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Abstract In this article, we are interested in the Fixed-Time Stabilization
(FTSt) and Fixed-Time Synchronization (FTSy) of a class of Inertial Neural
Networks (INNs) with time-varying and distributed delays. To obtain FTSt
and FTSy, sliding mode controllers are developed based on sliding mode con-
trol (SMC) techniques and by using sliding variables. Two polynomial feed-
back control laws are exploited to achieve the FTSt and the FTSy but they
are singular. To get rid of the singularities, the saturation function is used
into the design of the controllers and the almost FTSt and almost FTSy are
proved. Finally, numerical examples are presented to show the effectiveness of
the theoretical results.
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XLIM (UMR CNRS 7252), Université de Poitiers, 11 bd Marie et Pierre Curie, 86073 Poitiers
Cedex 9, France.
E-mail: emmanuel.moulay@univ-poitiers.fr



2 Chaouki Aouiti∗ et al.

1 Introduction

Artificial Neural Networks (ANNs) are a system whose design is originally
inspired by the operation of biological neurons and which has subsequently
moved closer to statistical methods. In the last decade, the use of ANNs has
been developed in many disciplines such as economic sciences, ecology and en-
vironment or biology and medicine [32,44,49,69]. They are applied in particu-
lar to solve problems of classification, prediction, categorisation, optimization,
pattern recognition, associative memory or secure communication [1,3,5,26,
31,14,22,20,23,45,30]. In data processing, ANNs are a method of approxima-
tion of complex systems particularly useful when systems are difficult to model
using conventional statistical methods. In recent years, numerous outcomes on
Lyapunov stability, periodicity analysis and synchronization of various types
of ANNs (Hopfield, Cohen-Grossberg, Competitive, BAM, MAM) have been
obtained for instance in [2,3,4,5,6,7,8,11,12,13,46].

Wheeler and Schieve were the first to publish the article [60] in 1997 about
INNs which are more complex than lots of kinds of NNs. INNs have been
widely developed and many important results about asymptotic stability, ro-
bust stability, synchronization, stabilization and existence of periodic solutions
have been established [17,21,29,39,42,60,67,72]. In recent studies, the FTSt
of INNs has been intensively considered where the closed-loop system solutions
reach the equilibrium point in finite-time. The function giving the time for the
solutions to reach the equilibrium is called the settling-time. The finite-time
stability has a great importance in real applications like robotics, optimization
problems, pattern recognition, vehicle system or spacecrafts [25,28,33,35,36,
53]. It is a common knowledge that the settling-time estimation in finite-time
stabilization problems depends on the initial values of the dynamical systems
[47]. This results in disadvantages for real applications because in many prac-
tical systems it is difficult or impossible to obtain in advance the initial con-
ditions [16]. The initial conditions of many practical systems are difficult to
obtain accurately or even impossible to know in advance [16]. To settle this
problem, Polyakov has developed the concept of fixed-time stability in [51].

It is well known that there are rare and inconsistent observations in mea-
surements with the largest part of the population of observations, called out-
liers. The influence of external disturbances, modeling errors, and various un-
certainties in the real systems, as well as the robust and filtering techniques
to cope with these problems, are best shown in the following recent papers
[18,19,55,71,74]. Stabilization control of NNs has attracted more and more
attention, and there are different types of stabilization: asymptotic stabiliza-
tion; exponential stabilization; finite-time stabilization; fixed-time stabiliza-
tion [47,9], as well as different types of control strategies: feedback control
[1,9]; feedback tracking control [56,57]; adaptive control [41,40]; hybrid con-
trol [52]; intermittent control [64]; pinning control [61]; impulsive control[70],
or SMC [48]. As an application of fixed-time stability, FTSt of NNs has re-
ceived tremendous interest in recent years since it can make system stabilized
within a bounded time even if the initial conditions are unknown in advance
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[9,38,33]. The fixed-time controller makes it stabilized at a fixed-time and the
settling-time is independent on the initial conditions.

The authors of [38] discuss the finite-time and fixed-time stabilization for
delayed memristive NNs based on Filippov solutions, and discontinuous con-
troller. The study of FTSt for a general class of NNs (Cohen-Grossberg BAM)
was investigated in [37] by using differential inequalities, some comparison
techniques, and fixed-time stability theorem. In [10], the authors study the
FTSt for a general class of BAM with time-varying delay using the finite time
and fixed time stability theory, and linear matrix inequalities. In [64], the prob-
lem of finite-time synchronisation of NNks with mixed delays was investigated
by using periodically intermittent memory feedback control, finite-time stabil-
ity theory, linear matrix inequalities and differential inequality techniques. In
[73], the problem of finite-time stabilization for synchronization was investi-
gated based on geometric homogeneity and integral sliding mode manifold. The
robust finite-time synchronization of a class of chaotic systems via adaptive
global SMC was considered in [62] based on new chattering-free control laws.
The problem of improved SMC for finite-time synchronization of nonidenti-
cal delayed recurrent NNs was considered in [63] by designing a suitable SMC
based on Lyapunov stability theory. The integral SMC approach is presented in
[54] to investigate the projective synchronization of nonidentical chaotic NNs
with mixed time delays by considering a proper sliding surface, constructing
Lyapunov-Krasovskii functional and using linear matrix inequality techniques.
In [27], the synchronization problems of chaotic fuzzy cellular NNs with time-
varying delays were investigated based on SMC approach. In [68], the authors
study the projective synchronization for different chaotic time-delayed NNs by
using Lyapunov-Krasovskii functional and linear matrix inequality techniques.

In this article, the problems of FTSt and FTSy are addressed for INNs
under a new control strategy, namely SMC which is a nonlinear control tech-
nique that possesses remarkable properties of precision, robustness and easy
implementation [59]. SMC has two main advantages: first the system dynam-
ics behaviour can be adapted to the choice of the sliding surface, secondly
the closed-loop system is robust to uncertainties [24,58,66]. Its concise design
process and its ability to stabilize and synchronize the delayed INNs in a small
fixed time are two advantages of the SMC.

The contributions of this article are described below:

– A novel control strategy for FTSt and FTSy of INNs with time-varying
and distributed delays is introduced. We investigate the FTSt and FTSy
of INNs with time-varying and distributed delays by using SMC with an
adapted sliding surface. Moreover, by writing our system as a second-order
multi-variable system, two different feedback control laws are built to ob-
tain the FTSt and FTSy of INNs with time-varying and distributed delays.
However, these controllers have singularities.

– By using some proprieties of a well defined sliding surface, new sufficient
conditions for almost FTSt and almost FTSy of INNs with time-varying
delay are obtained such that the controllers are not singular.
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The paper is organized as follows. After some technical lemmas and def-
initions recalled in Section 2, the model description is given in Section 3. In
Section 4, two sliding mode controllers are derived for the FTSt of INNs with
time-varying delay, while the FTSy of INNs with time-varying delay is further
considered in Section 5. In Section 6, illustrative examples are given to show
the effectiveness of the proposed control design methods. The article ended
with a conclusion in Section 7.

2 Preliminaries

Let R denote the set of real numbers, R+ the set of positive real numbers, Rn
the n−dimensional Euclidean space, Rn×n the set of squared matrices of size
n, ‖.‖ the Euclidean norm such that ‖x‖2 = xTx, AT the transpose of the
matrix A = (aij)1≤i,j≤n, diag(a1, · · · , an) the diagonal matrix, |A| the matrix
(|aij |)1≤i,j≤n and In the identity matrix of size n.

Let us recall some results on finite-time stability and fixed-time stability.
Consider the following ordinary differential equation

ẏ(t) = f(y(t)), y(t) ∈ Rn (1)

y(0) = y0

with f a continuous function such that f(0) = 0.

Definition 1 [47] System (1) is globally finite-time stable if it is Lyapunov
stable and for all y0 ∈ Rn there exists T(y0) > 0 dependent on the initial
conditions such that limt→T(y0) ‖y(t)‖ = 0, i.e. ‖y(t)‖ ≡ 0 for all t ≥ T(y0).
The function T is called the settling-time.

Definition 2 [51] System (1) is globally fixed-time stable if:

(1) it is globally finite-time stable;
(2) the settling-time function T is upper bounded by a constant Tmax > 0, i.e.

T(y0) ≤ Tmax.

Definition 3 [75] System (1) is globally almost fixed-time stable if it is glob-
ally finite-time stable and there exists a constant Tmax > 0 such that for all
ε > 0 we have T(y0) ≤ Tmax + Tε where Tε → 0 when ε→ 0.

Remark 1 According to Definition 1 and Definition 2, we conclude that con-
trary to finite-time stability, the settling-time of fixed-time stability is inde-
pendent on initial conditions. In many fields, such as pattern recognition or
secure communication, the initial values are mostly hard to be acquired [76]. So
fixed-time stability is more suitable and applicable than finite-time stability.

Lemma 1 [50] If there exists a continuously differentiable positive definite
radially unbounded function V : Rn → R+ such

V̇(y(t)) ≤ −α̂V(y(t))%1 − β̂V(y(t))%2 (2)
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where α̂ > 0, β̂ > 0 and %1 > 1 > %2 > 0 then system (1) is globally fixed-time
stable and the settling-time T(y0) satisfies

T(y0) ≤ Tmax :=
1

α̂(%1 − 1)
+

1

β̂(1− %2)
(3)

The function V is called a Lyapunov function for system (1).

Remark 2 Without loss of generality, if %1 = 1+ 1
µ and %2 = 1− 1

µ are satisfied

with µ > 1, the upper bound of the settling-time function T(y0) of system (1)
can be estimated by

T(y0) ≤ µπ

2

√
α̂β̂

. (4)

Lemma 2 [75] The following system

ż(t) = −α̂‖z(t)‖%1−1z(t)− β̂‖z(t)‖%2−1z(t), (5)

where z ∈ Rn, α̂, β̂ > 0, %1 > 1 and 0 < %2 < 1 is globally fixed-time stable
and the settling-time is given by (3).

3 Model description

The following INN with time-varying and distributed delays is considered

d2r`(t)

dt2
= −λ`

dr`(t)

dt
− a`r`(t) +

n∑
k=1

c`kgk(rk(t)) +

n∑
k=1

d`kgk(rk(t− τ̌`(t)))

+

n∑
k=1

b`k

∫ t

−∞
kk(t− σ)gk(rk(σ))dσ + u`(t), t > 0 (6)

where

– ` = 1, · · · , n with n the number of neurons to consider;

– r(.) =
(
r1(.), · · · , rn(.)

)T
is the neuron state vector;

– d2r`(t)
dt2 denotes the inertial term of system (6);

– λ` > 0, a` > 0;
– kk stands for the delay kernel;
– τ̌(.) stands for the time-varying transmission delay;
– fk(.), gk(.) denotes the activation functions with fk(0) = gk(0) = 0 for
k = 1, · · · , n;

– u`(.) : R→ R denotes the control input;
– the initial conditions of system (6) are given by

r`(s) = ϕ`(s),
dr`(s)

ds
= ξ`(s); s ∈ [−∞, 0] (7)

where ` = 1, · · · , n, ϕ` and ξ` are bounded and continuous functions.
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Letting h`(t) = dr`(t)
dt , then system (6) is written as

dr`(t)
dt

= h`(t)
dh`(t)

dt
= −λ`h`(t) − a`r`(t) +

∑n
k=1 c`kfk(rk(t)) +

∑n
k=1 d`kgk(rk(t− τ̌`(t)))

+
∑n

k=1 b`k
∫ t
−∞ kk(t− σ)gk(rk(σ))dσ + u`(t)

(8)

that is 
ṙ(t) = h(t)

ḣ(t) = −Λh(t)−Ar(t) + CF (r(t)) +DG(r(t− τ̌(t)))

+B
∫ t
−∞K(t− σ)G(r(σ))dσ + u(t)

(9)

where r = (r1, · · · , rn), h = (h1, · · · , hn),A = diag(a1, · · · , an), Λ = diag(λ1, · · · , λn),
C = (c`k)n×n, B = (b`k)n×n , D = (d`k)n×n, K(.) = diag(k1, · · · ,kn), F (.) =
(f1(.), · · · , fn(.))T , G(.) = (g1(.), · · · , gn(.))T and u(.) = (u1(.), · · · , un(.))T .
So we can write system (6) as a multidimensional second-order system.

Definition 4 [43] System (9) is globally finite-time stabilizable if there exists
a feedback control u(r, h) such that the closed-loop system is finite-time stable,
i.e. there exists a functional T̂ such that for all initial condition r0, the solution
r(t, r0) of the closed-loop system (9) with controller u(r, h) is well defined and
the settling-time T̂(r0) satisfy

lim
t→T̂(r0)

r(t, r0) = 0.

Moreover, system (9) is globally fixed-time stabilizable if:

– it is globally finite-time stabilizable;
– the settling-time functional T̂(r0) is upper bounded by a constant T̂max ≥

0.

Now, let us introduce some assumptions useful in the following.

(A1) All continuous functions fk with k = 1, · · · , n satisfy the Lipschitz condi-
tion

‖fk(ν)− fk(κ)‖ ≤Mk‖ν − κ‖

where ν, κ ∈ Rn and Mk is a positive constant.
We denote M = diag(M1, · · · ,Mn).

(A2) The delay Kernel kk(.) with k = 1, · · · , n are positive bump functions such
that ∫ +∞

0

kk(σ)dσ = kk.

(A3) For all k = 1, · · · , n, there exists constants Nk such that

|gk(κ)| ≤ Nk, κ ∈ R.

We denote N = diag(N1, · · · , Nn).
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4 Fixed time stabilization of time-delayed INNs

In this section, the FTSt of INNs with time-varying delay is investigated. To
perceive the FTSt of system (9), we start with the following sliding variable:

s(r(t), h(t)) = h(t) + α̂2r(t)‖r(t)‖p2−1 + β̂2r(t)‖r(t)‖q2−1 (10)

where α̂2, β̂2 > 0, p2 > 1 and 1
2 < q2 < 1 and the sliding surface

S =
{

(r, h) ∈ R2n : s(r, h) = 0
}
.

Moreover, we propose the following feedback control design:

u(r(t), h(t)) = −α̂2

[
In + (p2 − 1)

r(t)rT (t)

‖r(t)‖

]
‖r(t)‖p2−1h(t)

−β̂2
[
In + (q2 − 1)

r(t)rT (t)

‖r(t)‖

]
‖r(t)‖q2−1h(t)

−α̂1‖s(t)‖p1−1s(t)− β̂1‖s(t)‖q1−1s(t)

−Φ‖r(t)‖
‖s(t)‖

s(t)− Ψ ‖h(t)‖
‖s(t)‖

s(t)−Q s(t)

‖s(t)‖
, (11)

where α̂1, β̂1 > 0, p1 > 1 and 1
2 < q1 < 1, Φ = (φ`k)n×n with Φ ≥ A +

M |C|, Ψ = diag(ψ1, · · · , ψn) with ψ` ≥ Λ` and Q ≥ N(|B|K + |D|). Let us
remark that r(t)rT (t) belongs to Rn×n.

Theorem 1 Under assumptions (A1), (A2) and (A3), system (9) is global
fixed-time stabilizable under the proposed controller (11) and the settling-time
satisfies

T̂(r0) ≤
2∑
`=1

1

α̂`(p` − 1)
+

1

β̂`(1− q`)
. (12)

Proof By computing the derivative of the sliding variable s(t) along the tra-
jectory of system (9), we obtain

ṡ(t) = −Λh(t)−Ar(t) + CF (r(t)) +DG(r(t− τ̌(t)))

+B

∫ t

−∞
K(t− σ)G(r(σ))dσ + u(t)

+α̂2

[
In + (p2 − 1)

r(t)rT (t)

‖r(t)‖

]
‖r(t)‖p2−1h(t)

+β̂2

[
In + (q2 − 1)

r(t)rT (t)

‖r(t)‖

]
‖r(t)‖q2−1h(t). (13)
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Applying the controller (11) into (13) leads to

ṡ(t) = −Λh(t)−Ar(t) + CF (r(t)) +DG(r(t− τ̌(t))) +B

∫ t

−∞
K(t− σ)G(r(σ))dσ

−α̂1‖s(t)‖p1−1s(t)− β̂1‖s(t)‖q1−1s(t)

−Φ‖r(t)‖
‖s(t)‖

s(t)− Ψ ‖h(t)‖
‖s(t)‖

s(t)−Q s(t)

‖s(t)‖
. (14)

Now consider the Lyapunov function V (s(t)) = 1
2s(t)T s(t). We obtain

V̇ (s(t)) = s(t)T
[
− Λh(t)−Ar(t) + CF (r(t)) +DG(r(t− τ̌(t)))

+B

∫ t

−∞
K(t− σ)G(r(σ))dσ − α̂1‖s(t)‖p1−1s(t)− β̂1‖s(t)‖q1−1s(t)

−Φ‖r(t)‖
‖s(t)‖

s(t)− Ψ ‖h(t)‖
‖s(t)‖

s(t)−Q s(t)

‖s(t)‖

]
So, it leads to

V̇ (s(t)) ≤ Λ‖s(t)‖‖h(t)‖+A‖s(t)‖‖r(t)‖+M |C|‖s(t)‖‖r(t)‖+N |D|‖s(t)‖
+N |B|K‖s(t)‖ − α̂1‖s(t)‖p1+1 − β̂1‖s(t)‖q1+1 − Φ‖r(t)‖‖s(t)‖
−Ψ‖h(t)‖‖s(t)‖ −Q‖s(t)‖,

that is

V̇ (s(t)) ≤ (A+M |C| − Φ)‖s(t)‖‖r(t)‖+ (Λ− Ψ)‖s(t)‖‖h(t)‖
+(N(|D|+ |B|K)−Q)‖s(t)‖ − α̂1‖s(t)‖p1+1 − β̂1‖s(t)‖q1+1

≤ −α̂1‖s(t)‖p1+1 − β̂1‖s(t)‖q1+1

≤ −α̂1(2V (s(t)))
p1+1

2 − β̂1(2V (s(t)))
q1+1

2 . (15)

Letting y(t) =
√

2V (t) then ẏ(t) = V̇ (t)√
2V (t)

and we get from (15)

ẏ(t) ≤ −α̂1y
p1(t)− β̂1yq1(t). (16)

Then, from Lemma 1 we conclude that s(t) converges to zero in fixed time and
the settling-time is bounded by

T̂1 :=
1

α̂1(p2 − 1)
+

1

β̂1(1− q1)
. (17)

It implies that s(t) = 0 for all t ≥ T̂1. From (10), we obtain

ṙ(t) = −α̂2r(t)‖r(t)‖p2−1 − β̂2r‖r(t)‖q2−1. (18)
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From Lemma 2, we conclude that system (18) achieved the fixed-time stability
and the settling-time is upper bounded by

T̂2 :=
1

α̂2(p2 − 1)
+

1

β̂2(1− q2)
. (19)

As a conclusion, r(t) = 0 for all t ≥ T̂1 + T̂2, which it implies that h(t) =
ṙ(t) = 0 for all t ≥ T̂1 + T̂2. �

The algorithm of the proposed SMC is presented as follow:
Algorithm 1:
Step 1: Choose α̂2, β̂2, p2, and q2. Then, we construct the sliding variable.
Step 2: Since fk(.), kk(.), and gk(.) (k = 1, · · · , n) are known, we calculate
Mk, kk, and Nk. Then, we choose ψ`, φ`k, and q`k (` = 1, · · · , n).

Step 3: Select the design parameters α̂1, β̂1, p1, and q1. Subsequently, we
design the sliding mode controller.

It is clear that controller (11) is undefined in the set {(r(t), h(t)) : r(t) = 0}
due to the fact that 1

2 < q2 < 1. To get rid of the singularity of controller (11),
we use the saturation function given by

satε(z(t)) = sign(z(t)) min{|z(t)|, ε} (20)

with ε > 0 a threshold parameter and r ∈ R. It results a new controller written
as follows

u(t) = −α̂2

[
In + (p2 − 1)

r(t)rT (t)

‖r(t)‖

]
‖r(t)‖p2−1h(t)

−β̂2
[
In + (q2 − 1)

r(t)rT (t)

‖r(t)‖

]
‖r(t)‖q2satε

(
h(t)

‖r(t)‖

)
−α̂1‖s(t)‖p1−1s(t)− β̂1‖s(t)‖q1−1s(t)− Φ‖r(t)‖

‖s(t)‖
s(t)

−Ψ ‖h(t)‖
‖s(t)‖

s(t)−Q s(t)

‖s(t)‖
. (21)

Let us now state a new theorem with the non singular controller (21) whose
proof is inspired by [75].

Theorem 2 Under assumptions (A1), (A2) and (A3), system (9) is globally
almost fixed-time stable under the non singular controller (21) and the settling-
time verifies

T̂(r0) ≤
2∑
k=1

1

α̂k(pk − 1)
+

1

β̂k(1− qk)
+ T̂ε (22)

where T̂ε denote the small time-margin accounting for the saturation function.
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Proof Consider the sliding variable (10) and substituting the feedback con-
trol (21) into the time derivative of the sliding variable given by (13) leads
to

ṡ(r(t), h(t)) = −Λh(t)−Ar(t) + CF (r(t)) +DG(r(t− τ̌(t)))

+B

∫ t

−∞
K(t− σ)G(r(σ))dσ − α̂1‖s(t)‖p1−1s(t)

+β̂2

[
In + (q2 − 1)

r(t)rT (t)

‖r(t)‖

]
‖r(t)‖q2

[
h(t)

‖r(t)‖
− satε

(
h(t)

‖r(t)‖

)]
−β̂1‖s(t)‖q1−1s(t)− Φ‖r(t)‖

‖s(t)‖
s(t)− Ψ ‖h(t)‖

‖s(t)‖
s(t)−Q s(t)

‖s(t)‖
.(23)

To show that the sliding surface is globally attractive we define the following
subsets:

Sk =

{
(r, h) ∈ R2n :

|hk|
‖r‖
≥ ε
}

; k = 1, · · · , n (24)

and
Y = S1 ∪ S2 ∪ · · · ∪ Sn, X = R2n \ Y.

Case 1: the state of system (9) is in X. Then we have satε

(
h(t)
‖r(t)‖

)
= h(t)
‖r(t)‖

and (23) rewrites as (14). Using the same technique as in Theorem 1, we obtain
that s(t) = 0 for all t > T̂1 where T̂1 is given by (17), or the system trajectory
enters the set Y in finite time bounded by T̂1.
Case 2: the state of system (9) is in Y. Then there exists k ∈ {1, · · · , n} such

that satε

(
hk(t)
‖r(t)‖

)
= ε which implies that due to the small value of r(.), there

exists at least one element of the control input u which is saturated. From (9),
the solution of rk can be calculated as follows

rk(t) = rk(0) +

∫ t

0

hk(σ)dσ.

As on each set Sk we have hk > 0 or hk < 0, it implies that rk will be monoton-
ically decreasing or increasing until (r(t), h(t)) leaves the set Sk. Consequently,
for all ε > 0 there exists a finite-time Tεk such that the state system (r(t), h(t))

leaves Sk and |hk(t)|
‖r(t)‖ < ε so that satε

(
hk(t)
‖r(t)‖

)
= hk(t)
‖r(t)‖ . The same holds for all

satε

(
h`(t)
‖r(t)‖

)
= h`(t)
‖r(t)‖ with ` = 1, · · · , n. Thus, for a given ε > 0, there exists

a finite time Tε ≤
∑n
k=1 Tεk such that the state of system (9) reaches X.

Case 3: the state of system (9) satisfies s(r(t), h(t)) = 0. So similar to the proof
of Theorem 1, system (18) achieves the fixed-time stability and the settling-
time is upper bounded by (19).
As a conclusion, system (9) is globally fixed-time stable under the feedback
control (21) and the settling-time is bounded by T̂1 + T̂2 + Tε. �
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Remark 3 If a sufficiently large threshold parameter ε > 0 is chosen, then ‖r‖
is allowed to be very small and thus the domain in which the control input is
saturated is very limited. This implies that the time margin Tε can be made
very small.

Remark 4 Similar to Remark 2, if pk = 1+ 1
µk

and qk = 1+ 1
µk

with µk > 1 for
k = 1, 2, then less conservative estimates for the upper bound of the settling-
time in Theorem 2 can be calculated as

T̂(r0) ≤
2∑
`=1

µ`π

2

√
α̂`β̂`

+ Tε. (25)

5 Fixed-time synchronization of time-delayed INNs

In this section, the synchronization of time-delayed INNs between master and
slave systems is investigated. Let us take the following systems as the master
system:

d2x`(t)

dt2
= −λ`

dx`(t)

dt
− a`x`(t) +

n∑
k=1

c`kfk(xk(t)) +

n∑
k=1

d`kgk(xk(t− τ̌(t)))

+

n∑
k=1

b`k

∫ t

−∞
kk(t− σ)gk(xk(σ))dσ + I` (26)

and as the slave system:

d2y`(t)

dt2
= −λ`

dy`(t)

dt
− a`y`(t) +

n∑
k=1

c`kfk(yk(t)) +

n∑
k=1

d`kgk(yk(t− τ̌(t)))

+

n∑
k=1

b`k

∫ t

−∞
kk(t− σ)gk(yk(σ))dσ + I` + ū`(t) (27)

where ū`(.) denotes the controller.
Now, define the error between the master system and the salve system as

e`(t) = y`(t)− x`(t) for ` = 1, · · · , n. Then the error system can be described
as follow

d2e`(t)

dt2
= −λ`

(
dy`(t)

dt
− dx`(t)

dt

)
− a`(y`(t)− x`(t))

+

n∑
k=1

c`k(fk(yk(t))− fk(xk(t)))

+

n∑
k=1

d`k(gk(yk(t− τ̌(t)))− gk(xk(t− τ̌(t))))

+

n∑
k=1

b`k

∫ t

−∞
kk(t− σ)(gk(yk(σ))− gk(xk(σ)))dσ + ū`(t). (28)
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That is

d2e`(t)

dt2
= −λ`

de`(t)

dt
− a`e`(t) +

n∑
k=1

c`k4fk

+

n∑
k=1

d`k4gk +

n∑
k=1

b`k

∫ t

−∞
kk(t− σ)4gkdσ + ū`(t). (29)

where 4fk = fk(yk(t))− fk(xk(t)), 4gk = gk(yk(t− τ̌(t)))− gk(xk(t− τ̌(t))),

4gk = gk(yk(s)− gk(xk(s). Letting z`(t) = de`(t)
dt , then system (29) is written

as: 
de`(t)
dt = z`(t)

dz`(t)
dt = −λ`z`(t)− a`e`(t) +

∑n
k=1 c`k4fk +

∑n
k=1 d`k4gk

+
∑n
k=1 b`k

∫ t
−∞ kk(t− σ)4gkdσ + ū`(t)

(30)

that is{
de(t)
dt = z(t)
dz(t)
dt = −Λz(t)−Ae(t) + C4F +D4G+B

∫ t
−∞K(t− σ)4Gdσ + ū(t)

(31)

where e = (e1, · · · , en)T , z = (z1, · · · , zn)T , ū = (ū1, · · · , ūn),4F =
(
4f1, · · · ,4fn

)T
,

4G =
(
4g1, · · · ,4gn

)T
, 4G = (4g1, · · · ,4g1)

T
.

Definition 5 The master system (26) and the salve system (27) are said to
be fixed-time synchronized if there exists a functional T̂ such that for all
initial conditions e0 of system (31), the solution e(t, e0) is well defined and the
settling-time T̂(e0) satisfies

lim
t→T̂(e0)

e(t, e0) = 0.

For the FTSy of the master system (26) and the salve system (27), we
define the following sliding variable

s(t) = z(t) + α̂2e(t)‖e(t)‖p2−1 + β̂2e(t)‖e(t)‖q2−1 (32)

where α̂2, β̂2 > 0, p2 > 1 and 1
2 < q2 < 1. Then, the feedback control design is

given by

ū(t) = −α̂2

[
In + (p2 − 1)

e(t)eT (t)

‖e(t)‖

]
‖e(t)‖p2−1z(t)

−β̂2
[
In + (q2 − 1)

e(t)eT (t)

‖e(t)‖

]
‖e(t)‖q2−1z(t)

−α̂1‖s(t)‖p1−1s(t)− β̂1‖s(t)‖q1−1s(t)

−Φ‖e(t)‖
‖s(t)‖

s(t)− Ψ ‖z(t)‖
‖s(t)‖

s(t)− Q̄
s(t)

‖s(t)‖
, (33)

where α̂1, β̂1 > 0, p1 > 1, 1
2 < q1 < 1, Φ = (φ`k)n×n with Φ ≥ A + M |C|,

Ψ = diag(ψ1, · · · , ψn) with ψ` ≥ Λ` and Q̄ ≥ 2N(|B|K + |D|).
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Theorem 3 Under assumptions (A1), (A2) and (A3), the master system (26)
is fixed-time synchronized with the salve system (27) under the proposed con-
troller (33) and the upper bound of the settling-time is given by (12).

Proof By computing the derivative of the sliding variable s along the trajectory
of system (31), we obtain

ṡ(t) = −Λz(t)−Ae(t) + C4F +D4G+B

∫ t

−∞
K(t− σ)4Gdσ

+ū + α̂2

[
In + (p2 − 1)

e(t)eT (t)

‖e(t)‖

]
‖e(t)‖p2−1z(t)

+β̂2

[
In + (q2 − 1)

e(t)eT (t)

‖e(t)‖

]
‖e(t)‖q2−1z(t). (34)

Applying the controller (33) into (34) leads to

ṡ(t) = −Λz(t)−Ae(t) + C4F +D4G+B

∫ t

−∞
K(t− σ)4Gdσ

−α̂1‖s(t)‖p1−1s(t)− β̂1‖s(t)‖q1−1s(t)− Φ‖e(t)‖
‖s(t)‖

s(t)

−Ψ ‖z(t)‖
‖s(t)‖

s(t)−Q s(t)

‖s(t)‖
. (35)

Now, considered the Lyapunov function V (s(t)) = 1
2s(t)T s(t) we obtain

V̇ (s(t)) ≤ s(t)T
[
− Λz(t)−Ae(t) + C4F +D4G+B

∫ t

−∞
K(t− σ)4Gdσ

−α̂1‖s(t)‖p1−1s(t)− β̂1‖s(t)‖q1−1s(t)− Φ‖e(t)‖
‖s(t)‖

s(t)

−Ψ ‖z(t)‖
‖s(t)‖

s(t)− Q̄
s(t)

‖s(t)‖

]

that is

V̇ (s(t)) ≤ Λ‖s(t)‖‖z(t)‖+A‖s(t)‖‖e(t)‖+M |C|‖s(t)‖‖e(t)‖+ 2N |D|‖s(t)‖
+2N |B|K‖s(t)‖ − α̂1‖s(t)‖p1+1 − β̂1‖s(t)‖q1+1 − Φ‖e(t)‖‖s(t)‖
−Ψ‖z(t)‖‖s(t)‖ − Q̄‖s(t)‖.

It yields

V̇ (s(t)) ≤ (A+M |C| − Φ)‖s(t)‖‖e(t)‖+ (Λ− Ψ)‖s(t)‖‖z(t)‖
+(2N(|D|+ |B|K)− Q̄)‖s(t)‖ − α̂1‖s(t)‖p1+1 − β̂1‖s(t)‖q1+1

≤ −α̂1‖s(t)‖p1+1 − β̂1‖s(t)‖q1+1

≤ −α̂1(2V )
p1+1

2 − β̂1(2V )
q1+1

2 . (36)
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Letting x(t) =
√

2V (t) and ẋ(t) = V̇ (t)√
2V (t)

, then we get from (36)

ẋ(t) ≤ −α̂1x
p1(t)− β̂1xq1(t). (37)

From Lemma 1 we conclude that s(t) converges to zero and the settling-time is
bounded by (17). It implies that s(t) = 0 for all t ≥ T1. From (31), we obtain

ė(t) = −α̂2e(t)‖e(t)‖p2−1 − β̂2e‖e(t)‖q2−1. (38)

From Lemma 2, we conclude that system (38) converges to zero and the
settling-time is upper bounded by (19).

As a conclusion, e(t) = 0 for all t ≥ T̂1 + T̂2 which implies that z(t) =
ė(t) = 0 for all t ≥ T̂1 + T̂2. �

To get rid of the singularity of the controller (33), we use the saturation
function and the new controller is expressed as follows:

ū(t) = −α̂2

[
In + (p2 − 1)

e(t)eT (t)

‖e(t)‖

]
‖e(t)‖p2−1z(t)

−β̂2
[
In + (q2 − 1)

e(t)eT (t)

‖e(t)‖

]
‖e(t)‖q2

[
z(t)

‖e(t)‖
− satε

(
z(t)

‖e(t)‖

)]
−α̂1‖s(t)‖p1−1s(t)− β̂1‖s(t)‖q1−1s(t)− Φ‖e(t)‖

‖s(t)‖
s(t)

−Ψ ‖z(t)‖
‖s(t)‖

s(t)− Q̄
s(t)

‖s(t)‖
. (39)

Theorem 4 Under assumptions (A1), (A2) and (A3), the master system (26)
is globally almost fixed-time synchronized with the salve system (27) under the
non-singular controller (39), and the settling-time verifies

T̂(e0) ≤
2∑
k=1

1

α̂k(pk − 1)
+

1

β̂k(1− qk)
+ T̂ε (40)

where T̂ε denotes the small time margin accounting for the saturation function.

Proof Consider the sliding variable (32) and substituting the controller (39)
into (34) leads to

ṡ(t) = −Λz(t)−Ae(t) + C4F +D4G+B

∫ t

−∞
K(t− σ)4Gdσ

+β̂2[In + (q2 − 1)
e(t)eT (t)

‖e(t)‖
]‖e(t)‖q2

[
z(t)

‖e(t)‖
− satε

(
z(t)

‖e(t)‖

)]
−α̂1‖s(t)‖p1−1s(t)− β̂1‖s(t)‖q1−1s(t)− Φ‖e(t)‖

‖s(t)‖
s(t)

−Ψ ‖z(t)‖
‖s(t)‖

s(t)−Q s(t)

‖s(t)‖
. (41)
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We define the following subsets:

Sk =

{
(e, z) ∈ R2n :

|zk(t)|
‖e(t)‖

≥ ε
}

; k = 1, · · · , n. (42)

Let

Y = S1 ∪ S2 ∪ · · · ∪ Sn, X = R2n \ Y.

Case 1: the state of system (31) is in X. Then we have satε

(
z(t)
‖e(t)‖

)
= z(t)
‖e(t)‖

and (41) rewrites as (35). Using the same technique as in Theorem 3, we obtain
that s(t) = 0 for all t > T̂1 where T̂1 is given by (17), or the system trajectory
enters the set Y in finite time bounded by T̂1.
Case 2: the state of system (31) is in Y. So there exists k ∈ {1, · · · , n} such

that satε

(
zk(t)
‖e(t)‖

)
= ε which implies that due to the small value of e(.), there

exists at least one element of the vector input control u which is saturated.
From (31), the solution of ek can be calculated as follows

ek(t) = ek(0) +

∫ t

0

zk(s)ds.

As on each set Sk, we have zk > 0 or zk < 0, it implies that ek is monotonically
decreasing or increasing until (e(t), z(t)) leaves the set Sk. Consequently, for
all ε > 0, there exists a finite time Tεk such that the state system (e(t), z(t))

leave sk and |zk(t)|
‖e(t)‖ < ε so satε

(
zk(t)
‖e(t)‖

)
= zk(t)
‖e(t)‖ . The same holds for all

satε

(
z`(t)
‖e(t)‖

)
= z`(t)
‖e(t)‖ with ` = 1, · · · , n. Thus, for a given ε > 0, there exists

a finite time Tε ≤
∑n
j=1 Tεj such that the state system reaches X.

Case 3: the state of system (31) satisfies s(e(t), z(t)) = 0. So, similar to the
proof of Theorem 3, system (31) converges to zero and the settling-time is
upper bounded by (19).
As a conclusion, the master system (26) is globally almost fixed-time syn-
chronized with the salve system (27) under the feedback control (39) and the
settling-time is bounded by T̂1 + T̂1 + Tε. �

Remark 5 The controller (11) and (33) are discontinuous ones because they
use the sign function which could produce the undesired chattering, while in
some cases continuity is necessary. Under these circumstances, we can use the
sat function in the controllers (21) and (39) to decrease this effect.

Remark 6 It should be noted that the synchronization is the stabilization of
the error between the transmission and the receiver systems. The synchro-
nization phenomenon is often encountered in nature, which is considered as
an adjustment of rhythms of oscillating objects due to their internal weak cou-
plings [15]. It has a great importance in real application. For example, fireflies
in flocks give off flashes of light with the same frequency on a summer night
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or the synchronous motion of space is established between the moon’s orbital
motion and its rotational motion. In order to achieve self-synchronization in
the asynchronous communication techniques between the transmitter and the
receiver, the two sides must simultaneously send and receive information over
the same frequency.

Remark 7 In this work, the FTSt and the FTSy are investigated for a class of
INNs with time-varying and distributed delays. For the first time, new SMC
schemes are proposed in our paper for the FTSt and the FTSy of master-slave
INNs with delays where the settling-time is bounded independently from the
initial conditions by constructing Lyapunov functionals and by using analyt-
ical techniques. The main limitation of SMC in practical applications is the
chattering problem. The chattering is the natural price that the SMC pays in
order to eliminate completely unknown matched external disturbances.

Remark 8 Compared with the results of [27,54,68], the improved SMC ap-
proach of this brief provide better results for the following reasons. Firstly, the
integral sliding mode surface is novel and needs less information, which has
the performance that once the sliding mode variable satisfies s(t) → 0, the
FTSy will be guaranteed independent of the initial conditions. Secondly, the
presented control approach can be conveniently verified without solving any
LMIs. Finally, the FTSy between drive-response systems (26) and (27) can be
obtained via the presented SMC approach, however, it cannot be guaranteed
in the articles cited above.

6 Numerical Examples

In this section, we present four examples to illustrate the effectiveness of the
results presented in this article.

Example 1 Consider the following INN with time-varying delay

d2r`(t)

dt2
= −λ`

dr`(t)

dt
−a`r`(t)+

n∑
k=1

c`kfk(rk(t))+

n∑
k=1

d`kgk(rk(t−τ(t)))+u`(t)

(43)

and the transformation dr`(t)
dt = h`(t) leading to the system:

dr`(t)
dt = h`(t)

dh`(t)
dt = −λ`h`(t)− a`r`(t) +

∑n
k=1 c`kfk(rk(t))

+
∑n
k=1 d`kgk(rk(t− τ̌(t))) + u`(t)

(44)

with n = 2, ` = 1, 2, a1 = a2 = 3, λ1 = λ2 = 4, c11 = 0.3, c12 = 0.15, c21 =
0.25, c22 = −0.4, d11 = 0.6, d12 = 0.2, d21 = −0.3, d22 = 0.3, τ̌ = 1, the
activation functions f`(s) = 0.5[|s+ 1| − |s− 1|] and g`(.) = tanh(.). We have
|fk(ν) − fk(κ)| ≤ |ν − κ| and |gk(κ)| ≤ 1, then Assumption (A1) and (A2)
hold with Mk = 1 and Nk = 1.
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Choosing α̂` = β̂` = 4. For µ1 = µ2 = 4, we have p1 = p2 = 1 + 1
µ`

=

1.25 and q1 = q2 = 1 − 1
µ1

= 0.75. The other parameters of the feedback

control (11) are designed as follows: ψ1 = ψ2 = 6 ≥ a1 = 3, ψ2 = 6 ≥ a2 = 3,
φ11 = 4 ≥ a1 + M1|c11| = 3.3, φ12 = 3.5 ≥ a1 + M1|c12| = 3.15, φ21 =
3.5 ≥ a2 + M2|c21| = 3.25, φ22 = 4 ≥ a2 + M2|c22| = 3.4, ψ1 = 7 ≥ λ1,
ψ2 = 7 ≥ λ2, q11 = 1 ≥ N |d11| = 0.6, q12 = 0.6 ≥ N |d12| = 0.2, q21 =
1 ≥ N |d21| = 0.3, q22 = 0.6 ≥ N |d22| = 0.3 and the initial condition are set
as r1(0) = −0.5, r2(0) = 0.5, h1(0) = 1, h2(0) = −1. From Theorem 1 we
obtain that system (44) is globally fixed-time stabilized under controller (11).
In addition, the settling-time satisfies the following inequality

T̂(0) ≤
2∑
`=1

µ`π

2

√
α̂`β̂`

=
π

2
+
π

2
≤ 3.1416.

The state trajectories of system (44) under controller (11) are plotted in Fig-
ure 1.
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Fig. 1 Trajectories of system (44) with controller (11)

Example 2 Consider now the following two dimensional INN with mixed delays

d2r(t)

dt2
= −Λdr(t)

dt
−Ar(t) + CF (r(t)) +DG(r(t− τ̌(t)))

+B

∫ t

−∞
K(t− s)G(r(s))ds+ u(t); (45)
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and the transformation dr(t)
dt = h(t) leading to the system

dr(t)
dt = h(t)
dh(t)
dt = −Λh(t)−Ar(t) + +CF (r(t)) +DG(r(t− τ̌(t)))

+B
∫ t
−∞K(t− s)G(r(s))ds+ u

(46)

where k1(x) = k2(x) = e−x, τ̌ = 2,A =

(
2 0
0 2

)
, Λ =

(
3 0
0 3

)
, C =

(
0.5 0.35
−0.5 −0.7

)
,

B =

(
0.9 −0.2
−0.4 0.3

)
, D =

(
0.6 0.2
−0.3 0.2

)
and the activation functions F (.) =

G(.) = tanh(.). We have |fk(ν) − fk(κ)| ≤ |ν − κ| and |gk(κ)| ≤ 1, then As-
sumption (A1) and (A2) hold with Mk = Nk = 1. We have

∫∞
0
e−sds = 1,

then assumption (A3) holds.

Taking α̂1 = α̂2 = β̂1 = β̂2 = 1, µ1 = 1.5, µ2 = 2.5, ε = 0.1, p1 = 1 + 1
1.5 ,

p2 = 1 + 1
2.5 , q1 = 1 − 1

1.5 and q2 = 1 − 1
2.5 . The parameters of the feedback

control (21) are designed as follow: φ11 = 3 ≥ a1 + M1|c11| = 2.5, φ12 =
3.5 ≥ a1 + M2|c12| = 2.35, φ21 = 3.5 ≥ a2 + M1|c21| = 2.5, φ22 = 4 ≥ a2 +
M2|c22| = 2.7, ψ1 = 7 ≥ λ1 = 3, ψ2 = 7 ≥ λ2 = 3, q11 = 1 ≥ N1|d11| = 0.6,
q12 = 0.6 ≥ N2|d12| = 0.2, q21 = 1 ≥ N1|d21| = 0.3, q22 = 0.6 ≥ N2|d22| = 0.2.
The initial values are taken as r1(0) = 0.5, r2(0) = −0.5, h1(0) = −0.7,
h2(0) = 0.6. Theorem 2 guarantees not only that system (46) is globally fixed-
time stabilized under the controller (21) but also that the settling-time satisfies
the following inequality

T̂(0) ≤
2∑
`=1

µ`π

2

√
α̂`β̂`

+ T̂ε =
1.5π

2
+

2.5π

2
+ 0.001 ≤ 6.2842

with T̂ε = 0.001. We see on Figure 2 that system (46) is globally almost fixed-
time stable.

Example 3 We consider the following INN master system

d2x`(t)

dt2
= −λ`

dx`(t)

dt
−a`x`(t)+

n∑
k=1

c`kfk(xk(t))+

n∑
k=1

d`kgk(xk(t−τ̌(t))) (47)

where n = 2, τ̌ = 1, a1 = a2 = 12, λ1 = λ2 = 7, c11 = 0.4, c12 = 0.2,
c21 = 0.5, c22 = −0.5, d11 = 0.7, d12 = 0.3, d21 = −0.4, d22 = 0.4, the
activation functions f`(s) = 0.5[|s + 1| − |s − 1|]. It is clear that Assumption
(A1) and (A2) hold and Mk = Nk = 1. The salve system is given by

d2y`(t)

dt2
= −λ`

dy`(t)

dt
−a`y`(t)+

n∑
k=1

c`kfk(yk(t))+

n∑
k=1

d`kfk(yk(t−τ(t)))+u`(t)

(48)
where the parameters of system (48) are same as the system (47).

Choosing α̂1 = α̂2 = β̂1 = β̂1 = 2, µ1 = µ2 = 3, p1 = 1 + 1
µ1

, p2 = 1 + 1
µ2

,

q1 = 1− 1
µ1

and q2 = 1− 1
µ2

. The parameters of the feedback control (33) are
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Fig. 2 Trajectories of system (46) with controller (21)

as follows: φ11 = 13 ≥ a1 + M1|c11| = 12.4, φ12 = 13 ≥ a1 + M1|c12| = 12.2,
φ21 = 13 ≥ a2 +M2|c21| = 12.5, φ22 = 13 ≥ a2 +M2|c22| = 12.5, ψ1 = 8 ≥ λ1,
ψ2 = 8 ≥ λ1, q11 = 3 ≥ 2N1|d11| = 1.4, q12 = 1.5 ≥ 2N1|d12| = 0.6,
q21 = 2 ≥ 2N2|d21| = 0.8, q22 = 3 ≥ 2N2|d22| = 0.8. The initial values
are taken as x1(0) = 1, x2(0) = 0.5, y1(0) = −0.5, y2(0) = 0.5. From Theo-
rem 3, the master system (47) and the slave system (48) are globally fixed-time
synchronized under controller (33). In addition, the settling-time satisfy the
following inequality

T̂(0) ≤
2∑
`=1

µ`π

2

√
α̂`β̂`

=
3π

2
≤ 4.7124.

After a short time, the master system (47) tracks the slave system (48) as
illustrated in Figure 3 and Figure 4. The synchronization errors are depicted
in Figure 5 and Figure 6.

Example 4 We consider the following INN master system:

d2x(t)

dt2
= −Λdx(t)

dt
−Ax(t)+CG(x(t))+DG(x(t−τ̌(t)))+B

∫ t

−∞
K(t−s)G(x(s))ds

(49)

where k1(x) = k2(x) = e−x, τ̌ = 2,A =

(
5 0
0 5

)
, Λ =

(
6 0
0 6

)
, C =

(
0.6 0.2
−0.3 0.3

)
,

B =

(
0.1 −0.2
−0.5 −0.4

)
, D =

(
0.5 0.35
−0.5 −0.7

)
, the activation function G(.) =
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Fig. 3 Trajectories of x1(t) and y1(t)
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Fig. 4 Trajectories of x2(t) and y2(t)
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Fig. 5 Trajectories of z1(t) and z2(t)
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Fig. 6 Trajectories of e1(t) and e2(t)

tanh(.). The salve system is given as follows:

d2y`(t)

dt2
= −λ`

dy`(t)

dt
− a`y`(t) +

n∑
k=1

c`kfk(yk(t)) +

n∑
k=1

d`kfk(yk(t− τ(t)))

+

n∑
k=1

b`k

∫ t

−∞
kk(t− σ)gk(xk(σ))dσ + u`(t) (50)

where the parameters of system (50) are same as the system(49).

Choosing µ1 = 1.5, µ2 = 2.5, α̂1 = β̂1 = α̂2 = β̂2 = 1, ε = 0.1, p1 =
1+ 1

µ1
= 1.6667, p2 = 1+ 1

µ2
= 1.4, q1 = 1− 1

µ1
= 0.3333 and q2 = 1− 1

µ2
= 0.6

The parameters of the feedback control (39) are given by: φ11 = 9 ≥ a1 +
M1|c11| = 5.6, φ12 = 9 ≥ a1 + M1|c12| = 5.2, φ21 = 9 ≥ a2 + M2|c21| = 5.3,
φ22 = 9 ≥ a2 + M2|c22| = 5.3, ψ1 = 7 ≥ λ1, ψ2 = 7 ≥ λ1, q11 = 1.9 ≥
2N1(|b11| + |d11|) = 1.2, q12 = 1.2 ≥ 2N1(|b12| + |d12|) = 1.1, q21 = 2 ≥
2N2(|b21| + |d21|) = 2, q22 = 3 ≥ 2N2(|b22| + |d22|) = 2.2. The initial values
are taken as x1(0) = −0.6, x2(0) = 0.6, y1(0) = 0.8, y2(0) = −0.8. From
Theorem 4, the master system (49) and the slave system (50) are globally
fixed-time synchronized under controller (39). After a short time, the master
system (49) tracks the slave system (50) as illustrated in Figures 7 and 8. The
synchronization errors are depicted in Figures 9 and 10. The settling-time
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satisfy the following inequality

T̂(0) ≤
2∑
`=1

µ`π

2

√
α̂`β̂`

+ T̂ε =
1.5π

2
+

2.5π

2
+ 0.001 ≤ 6.2833.

with T̂ε = 0.001.
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Fig. 7 Trajectories of x1(t) and y1(t)
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Fig. 8 Trajectories of x2(t) and y2(t)
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Fig. 9 Trajectories of z1(t) and z2(t)
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Fig. 10 Trajectories of e1(t) and e2(t)

Remark 9 The study of the fixed-time stability of neural networks is of major
interest for many applications such as spacecraft attitude dynamics [33] and
secure communication [65]. Secure communication using synchronization be-
tween chaotic systems is a new concept of secure communication. In [1], the
authors present the secure communication synchronization problem as real
application of inertial neural networks.

7 Conclusion

In this article, the fixed-time stabilization and fixed-time synchronization of
inertial neural networks with time-varying delay are inspected. By using slid-
ing variables, two sliding mode controllers are obtained. Moreover, to get rid
of the singularities two more sliding mode controllers are designed leading



22 Chaouki Aouiti∗ et al.

to almost fixed-time stabilization and almost fixed-time synchronization. Our
results are novel and complementary to the existing results about neural net-
works. There exist several ideas for future research. The first topic is related
to the activation function. For processing of complex processes with delays the
speed and performance of neural network in such case will depend on quality
of activation function chosen. For this reason, a scaled polynomial constant
unit activation function SPOCU [34] is going to be tested with respect to
its performance. The second one focuses on the fixed-time stabilization and
fixed-time synchronization under sliding mode control of:

1. a more general model of inertial neural networks such as inertial BAM
neural networks, high-order inertial neural networks, quaternion-valued
inertial Cohen-Grossberg neural networks, Clifford-valued inertial neural
networks;

2. a more general model of fractional-order time-delayed inertial neural net-
work.

Conflict of interest: The authors declare that they have no conflict of in-
terest.
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12. C. Aouiti, M. S. Mhamdi, F. Chérif, and A. M. Alimi. Impulsive generalised high-order
recurrent neural networks with mixed delays: stability and periodicity. Neurocomputing,
2017.

13. C. Aouiti, L. Xiaodi, and F. Miaadi. Finite Time Stabilization of Uncertain Delayed
Hopfield Neural Networks with a Time-varying Leakage Delay via Non-Chattering Con-
trol. Science China Technological Sciences, pages 1111–1122, 2018.

14. G. Aquino, J. D. J. Rubio, J. Pacheco, G. J. Gutierrez, G. Ochoa, R. Balcazar, D. R.
Cruz, E. Garcia, J. F. Novoa, and A. Zacarias. Novel nonlinear hypothesis for the delta
parallel robot modeling. IEEE Access, 8:46324–46334, 2020.

15. I. I. Blekhman, A. L. Fradkov, O. P. Tomchina, and D. Bogdanov. Self-synchronization
and controlled synchronization: general definition and example design. Mathematics
and Computers in Simulation, 58(4-6):367–384, 2002.

16. J. Cao and R. Li. Fixed-time synchronization of delayed memristor-based recurrent
neural networks. Science China Information Sciences, 60(3):032201, 2017.

17. J. Cao and Y. Wan. Matrix measure strategies for stability and synchronization of
inertial BAM neural network with time delays. Neural Networks, 53:165–172, 2014.

18. Z. Chen, B. Zhang, V. Stojanovic, Y. Zhang, and Z. Zhang. Event-based fuzzy control
for ts fuzzy networked systems with various data missing. Neurocomputing, 417:322–332,
2020.

19. P. Cheng, M. Chen, V. Stojanovic, and S. He. Asynchronous fault detection filtering for
piecewise homogenous markov jump linear systems via a dual hidden markov model.
Mechanical Systems and Signal Processing, 151:107353, 2021.

20. H.-S. Chiang, M.-Y. Chen, and Y.-J. Huang. Wavelet-based eeg processing for epilepsy
detection using fuzzy entropy and associative petri net. IEEE Access, 7:103255–103262,
2019.

21. N. Cui, H. Jiang, C. Hu, and A. Abdurahman. Global asymptotic and robust stability of
inertial neural networks with proportional delays. Neurocomputing, 272:326–333, 2018.
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