SVR method by considering a mixing model consisting of a linear trend parametrized by the abundance vector α and a nonlinear residual component ψ. This model is given by:

r = u α m λ + (1 -u) ψ(m λ ) + e ( 22 
)
where u ∈ [0, 1) controls the amount of linear contribution to the model and ψ(•) is an unknown function in an RKHS H. SK-Hype solves the optimization problem

min α,ψ,u 1 2 1 u α 2 + 1 1 -u ψ 2 H + 1 2µ L =1 e 2
subject to α 0, 1 α = 1, and

e = r -u α m λ -(1 -u) ψ(m λ ). (23) 
which is convex under mild continuity conditions [START_REF] Chen | Nonlinear unmixing of hyperspectral data based on a linear-mixture/nonlinear-fluctuation model[END_REF]. Problem ( 23) is solved using a two stage alternating iterative procedure with respect to (α, ψ) and u. For fixed u and Lagrange multipliers β and γ, the dual problem of ( 23) is given by [START_REF] Chen | Nonlinear unmixing of hyperspectral data based on a linear-mixture/nonlinear-fluctuation model[END_REF] max

β,γ G(u, β, γ) = - 1 2 β γ K u + µI uM uM uI β γ + r 0 β γ subject to γ 0 (24) 
with 24) is equivalent to solving the linear system

K u = uM M + (1 -u)K. Solving (
-I K u + µI uM 0 uM uI    r β γ    = 0. (25) 
Denoting β * and γ * the solutions of ( 24), the solution of the primal problem [START_REF] Chang | Hyperspectral data processing -Algorithm design and analysis[END_REF] 

for u fixed is [15]      α * = M β * +γ * 1 (M β * +γ * ) ψ * = (1 -u) L =1 β * κ(•, m λ ) e * = µ β * (26)
2 Matlab code available at www.cedric-richard.fr

The alternating optimization is completed by using [START_REF] Chang | Progressive band selection of spectral unmixing for hyperspectral imagery[END_REF] in [START_REF] Chen | Nonlinear unmixing of hyperspectral data based on a linear-mixture/nonlinear-fluctuation model[END_REF], defining the resulting cost function J(u), solving min u J(u) subject to 0 < u < 1 [START_REF] Sun | Exemplar component analysis: A fast band selection method for hyperspectral imagery[END_REF] and continue by iteratively solving [START_REF] Zhu | Unsupervised hyperspectral band selection by dominant set extraction[END_REF] and ( 27) to find the global solution [START_REF] Chen | Nonlinear unmixing of hyperspectral data based on a linear-mixture/nonlinear-fluctuation model[END_REF].

IV. SETTING THE PARAMETERS FOR BAND SELECTION BS has been an active topic of research for classification of spectral patterns, see [START_REF] Feng | Mutual-informationbased semi-supervised hyperspectral band selection with high discrimination, high information, and low redundancy[END_REF], [START_REF] Du | Similarity-based unsupervised band selection for hyperspectral image analysis[END_REF]- [START_REF] Feng | Hyperspectral band selection based on trivariate mutual information and clonal selection[END_REF] and references therein. Subspace projection techniques [START_REF] Bioucas-Dias | An overview on hyperspectral unmixing: Geometrical, statistical, and sparse regression based approaches[END_REF], [START_REF] Bioucas-Dias | Hyperspectral Subspace Identification[END_REF], [START_REF] Nascimento | Vertex Component Analysis: A fast algorithm to unmix hyperspectral data[END_REF] tend, however, to be preferred over BS [START_REF] Chang | Progressive band selection of spectral unmixing for hyperspectral imagery[END_REF], [START_REF] Chang | Constrained band selection for hyperspectral imagery[END_REF] for reducing the complexity of linear unmixing processes. They use the property that high-dimensional hyperspectral data are confined to a low-dimensional simplex in linearly-mixed images with only a few endmembers [START_REF] Keshava | Spectral unmixing[END_REF]. This assumption becomes invalid when nonlinear mixing phenomena are involved. In a recent work [START_REF] Imbiriba | Band selection in RKHS for fast nonlinear unmixing of hyperspectral images[END_REF], we introduced a BS strategy method that employs the kernel k-means algorithm to identify clusters of spectral bands in the RKHS where nonlinear unmixing is performed. The HU results obtained were encouraging. One drawback of the approach in [START_REF] Imbiriba | Band selection in RKHS for fast nonlinear unmixing of hyperspectral images[END_REF] is the need for an arbitrary choice of the order of the nonlinear model, i.e., the number of selected bands (or, equivalently, the dimension of the dictionary). Another limitation of the method in [START_REF] Imbiriba | Band selection in RKHS for fast nonlinear unmixing of hyperspectral images[END_REF] is that BS is performed based on the distances among different bands in the RKHS. Hence, the optimality of the solution is not driven by any direct measure of modeling accuracy. In this section, we introduce a new BS framework based on the coherence criterion [START_REF] Richard | Online prediction of time series data with kernels[END_REF] and two algorithms to address this problem. The first is a greedy approach, which is attractive for online applications which require reduced computational effort. The second is a centralized approach, in which the solution is found through a maximum clique search in a graph. Although these two approaches are connected, they differ in their formulation and in the characteristics of the sets of bands they select. The use of a coherence-based method allows the search for a reduced number of bands that are able to represent well all the other bands in the RKHS (in the sense of the reconstruction error of any band from the bands in the dictionary) without the need for extensive calculations to select the elements of this basis.

A. Coherence criterion for dictionary selection

Coherence is a parameter of fundamental interest for characterizing dictionaries of atoms in linear sparse approximation problems [START_REF] Tropp | Greed is good: Algorithmic results for sparse approximation[END_REF]. It was first introduced as an heuristic quantity for Matching Pursuit in [START_REF] Mallat | Matching pursuits with time-frequency dictionaries[END_REF]. Formal studies followed in [START_REF] Donoho | Uncertainty principles and ideal atomic decomposition[END_REF], and were enriched for Basis Pursuit in [START_REF] Elad | A generalized uncertainty principle and sparse representation in pairs of bases[END_REF], [START_REF] Donoho | Optimally sparse representation in general (nonorthogonal) dictionaries via 1 minimization[END_REF].

Consider a set of kernel functions {κ(•, m λ )} =1,...,M in H. The definition of coherence was extended to RKHS as [START_REF] Richard | Online prediction of time series data with kernels[END_REF]:

µ = max i =j | κ(•, m λi ), κ(•, m λj ) H | = max i =j |κ(m λi , m λj )| ( 28 
)
where κ is a unit-norm kernel. Otherwise, replace κ(•, m λi ) with κ(•, m λi )/ κ(m λi , m λi ) in [START_REF] Zare | Hyperspectral band selection and endmember detection using sparsity promoting priors[END_REF]. Parameter µ is the largest absolute value of the off-diagonal entries in the Gram matrix. It reflects the largest cross correlation in the dictionary {κ(•, m λ )} , and is equal to zero for every orthonormal basis. A dictionary is said to be incoherent when its coherence µ is small. Although its definition is rather simple, coherence possesses important properties [START_REF] Richard | Online prediction of time series data with kernels[END_REF]. In particular, it can be shown that the kernel functions in the dictionary D = {κ(•, m λ )} =1,...,M are linearly independent if (M -1)µ < 1. This sufficient condition illustrates that the coherence (28) provides valuable information on a dictionary at low computational cost. Other properties are discussed in [START_REF] Richard | Online prediction of time series data with kernels[END_REF]. Kernel-based dictionary learning methods usually consider approximate linear dependence conditions to evaluate whether a candidate kernel function κ(•, m λi ) can be reasonably well represented by a combination of the kernel functions that are already in the dictionary D. To avoid excessive computational complexity, a greedy dictionary learning method has been introduced in [START_REF] Richard | Online prediction of time series data with kernels[END_REF]. It consists of inserting the candidate κ(•, m λi ) into the dictionary D provided its coherence is still below a given threshold µ 0 , namely,

max j∈I D |κ(m λi , m λj )| ≤ µ 0 ( 29 
)
where µ 0 is a parameter in [0, 1) determining both the maximum coherence in D and its cardinality |D|.

Using coherence criterion for BS allows to explicitly limit the correlation of kernel functions in the dictionary. This contrasts with the kernel k-means strategy, which starts from a number of dictionary elements prescribed by the user without taking the coherence of kernel functions into consideration.

B. Automatic parameter settings

A coherence-based BS in the RKHS includes the choice of three design parameters, namely the coherence threshold µ 0 , the dictionary cardinality |D| and the kernel bandwidth σ. This section proposes a procedure for automatic parameter setting.

Let K σ be the L × L Gram matrix whose (i, j)-th entry is defined by κ σ (m λi , m λj ), where κ σ denotes the Gaussian kernel [START_REF] Li | Abundance estimation from hyperspectral image based on probabilistic outputs of multi-class support vector machines[END_REF] parametrized by the bandwidth σ. Let D be an Melement dictionary with coherence µ and index set I D . Then, as shown in [START_REF] Richard | Online prediction of time series data with kernels[END_REF], a sufficient condition for linear independence of the M elements of D is given by (M -1)µ < 1. We write:

µ < 1 (M -1) . ( 30 
)
We assume an initial objective to build a dictionary with (approximately) M linearly independent elements. We thus propose to set the coherence threshold µ 0 as:

µ 0 = 1 (M -1) (31) 
and adjust the bandwidth σ to obtain a Gram matrix K σ whose entries are close to µ 0 in some sense. To allow some flexibility in the construction of the dictionary, we propose to adjust σ such that the average value of the off-diagonal entries

K σij | (i =j) is equal to µ 0 . Hence, we set 2 L 2 -L L-1 i=1 L j=i+1 K σij = µ 0 ( 32 
)
and determine σ 2 as the solution of the following optimization problem:

σ 2 = arg min σ 2   2 L 2 -L L-1 i=1 L j=i+1 [K 1ij ] 1/σ 2 -µ 0   2 s. t. σ 2 ∈ R + (33) 
where K 1 = K σ is the Gram matrix for σ = 1. We emphasize that since K σij ≤ 1, (32) is a decreasing function of σ -2 , and thus (33) has a unique solution. Finally, we determine K D as the largest sub-matrix of K σ whose all off-diagonal entries satisfy ( 29), which will be addressed in the sequel.

V. GREEDY BAND SELECTION ALGORITHM

Inspired by the good results obtained in [START_REF] Richard | Online prediction of time series data with kernels[END_REF] for online data prediction, we propose in this section a greedy BS criterion using the parameters determined by the procedure described in Section IV-B.

The greedy coherence-based band selection (GCBS) algorithm starts with an initial guess M for the number of bands to be selected. The dictionary is then initialized by arbitrarily selecting the first band. The procedure then continues for the other bands, and is summarized by the following steps:

1) Given a maximum desired number of bands M , the coherence threshold µ 0 and the kernel bandwidth σ are determined using [START_REF] Wang | Salient band selection for hyperspectral image classification via manifold ranking[END_REF] and solving (33) respectively. 2) The Gram matrix K σ is built. The first band is randomly selected and included in the dictionary index I D .

3) The coherences between the bands not in the dictionary and bands in I D are sequentially compared with µ 0 and added to the dictionary if condition (29) is satisfied. The GCBS is detailed in Algorithm 1. The inputs to Algorithm 1 are the maximum desired number M of bands and the L × L Gaussian kernel Gram matrix for σ = 1 and entries K 1ij = κ(m λi , m λj ) = exp -0.5 m λi -m λj 2 . It returns the index of selected bands and the Gaussian kernel bandwidth σ. Initialization occurs in line 1, where the index set I D is initialized with the first spectral band index, the number N b of bands in the dictionary is set to one, and the coherence threshold µ 0 is adjusted according to [START_REF] Wang | Salient band selection for hyperspectral image classification via manifold ranking[END_REF]. Next, σ 2 is determined in line 2 by solving problem [START_REF] Bioucas-Dias | An overview on hyperspectral unmixing: Geometrical, statistical, and sparse regression based approaches[END_REF], and the Gram matrix K σ is computed in line 3 for the optimum σ 2 . From line 4 to line 13 the algorithm sequentially tests all the L-1 remaining bands using condition [START_REF] Yuan | Hyperspectral band selection by multitask sparsity pursuit[END_REF]. Breaking the parts down, in line 5 a zero vector c of length N b is created, and the off diagonal terms ( , I Dj ) of the Gram matrix K σ are stored in c. If the maximum absolute value of the entries of c is less than the coherence threshold (line 9), then the -th band index is added to I D , and N b is incremented by one (lines 10 and 11). Finally, the algorithm returns the complete set of selected bands and the kernel bandwidth in line 14.

Although GCBS has a reduced computational cost, its dependence on the sequence of bands tested (initialization) may result in suboptimal solutions. The next section presents an alternative algorithm that leads to more effective solutions for batch mode applications. 

VI. BATCH BAND SELECTION ALGORITHM

This section proposes a new batch band selection algorithm in the RKHS. First, we show that the BS in RKHS can be formulated as the solution of a maximum clique problem. Then, we briefly review the major solutions available to solve this problem and justify the choice of the algorithm to be employed in our proposed BS method. Finally, we present the details of the proposed batch BS algorithm.

A. Band selection as a maximum clique problem

To circumvent the limitations of GCBS in identifying all bands satisfying the prescribed coherence threshold, a possible approach is to seek the largest subset of spectral bands for which the coherences between all pairs of elements are below the threshold µ 0 .

Consider a set of kernel functions {κ(•, m λ )} =1,...,L . Determining a subset D with a prescribed coherence level can be viewed as a two-step procedure. The first step aims at listing all the pairs of functions that satisfy the coherence rule [START_REF] Yuan | Hyperspectral band selection by multitask sparsity pursuit[END_REF]. This can be performed by constructing a L × L binary matrix B with entries defined as:

B ij = 1 if |κ(m λi , m λj )| ≤ µ 0 0 otherwise. ( 34 
)
The second step consists of finding in B, up to a simultaneous reordering of its rows and columns, the largest submatrix of only ones. This problem can be recast as determining a maximum clique in an undirected graph G = {V, E}, where each vertex of V = {1, . . . , L} corresponds to a candidate function κ(•, m λ ), and edges in E ⊆ V × V connecting the vertices are defined by the adjacency matrix B. Two vertices are said to be adjacent if they are connected by an edge. A complete subgraph of G is one whose vertices are pairwise adjacent. The maximal clique problem (MCP) consists of finding 

B. The maximum clique problem

MCP has a wide range of practical applications arising in a number of domains such as bioinformatics, coding theory, economics, social network analysis, etc. Given its theoretical importance and practical interests, considerable efforts have been devoted for deriving exact and heuristic algorithms. Efficient exact methods have been designed mainly based on the branch-and-bound (B&B) framework. Dynamic bounds on the clique size are used to prune (or discard) branches during search, and then dramatically reducing the search space [START_REF] Carraghan | An exact algorithm for the maximum clique problem[END_REF]. Although algorithms are now much faster and efficient than their past counterparts [START_REF] Li | Combining maxsat reasoning and incremental upper bound for the maximum clique problem[END_REF], the inherent complexity of exact methods can still lead to a prohibitive computation time when large problems are addressed [START_REF] Wu | A review on algorithms for maximum clique problems[END_REF]. To handle problems whose optimal solutions cannot be reached within a reasonable time, various heuristic and metaheuristic algorithms have been derived with the purpose of providing sub-optimal solutions in an acceptable time. In this paper, however, we shall focus on exact algorithms since our application concerns small graphs with a number of vertices equal to the number of bands.

Since the introduction of the Carraghan and Pardalos (CP) exact algorithm [START_REF] Carraghan | An exact algorithm for the maximum clique problem[END_REF], many refinements have been proposed to improve its performance with a focus on two main issues. The first one is to tighten the upper bound on the maximum clique during search for the purpose of more efficient subtree pruning. The second one is to improve the branching rule, and then select the most promising vertices to expand candidate cliques. In [START_REF] Wu | A review on algorithms for maximum clique problems[END_REF], the authors classify the exact MCP algorithms into four groups, depending on their strategies for pruning and branching. The first group solves sub-clique problems for each vertex with iterative deepening and pruning strategies. Examples are the CP algorithm [START_REF] Carraghan | An exact algorithm for the maximum clique problem[END_REF] and its improved version [START_REF] Östergård | A fast algorithm for the maximum clique problem[END_REF]. Both algorithms are sensitive to the order of vertices, which can result in drastically different execution times for a given graph [START_REF] Östergård | A fast algorithm for the maximum clique problem[END_REF]. A second group is based on vertex coloring techniques [START_REF] Biggs | Some heuristics for graph coloring[END_REF]. The most prominent algorithms in this group use B&B strategies based on subgraph coloring. Examples of algorithms are BT and the recent MCQ, MCR, MaxCliqueDyn, BB-MaxClique, among others [START_REF] Wu | A review on algorithms for maximum clique problems[END_REF]. The third group improves the basic CP by tightening candidate sets via the removal of vertices that cannot be used to extend the current clique to a maximum clique. Along this line, three B&B algorithms, denoted DF, χ and χ+DF were proposed in [START_REF] Fahle | Simple and fast: Improving a branch-and-bound algorithm for maximum clique[END_REF]. The fourth group consists the exact methods based on MaxSAT [START_REF] Li | An efficient branch-and-bound algorithm based on maxsat for the maximum clique problem[END_REF], which improve the techniques based on vertex coloring. The MaxCLQ algorithm proposed in [START_REF] Li | An efficient branch-and-bound algorithm based on maxsat for the maximum clique problem[END_REF] is considered to be very effective and solved the DIMACS problem (p hat1000-3) for the first time [START_REF] Wu | A review on algorithms for maximum clique problems[END_REF]. A complex approach (ILS&MaxCLQ) that combines different algorithms such as the MaxCLQ, MCS and the ILS, was proposed [78]. A comparative discussion on exact methods is presented in [START_REF] Wu | A review on algorithms for maximum clique problems[END_REF]. The MaxCLQ and ILS&MaxCLQ the only methods to solve all the presented problems, with the smallest CPU times for the former.

C. The Batch BS Algorithm

Similarly to the GCBS algorithm, this approach uses the methodology presented in Section IV-B to set the Gaussian kernel bandwidth and the coherence threshold. Thus, an initial guess for the maximum desired number M of bands in the dictionary is also needed. Once µ 0 and σ 2 are found, the kernel matrix K σ can be computed. As discussed in Section VI-A solving this problem is equivalent to solve an MCP for a graph with adjacency matrix B built following [START_REF] Ball | Hyperspectral pixel unmixing via spectral band selection and dc-insensitive singular value decomposition[END_REF]. Then, an MCP algorithm (maxCQL) is used to find the indices of the maximum clique in B, that is, the indices of the selected bands. This approach can be summarized as:

1) Initialize the algorithm by choosing M .

2) Find the parameters µ 0 and σ 2 using ( 31) and ( 33) respectively. 3) Build the Gram matrix K σ . 4) Compare all elements of K σ with µ 0 and build the adjacency matrix B as in [START_REF] Ball | Hyperspectral pixel unmixing via spectral band selection and dc-insensitive singular value decomposition[END_REF]. 5) Use the MaxCLQ algorithm to solve the MCP and find the selected spectral bands. The clique coherence-based band selection method is described in Algorithm 2. Similarly to Algorithm 1, the inputs are K 1 and M . The adjacency matrix B in initialized with zeros (line 1), the vertices vector V with the indices of all available wavelengths, µ 0 following (31), and I D as an empty set. The kernel bandwidth is computed in line 2, and the Gram matrix is computed in line 3 for the optimum σ 2 . In lines 4 through 10 every entry of the upper diagonal part of B is set according to [START_REF] Ball | Hyperspectral pixel unmixing via spectral band selection and dc-insensitive singular value decomposition[END_REF]. In line 11 the MaxCLQ algorithm is used to find the indices of the maximum clique in the graph. These indices are assigned to the dictionary index set I D , which is returned in line 10 together with the kernel bandwidth.

Note that M is used in Algorithm 1 and Algorithm 2 as a design parameter, which is required to obtain the coherence threshold and the Gaussian kernel bandwidth. The number N b of bands in the final dictionary can differ from M . This section presents simulation results using synthetic data to illustrate the performance of the proposed unmixing method under controlled conditions for which the abundance values are known. We constructed synthetic images using a set of 8 endmembers extracted from the spectral library of the ENVI software, which correspond to the spectral signatures of minerals present in the Cuprite mining field in Nevada. The minerals are alunite, calcite, epidote, kaolinite, buddingtonite, almandine, jarosite and lepidolite, and their spectra consisted of 420 contiguous bands, covering wavelengths from 0.3951µm to 2.56µm. We constructed two 2000-pixel hyperspectral images (N = 2000), each using 8 endmembers (R = 8) from the Cuprite data, and the simplified GBM or PNMM mixing models (see Section II) with δ = 1 and ξ = 0.7, respectively. The abundances were obtained by uniformly sampling from the simplex, i.e., obeying the positivity and sum-to-one constraints. WGN was added to all images with power adjusted to produce a 21dB SNR. We consider the root mean square error (RMSE) in abundance estimation

RMSE = 1 N R N n=1 α n -α * n 2 (35) 
and the CPU time required for both BS (when applicable) and unmixing (averaged over 100 unmixings of the same HIs) to compare the different BS strategies. All unmixings were performed using a Gaussian kernel and considering either the full set of bands or smaller sets selected using the BS strategies presented in Section IV. SK-Hype was implemented for the full set of bands. The kernel bandwidth for SK-Hype was selected among the values σ skp ∈ {0.5σ, σ, 2σ, 10σ, 20σ} to obtain the minimum RMSE, where σ is the solution of ( 33), for M = 30. The global kernel k-means (GKKM) algorithm [START_REF] Imbiriba | Band selection in RKHS for fast nonlinear unmixing of hyperspectral images[END_REF] implementation requires the number of bands to be fixed a priori. To keep the computational complexity under control, we considered a selection approach based on the Akaike Information Criterion (AIC) and given by [START_REF] Manning | Introduction to information retrieval[END_REF] M = arg min

M [E(ν 1 , . . . , ν M ) + λM ] (36) 
where ν 1 , . . . , ν M are the centroids chosen by the method [START_REF] Imbiriba | Band selection in RKHS for fast nonlinear unmixing of hyperspectral images[END_REF], and

E(ν 1 , . . . , ν K ) = M k=1 ∈C k κ(•, m λ ) -ν k 2 H . (37) 
Each cluster C k is then represented by the band k corresponding to the closest point to its centroid ν k :

k = arg min ∈C k κ(•, m λ ) -ν k 2 H . (38) 
The parameter λ controls the complexity of the model, and needs to be found empirically. The kernel bandwidth σ kkm also needs to be selected for GKKM. A grid search was performed using a small part (200 pixels) of the synthetic image to find λ and σ kkm that would lead to a good RMSE performance. The parameters were chosen among the values λ ∈ {2, 4, 6} and σ kkm ∈ {0.5σ, σ, 2σ, 10σ, 20σ}, again with σ being the solution of ( 33), for M = 30. The parameter set leading to the best performance in terms of RMSE for the abundances was then selected. This way we seek a good RMSE performance using the simplest possible model. To complete benchmarking, the Progressive Band Selection (PBS) method in [START_REF] Chang | Progressive band selection of spectral unmixing for hyperspectral imagery[END_REF] was considered using entropy for band prioritization, and spectral information divergence (SID) for band decorrelation. The algorithm was slightly modified to accept the specification of the number of bands3 . To select the kernel bandwidth of the unmixing method, we adopted the same procedure used for the GKKM algorithm. It is important to notice that, in general, the abundance ground truth is not available from real data. Thus, the RMSE in abundance estimation could not be used in design as a measure to select model parameters. Hence, the SK-Hype, GKKM, and PBS designs used in this comparison are based on a quasi-optimal choice of parameters for these methods, which could not be determined in practice. The proposed design for the BS methods, however, can be employed in practical applications. BS with the CCBS and GCBS algorithms was performed using M ∈ {5, 10, 20, 30}, with parameters µ 0 and σ adjusted using the methodology presented in Section IV-B. We emphasize that this parameter setting strategy assumes no prior knowledge about the abundance ground truth.

The simulation results are summarized in Tables I andII. In these tables, the first column shows the BS strategy considered prior to unmixing. SK-Hype in this column indicates the solution without BS. The symbol "(r)" besides CCBS or GCBS means that we have randomized the order of the bands prior to applying the BS strategy. The second column shows the obtained RMSE and the standard deviation (STD) in abundance estimation. The third column lists the average CPU time elapsed in the (BS + unmixing) process. Column four shows the number of selected bands N b , and last column shows the coherence of the final dictionary. For both tables, the selected parameters for the SK-Hype and GKKM are σ skp = 0.5σ = 0.02515, and λ = 2 and σ kkm = 2σ = 0.1006.

Tables I andII show the results for HIs built with Cuprite endmembers and using, respectively, the GBM and the PNMM mixing models. Note that the RMSE obtained using the BS algorithms are very close to those obtained using all bands. Nevertheless the reduction in number of bands obtained through BS is at least tenfold. The computational complexity advantage of the BS methods is evidenced by the required average CPU time, which show reductions by factors ranging from 50 to 110, depending on the algorithm and parameter settings. Note also that the number of bands in the final dictionary tends to be larger than the value M used to initialize the algorithms. This increase in the anticipated number of bands is obtained to optimize the dictionary coherence, what is not possible in the GKKM algorithm. As expected, the number of bands remained the same for the clique algorithm (CCBS) for each value of M , and the slight changes in the RMSE results indicate that the maximum clique is not unique. For the greedy approach (GCBS), however, different numbers of bands are obtained at each execution due to initial randomization, and the results in terms of RMSE and CPU time vary slightly. In general, randomization did not have any significant impact on the results. Comparing the coherence levels of the different dictionaries is not meaningful, as coherence levels are directly comparable only for dictionaries built using kernels with the same bandwidth. Nevertheless, one notes from these tables that the level of coherence of the dictionary generated using GKKM is more than 20 times larger than the limit in [START_REF] Tian | A method to compute the n-dimensional solid spectral angle between vectors and its use for band selection in hyperspectral data[END_REF]. Even considering that (30) is a sufficient condition, such discrepancy is a strong indication of the possibility of a linearly dependent basis. The PBS method provided the highest RMSE in all cases. This result was expected since the unmixing method operates in a different space. Results similar to those described above were obtained using the HIs created with data extracted from the Pavia database. These results are described in detail in an extended report available at [START_REF] Imbiriba | Technical report: Band selection for nonlinear unmixing of hyperspectral images as a maximal clique problem[END_REF].

B. Simulation with real data

When working with real data, ground truth for the fractional abundances are rarely available. Thus, we compare the performances of the different algorithms using the reconstruction RMSE (RRMSE). The image used is shown in Figure 2. It is a scene from the Cuprite mining field site in Nevada, acquired by the AVIRIS instrument. It has originally 224 spectral bands, from which we have removed the water absorption bands, resulting in 188 bands. This scene has 7371 pixels and previous analysis identified five minerals (Sphene, Montmorillonite, Kaolinite, Dumortierite, and Pyrope) to have strong components in this particular region [START_REF] Imbiriba | Nonparametric detection of nonlinearly mixed pixels and endmember estimation in hyperspectral images[END_REF]. The endmember matrix was extracted using the VCA algorithm [START_REF] Nascimento | Vertex Component Analysis: A fast algorithm to unmix hyperspectral data[END_REF]. Table III shows the RRMSEs for this image using the different methods, where we present results for values of M up to the point of diminishing improvements (M = 150). The RRMSE performance is compatible to that obtained using synthetic images, and the savings in computational complexity can be inferred from the CPU time reduction by a factor of at least 4 (for M = 150). The parameters used for the SK-Hype and GKMM were σ skp = 0.5σ = 0.0088545, λ = 2 and σ kkm = 0.1006. A second example using real data was performed using the RELAB data from Brown University. These data include laboratory measured reflectances, and thus provide ground truth information. It consists of intimate mixtures of minerals (Anorthite, Olivine, Enstatite, and Magnetite) that were crushed and mixed together. The data is composed by the reflectances of the 4 pure minerals (endmembers) and of binary (Olivine/Enstatite, Olivine/Magnetite, and Olivine/Anorthite) and ternary (Olivine/Anorthite/Enstatite) mixtures. Each binary combination of minerals has 5 mixtures with different abundances for each endmembers (ranging form 0.1 to 0.95). The ternary mineral combinations have 7 spectra, considering also different abundances. Detailed information about this dataset can be found in [START_REF] Mustard | Photometric phase functions of common geologic minerals and applications to quantitative analysis of mineral mixture reflectance spectra[END_REF], [START_REF] Mustard | Quantitative abundance estimates from bidirectional reflectance measurements[END_REF].

We performed simulations following the same procedure used for the Cuprite data. The results, however, are measured using the RMSE for the abundance estimations (not reconstruction error) since ground truth is available for this data. Table IV (Olivine/Enstatite mixture) and Table V (Olivine/Arnothite/Enstatite mixture) are representative of the results obtained, and show a good performance of the proposed BS methods. Although the full band SK-Hype presents the smallest RMSEs, the RMSEs obtained using the proposed BS methods (CCBS and GCBS) are comparable, specially for M = 30, indicating the possibility of a significant in computational complexity. One should consider the statistical significance of these RMSE results with caution due to the small number of samples available. One also notes the considerable effect of dealing with a reduced amount of data on the CPU time, as it includes BS and unmixing. One note, for instance, that the greedy approach GCBS needs CPU times that are 12 to 15 times smaller than the full band solution for M = 30. One notices, however, a large variation in CPU times for the MCP based algorithm (CCBS), especially for M = 30. The noticeable differences for different data sets are due to the solution of the maximal clique problem. Since MCP are NP-hard problems, the required CPU time for its solution can significantly change for different data sets. The fact that binary RELAB mixtures considered here are composed of only small numbers of mixtures (5 pixels) makes the processing time of solving a MCP more evident. This required MCP time is greatly diluted when larger data sets are considered, as could be verified in the other results presented. This indicates that the CCBS method is more advantageous for larger datasets, a common situation in hyperspectral image processing. More simulation results were obtained using hyperspectral images created with data extracted from the Pavia database and using real data from the RELAB database at Brown University. These results are described in detail in an extended report available at [START_REF] Imbiriba | Technical report: Band selection for nonlinear unmixing of hyperspectral images as a maximal clique problem[END_REF].

VIII. CONCLUSIONS

In this paper we proposed a centralized method for nonlinear unmixing of hyperspectral images, which employs band selection in in the reproducing kernel Hilbert space (RKHS). The proposed method is based on the coherence criterion, which incorporates a measure of the quality of the dictionary in the RKHS for the nonlinear unmixing. We showed that the proposed BS approach is equivalent to solving a maximum clique problem (MCP). Contrary to competing methods that do not include an efficient choice of the model parameters, the proposed method requires only an initial guess on the number of selected bands. Simulation results employing both synthetic and real data illustrate the quality of the unmixing results obtained with the proposed method, which leads to abundance estimations as accurate as those obtained using the full-band SK-Hype method, at a small fraction of the computational cost.
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 1 Fig. 1: The maximum clique problem (MCP)

Algorithm 2 : 7 B 11 I

 2711 Clique Coherence-based BS (CCBS) Input : The L × L Gram matrix K 1 = (K σ ) σ=1 , and the desired number M of atoms. Output: The indices I D of selected atoms, and the Gaussian kernel bandwidth σ 2 . 1 Initialization: B := 0 L×L , V = {1, . . . , L}, µ 0 = 1/(M -1), I D c = {∅}; 2 Find σ 2 solving (33); 3 K σ using σ 2 obtained in line 2; 4 for i := 1 to L -1 do 5 for j := i + 1 to L do 6 if [K σij ] ≤ µ 0 then D := MaxCLQ(V, B); 12 return I D , σ 2 ; VII. APPLICATION A. Simulation with synthetic data

Fig. 2 :

 2 Fig. 2: Cuprite scene used in [81].

TABLE I :

 I RMSE. 100 runs, 2000 pxl., 8 endmembers (Cuprite), SNR=21dB, GBM. µ 0 computed using Equation[START_REF] Wang | Salient band selection for hyperspectral image classification via manifold ranking[END_REF] for a given M , and σ is found solving problem[START_REF] Bioucas-Dias | An overview on hyperspectral unmixing: Geometrical, statistical, and sparse regression based approaches[END_REF].

	Strategy	RMSE ± STD	Av. Time	N b	µ
	SK-Hype	0.0680 ± 0.0028	301.08 ± 17.93	420	-
	GKKM	0.0664 ± 0.0026	25.40 ± 0.22	36	0.5893
		M = 5, µ 0 = 0.25, σ = 0.2548		
	CCBS	0.0687 ± 0.0028	3.10 ± 0.14	10	0.2482
	CCBS (r)	0.0687 ± 0.0028	3.13 ± 0.12	10	0.2482
	GCBS	0.0724 ± 0.0031	2.91 ± 0.02	8	0.2482
	GCBS (r) 0.0721 ± 0.0030	3.15 ± 0.15	7.13	0.2331
	PBS	0.0766 ± 0.0032	2.68 ± 0.20	10	0.4367
		M = 10, µ 0 = 0.1111, σ = 0.1320		
	CCBS	0.0678 ± 0.0027	2.85 ± 0.13	16	0.1108
	CCBS (r)	0.0679 ± 0.0027	2.89 ± 0.17	16	0.1108
	GCBS	0.0685 ± 0.0028	2.57 ± 0.02	16	0.1104
	GCBS (r) 0.0688 ± 0.0028	2.65 ± 0.06	13.09	0.0996
	PBS	0.0765 ± 0.0033	2.54 ± 0.08	16	0.8213
		M = 20, µ 0 = 0.0526, σ = 0.0965		
	CCBS	0.0659 ± 0.0026	2.96 ± 0.15	21	0.0520
	CCBS (r)	0.0660 ± 0.0026	3.01 ± 0.17	21	0.0520
	GCBS	0.0670 ± 0.0027	2.59 ± 0.02	20	0.0525
	GCBS (r) 0.0678 ± 0.0027	2.67 ± 0.08	15.95	0.0467
	PBS	0.0762 ± 0.0033	2.84 ± 0.10	21	0.8545
		M = 30, µ 0 = 0.0345, σ = 0.0503		
	CCBS	0.0637 ± 0.0024	5.54 ± 0.22	42	0.0339
	CCBS (r)	0.0637 ± 0.0024	5.74 ± 0.18	42	0.0339
	GCBS	0.0637 ± 0.0024	3.32 ± 0.04	41	0.0344
	GCBS (r) 0.0644 ± 0.0025	2.83 ± 0.07	33.39	0.0326
	PBS	0.0735 ± 0.0031	4.80 ± 0.07	42	0.8999

TABLE II

 II 

	: RMSE. 100 runs, 2000 pxl., 8 endmembers
	(Cuprite), SNR=21dB, PNMM. µ 0 computed using Equa-
	tion (31) for a given M , and σ is found solving problem (33).
	Strategy	RMSE ± STD	Av. Time	N b	µ
	SK-Hype	0.0728 ± 0.0030	277.03 ± 4.30	420	-
	GKKM	0.0729 ± 0.0030	25.52 ± 0.18	36	0.7760
		M = 5, µ 0 = 0.25, σ = 0.2548		
	CCBS	0.0748 ± 0.0031	2.99 ± 0.10	10	0.2482
	CCBS (r)	0.0749 ± 0.0031	3.12 ± 0.18	10	0.2482
	GCBS	0.0764 ± 0.0032	2.85 ± 0.06	8	0.2482
	GCBS (r)	0.0776 ± 0.0033	2.99 ± 0.15	7.13	0.2331
	PBS	0.1027 ± 0.0049	3.30 ± 0.18	10	0.9081
		M = 10, µ 0 = 0.1111, σ = 0.1320	
	CCBS	0.0746 ± 0.0031	2.85 ± 0.19	16	0.1108
	CCBS (r)	0.0745 ± 0.0031	2.84 ± 0.14	16	0.1108
	GCBS	0.0757 ± 0.0032	2.57 ± 0.04	16	0.1104
	GCBS (r)	0.0757 ± 0.0031	2.64 ± 0.10	13.09 0.0996
	PBS	0.0828 ± 0.0035	3.32 ± 0.09	16	0.9184
		M = 20, µ 0 = 0.0526, σ = 0.0965	
	CCBS	0.0735 ± 0.0029	2.87 ± 0.12	21	0.0520
	CCBS (r)	0.0737 ± 0.0029	2.96 ± 0.17	21	0.0520
	GCBS	0.0753 ± 0.0031	2.55 ± 0.03	20	0.0525
	GCBS (r)	0.0753 ± 0.0031	2.56 ± 0.04	15.95 0.0467
	PBS	0.0836 ± 0.0035	3.77 ± 0.09	21	0.9184
		M = 30, µ 0 = 0.0345, σ = 0.0503	
	CCBS	0.0740 ± 0.0029	5.41 ± 0.18	42	0.0339
	CCBS (r)	0.0740 ± 0.0029	5.62 ± 0.19	42	0.0339
	GCBS	0.0737 ± 0.0029	3.24 ± 0.04	41	0.0344
	GCBS (r)	0.0742 ± 0.0030	2.74 ± 0.07	33.39 0.0326
	PBS	0.0776 ± 0.0033	5.45 ± 0.08	42	0.9456

TABLE III :

 III Reconstruction RMSE for the Cuprite Scene.

	Strategy	RRMSE ± STD	Time	N b	µ
	SK-Hype	0.0006 ± 0.0000	184.2852	188	-
	GKKM	0.0064 ± 0.0000	17.0144	13	0.7982
		M = 5, µ 0 = 0.2500, σ = 0.0916	
	CCBS	0.0155 ± 0.0002	13.5109	9	0.2454
	GCBS	0.0129 ± 0.0001	15.9691	9	0.2454
		M = 30, µ 0 = 0.0345, σ = 0.0174	
	CCBS	0.0101 ± 0.0001	26.1530	36	0.0336
	GCBS	0.0102 ± 0.0001	26.1337	35	0.0341
		M = 50, µ 0 = 0.0204, σ = 0.0113	
	CCBS	0.0099 ± 0.0001	38.1907	49	0.0199
	GCBS	0.0092 ± 0.0001	19.4064	49	0.0202
		M = 70, µ 0 = 0.0145, σ = 0.0087	
	CCBS	0.0089 ± 0.0001	24.5304	61	0.0141
	GCBS	0.0089 ± 0.0001	26.5687	61	0.0130
		M = 120, µ 0 = 0.0084, σ = 0.0059	
	CCBS	0.0079 ± 0.0000	42.4282	84	0.0084
	GCBS	0.0077 ± 0.0000	62.1598	84	0.0084
		M = 150, µ 0 = 0.0067, σ = 0.0051	
	CCBS	0.0074 ± 0.0000	55.4628	93	0.0067
	GCBS	0.0076 ± 0.0000	56.0754	92	0.0067

TABLE IV :

 IV Olivine/Enstatite

	Strategy	RMSE ± STD	Time	N b	µ
	SK-Hype	0.0442 ± 0.0011	0.2499	211	-
	GKKM	0.1883 ± 0.0317	1.8460	14	0.7969
		M = 5, µ 0 = 0.2500, σ = 0.1034	
	CCBS	0.2045 ± 0.0375	0.1001	7	0.2490
	GCBS	0.2441 ± 0.0500	0.0374	5	0.2097
		= 10, µ 0 = 0.1111, σ = 0.0524	
	CCBS	0.1430 ± 0.0192	0.0702	14	0.1079
	GCBS	0.1505 ± 0.0209	0.0191	13	0.1078
		M = 20, µ 0 = 0.0526, σ = 0.0273	
	CCBS	0.0907 ± 0.0069	0.2874	24	0.0517
	GCBS	0.0941 ± 0.0081	0.0245	21	0.0492
		M = 30, µ 0 = 0.0345, σ = 0.0182	
	CCBS	0.0705 ± 0.0035	0.6403	34	0.0339
	GCBS	0.0674 ± 0.0034	0.0162	32	0.0331

TABLE V :

 V Olivine/Arnothite/Enstatite

	Strategy	RMSE ± STD	Time	N b	µ
	SK-Hype	0.1320 ± 0.0161	0.3034	211	-
	GKKM	0.1325 ± 0.0150	1.8930	15	0.7694
		M = 5, µ 0 = 0.2500, σ = 0.1084	
	CCBS	0.1358 ± 0.0154	0.0550	7	0.2441
	GCBS	0.1585 ± 0.0229	0.0227	5	0.2212
		M = 10, µ 0 = 0.1111, σ = 0.0589	
	CCBS	0.1224 ± 0.0125	0.0740	14	0.1110
	GCBS	0.1323 ± 0.0158	0.0172	12	0.1076
		M = 20, µ 0 = 0.0526, σ = 0.0341	
	CCBS	0.1132 ± 0.0118	0.0731	22	0.0506
	GCBS	0.1179 0.0131	0.0204	20	0.0491
		M = 30, µ 0 = 0.0345, σ = 0.0242	
	CCBS	0.1123 ± 0.0131	0.1679	29	0.0339
	GCBS	0.1166 ± 0.0143	0.0248	28	0.0323

Although PBS select bands in the original data space, we consider this method in the experiment section for benchmarking.

The PBS algorithm as proposed in[START_REF] Chang | Progressive band selection of spectral unmixing for hyperspectral imagery[END_REF] starts with an initial number of bands, and then adjusts this number using a time-consuming strategy that requires performing HU at each iteration. Hence, we slightly modified the PBS algorithm by fixing the number of bands a priori to reduce complexity and to produce a fair comparison among the different strategies.
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