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Abstract. We study the slowly varying, non-autonomous quantum dynamics of a translation invariant

spin or fermion system on the lattice Zd . This system is assumed to be initially in thermal equilibrium,

and we consider realizations of quasi-static processes in the adiabatic limit. By combining the Gibbs

variational principle with the notion of quantum weak Gibbs states introduced in [JPT23], we establish

a number of general structural results regarding such realizations. In particular, we show that such a

quasi-static process is incompatible with the property of approach to equilibrium studied in this previ-

ous work.

1 Introduction

This paper is a direct continuation of [JPT23]. Although its topic and implications are differ-
ent, we will rely heavily on the technical tools and conceptual framework introduced in this
earlier work. In particular, in what follows and without further saying, we will use terminology,
notation, and results stated in the introductory section of [JPT23].1

The set of quantum weak Gibbs states WG(Φ) for the spin/fermion interaction Φ ∈Br is intro-
duced in Section 2.2 of [JPT23]. An immediate consequence of our definition of weak Gibbs
states is the existence of the specific relative entropy and the validity of the formula

s(ν|ω) := lim
Λ↑Zd

S(νΛ|ωΛ)

|Λ| = −s(ν)+ν(EΦ)+P (Φ), (1)

for any ν ∈SI(A) andω ∈ WG(Φ). The current technology allowed us to prove the identification
Seq(Φ) = WG(Φ) in dimension d = 1 for finite range interactions, and for any d and Φ ∈ Br in
the high temperature regime. Since this identification is expected to hold much more gener-
ally, we have introduced the notion of regular pair (ω,Φ) ∈ SI(A)×Br for which (1) holds for
all ν ∈ SI(A). This notion, combined with the Gibbs variational principle, has led to several

1The general references in [JPT23] related to the mathematical theory of algebraic quantum statistical mechanics
apply to this work as well.
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structural results about the fundamental problem of Approach to Equilibrium—the zeroth law
of thermodynamics—in quantum statistical mechanics.

In this work, starting with the same general ingredients, we study whether quasi-static tran-
sitions of extended spin or fermion systems can be described by slowly varying, non-auto-
nomous translation invariant interactions. The emerging structural theory in particular yields
that a realization of such a quasi-static transition is possible only if the specific entropy is con-
stant along the state trajectory. Combined with the results of [JPT23], this gives that, in the
adiabatic limit, quasi-static transitions are incompatible with the approach to equilibrium in
the translation invariant setting of algebraic quantum statistical mechanics.

The paper is organized as follows. In Sections 2 and 3 we briefly review the basic adiabatic the-
orems of quantum mechanics and quantum statistical mechanics. For a more complete review,
historical perspective, and additional references, we refer the reader to [BFJP].2 We introduce
our translation invariant framework in Section 4.1. Our main results are stated and proved in
Section 4.2. They are compared with the main result of [JPT23] in Section 4.3. Similar to [JPT23],
most of our proofs are technically simple. The proofs of two technically more involved results,
Propositions 3.2 and 4.1, are postponed to Section 5. For the reader’s convenience, Appendix A
collects the notations inherited from [JPT23].

Acknowledgments This work was supported by the French Agence Nationale de la Recherche,
grant NONSTOPS (ANR-17-CE40-0006-01, ANR-17-CE40-0006-02, ANR-17-CE40-0006-03) and
the CY Initiative of Excellence through the grant Investissements d’Avenir ANR-16-IDEX-0008.
It was partly developed during VJ’s stay at the CY Advanced Studies, whose support is gratefully
acknowledged. VJ also acknowledges the support of NSERC. The authors wish to thank Martin
Fraas for useful discussions.

2 Adiabatic theorems in quantum mechanics

The adiabatic theorem with a gap. The formulation and the proof of the adiabatic theorem
in quantum mechanics go back to the seminal work of Born and Fock [BF28]. The first mod-
ern proof, in functional analytic framework, is due to Kato [Kat50]. The method of the proof
introduced there played an important role in all the future developments of the subject. For re-
finements of Kato’s result under the gap assumption made in [Kat50], see [ASY87, JP91, Nen93].

Let H be a (possibly unbounded) self-adjoint operator on the Hilbert space H and

V : [0,1] →B(H ) (2)

a continuous map taking its values in the bounded self-adjoint operators on H . For T > 0, we
consider the non-autonomous Schrödinger equation

i∂tψ(t ) = (H +V (t/T ))ψ(t ), ψ(s) = f , s, t ∈ [0,T ].

For any f ∈ Dom(H) this equation has a unique solution [0,T ] 3 t 7→ ψ(t ) ∈ Dom(H), which
can be written as ψ(t ) = U s/T→t/T

T f , where [0,1]× [0,1] 3 (σ,τ) 7→ Uσ→τ
T ∈ B(H ) is a strongly

continuous map taking its values in the unitary operators on H and satisfying Uσ→σ
T = I ,

Uσ→τ
T Dom(H) ⊂ Dom(H), and Uτ→υ

T Uσ→τ
T = Uσ→υ

T for all σ,τ,υ ∈ [0,1]. UT is the propagator
associated to the time-dependent Hamiltonian [0,1] 3 τ 7→ T (H +V (τ)).

2In particular, we have not attempted here to formulate these results in a technically optimal setting.
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For each τ ∈ [0,1], let E(τ) be an eigenvalue of finite multiplicity of H(τ) = H +V (τ) which is
uniformly separated from the remaining part of its spectrum, i.e.,

inf
τ∈[0,1]

dist(E(τ),sp(H(τ)) \ {E(τ)}) > 0, (3)

and denote by P (τ) the orthogonal projection onto the associated eigenspace.

Theorem 2.1. [Kat50] Suppose, in addition to (3), that the map (2) is C 2. Then, as T ↑∞,

sup
τ∈[0,1]

‖(I −P (τ))U 0→τ
T P (0)‖ =O(T −1).

The adiabatic theorem without a gap. This fundamental refinement of Theorem 2.1 goes back
to Avron and Elgart [AE99], who dispense with the gap assumption (3); for an important tech-
nical comment on their result see [Teu01]. The setting is the same as in Theorem 2.1, except
that (3) is replaced by the following assumption:

Assumption (AD) There exists a C 2 map [0,1] 3 τ 7→ P (τ) ∈ B(H ) such that, for
Lebesgue a.e. τ ∈ [0,1], P (τ) is the orthogonal projection onto the eigenspace of a
finite multiplicity eigenvalue of H(τ).

Theorem 2.2. [AE99, Teu01] Suppose that (AD) holds. Then

lim
T→∞

sup
τ∈[0,1]

‖(I −P (τ))U 0→τ
T P (0)‖ = 0.

3 Adiabatic theorems in quantum statistical mechanics

The isothermal adiabatic theorem for local perturbations. Let (O ,α) be a C∗-dynamical sys-
tem. Denote by δ its generator, αt = etδ, and byω anα-KMS state at inverse temperature β> 0.
To a self-adjoint V ∈ O we associate the perturbed dynamics αt

V = etδV , where δV = δ+ i[V , · ],
and the perturbed (αV ,β)-KMS state ωV .

Let
[0,1] 3 τ 7→V (τ) ∈O (4)

be a continuous map such that V (τ) is self-adjoint for all τ. For T > 0, the unique solution of
the Cauchy problem for the non-autonomous Heisenberg equation

∂tγ
t (A) = γt ◦δV (t/T )(A), γs(A) = A ∈ Dom(δ), s, t ∈ [0,T ],

is given by γt = αs/T→t/T
T , where [0,1] × [0,1] 3 (σ,τ) 7→ ασ→τ

T is a strongly continuous two-
parameter family of ∗-automorphisms of O satisfying the relation ασ→τ

T ◦ατ→υ
T =ασ→υ

T for any
σ,τ,υ ∈ [0,1]. For 0 ≤σ≤ τ≤ 1, it has the norm-convergent expansion3

ασ→τ
T (A) =

∞∑
n=0

T n
∫

σ≤σ1≤···≤σn≤τ
i[α(σ1−σ)T (V (σ1)), i[· · · , i[α(σn−σ)T (V (σn)),α(τ−σ)T (A)] · · · ]]dσ1 · · ·dσn .

Recall the property of Return to Equilibrium reviewed in [JPT23, Section 1.1], where the reader
can also find references to this well-studied topic.

3It is understood that the zeroth term in this expansion isα(τ−σ)T (A). A similar expression holds for 0 ≤ τ≤σ≤ 1.
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Theorem 3.1. Suppose that the map (4) is C 2. If, for Lebesgue a.e. τ ∈ [0,1], the quantum dy-
namical system (O ,αV (τ),ωV (τ)) has the property of return to equilibrium, then

lim
T→∞

sup
τ∈[0,1]

‖ωV (0) ◦α0→τ
T −ωV (τ)‖ = 0. (5)

This result goes back to [ASF07, JP]; see also [JP14]. The proof is a simple combination of
the Avron–Elgart gapless adiabatic theorem 2.2 and Araki’s perturbation theory of the modular
structure.

For an in depth discussion of Theorem 3.1 and its thermodynamical implications we refer the
reader to [BFJP]. Here we recall three results that will be of relevance in what follows; see
also [JP14, Section 5] for a related discussion.

The first is the following entropy balance equation:

Proposition 3.2. Suppose that the map (4) is C 1 and denote by V̇ its derivative. Then4

S
(
ωV (0) ◦α0→τ

T

∣∣∣ωV (τ)

)
=β

∫ τ

0

(
ωV (0) ◦α0→σ

T −ωV (σ)
)

(V̇ (σ))dσ

holds for all τ ∈ [0,1].

For the reader’s convenience, a proof of this proposition is given in Section 5.1.

The entropy balance equation yields the estimate

sup
τ∈[0,1]

S
(
ωV (0) ◦α0→τ

T

∣∣∣ωV (τ)

)
≤β sup

τ∈[0,1]
‖ωV (0) ◦α0→τ

T −ωV (τ)‖ sup
τ∈[0,1]

‖V̇ (τ)‖,

and the validity of (5) implies that the adiabatic theorem for local perturbations also holds in
the entropic sense:

lim
T→∞

sup
τ∈[0,1]

S
(
ωV (0) ◦α0→τ

T

∣∣∣ωV (τ)

)
= 0. (6)

On the other hand, the Pinsker–Csiszàr inequality [OP93, Proposition 5.23], ‖ω−ν‖2 ≤ 2S(ω|ν),
gives that (6) implies (5). In summary:

Theorem 3.3. Suppose that the map (4) is C 1. Then, the following statements are equivalent:

(i)

lim
T→∞

sup
τ∈[0,1]

S
(
ωV (0) ◦α0→τ

T

∣∣∣ωV (τ)

)
= 0.

(ii)
lim

T→∞
sup
τ∈[0,1]

‖ωV (0) ◦α0→τ
T −ωV (τ)‖ = 0.

Starting with Proposition 3.2, a similar argument yields the third result which is also of inde-
pendent interest.

Theorem 3.4. Suppose that the map (4) is C 1. Then, the following statements are equivalent:

(i) For Lebesgue a.e. τ ∈ [0,1],

lim
T→∞

ωV (0) ◦α0→τ
T (V̇ (τ)) =ωV (τ)(V̇ (τ)).

4S( · | · ) is the relative entropy functional, with the sign and ordering convention of [JPT23, Section 1.1].
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(ii) For all τ ∈ [0,1],

lim
T→∞

S
(
ωV (0) ◦α0→τ

T

∣∣∣ωV (τ)

)
= 0.

(iii) For all τ ∈ [0,1],
lim

T→∞
‖ωV (0) ◦α0→τ

T −ωV (τ)‖ = 0.

In Section 4.2 we extend Theorem 3.4 to translation invariant many body systems.

The adiabatic theorem for gapped ground states of quantum spin systems. A very general
extension of Theorem 2.1 to many body quantum spin systems was established in [BDRF17,
BDRF18]. Since this result plays no role in our work, we will not discuss it further. The low tem-
perature adiabatic theory of lattice fermion systems was studied in the recent work [GLMP22].
The relation between our work and [GLMP22] remains to be studied further.

4 Structural theory

4.1 Setup

As in [JPT23], we will work with quantum spin systems on the lattice Zd and set the inverse
temperature to β = 1. All the results and proofs directly extend to the fermionic case. The
notation and terminology are the same as in [JPT23]; see Appendix A below for a brief summary.

Given an interactionΦ ∈Br , the associated local Hamiltonian in a finite cube Λ is

HΛ(Φ) = ∑
X⊂Λ

Φ(X ).

The C∗-dynamics it generates on A is

αt
Φ,Λ(A) = eit HΛ(Φ) Ae−it HΛ(Φ),

and its thermodynamic limit
αt
Φ(A) = lim

Λ↑Zd
αt
Φ,Λ(A),

yields a C∗-dynamics commuting with the natural action of the translation group Zd 3 x 7→ϕx .

We consider time-dependent translation invariant interactions described by continuous maps

Φ : [0,1] 3 τ 7→Φτ ∈Br .

In analogy with Section 3, the local time-dependent Hamiltonians HΛ(Φτ) generate a non-
autonomous C∗-dynamics ασ→τ

Φ,Λ on A, uniquely characterized by the Cauchy problem for the
Heisenberg equation of motion

∂τα
σ→τ
Φ,Λ (A) =ασ→τ

Φ,Λ (i[HΛ(Φτ), A]), ασ→σ
Φ,Λ (A) = A ∈A, σ,τ ∈ [0,1].

The following proposition summarizes the basic properties of its thermodynamic limit needed
in this paper. The reader should consult [NSY19] for a more detailed and more general discus-
sion of non-autonomous C∗-dynamics.
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Proposition 4.1. Let Φ : [0,1] → Br be a continuous, time-dependent, translation invariant
interaction.

(1) For all σ,τ ∈ [0,1] and A ∈A, the limit

ασ→τ
Φ (A) = lim

Λ↑Zd
ασ→τ
Φ,Λ (A) (7)

exists and defines a two-parameter family of ∗-automorphisms of A such that

ασ→τ
Φ ◦ατ→υ

Φ =ασ→υ
Φ , ασ→σ

Φ = Id,

for all σ,τ,υ ∈ [0,1].

(2) αΦ commutes with the group action of Zd , i.e.,

ασ→τ
Φ ◦ϕx =ϕx ◦ασ→τ

Φ ,

for all σ,τ ∈ [0,1] and x ∈Zd .

(3) The map [0,1] 3σ,τ 7→ασ→τ
Φ ∈ Aut(A) is strongly continuous. Moreover, for all σ,τ ∈ ]0,1[

and any A ∈Aloc,
∂τα

σ→τ
Φ (A) =ασ→τ

Φ ◦δΦτ
(A),

where δΦτ
denotes the map defined by

δΦτ
(A) = ∑

X∩supp(A) 6=;
i[Φτ(X ), A].

(4) For σ,τ ∈ [0,1] and integer N ≥ 1, set ξN = (τ−σ)/N and υk = σ+kξN . Then, for A ∈A,
one has

ασ→τ
Φ (A) = lim

N→∞
α
ξN
Φυ0

◦ · · · ◦αξN
ΦυN−1

(A).

A proof is given in Section 5.2. The family {ασ→τ
Φ }σ,τ∈[0,1] defines the non-autonomous C∗-

dynamics generated by the time-dependent interactionΦ.

The basic result on the constancy of specific entropy along the state trajectory, [LR68, Theo-
rem 5], extends to time-dependent interactions.

Proposition 4.2. For any ν ∈SI(A) and σ,τ ∈ [0,1],

s(ν) = s(ν◦ασ→τ
Φ ).

Proof. Invoking reversibility, it suffices to prove that, for all σ,τ ∈ [0,1], one has

s(ν) ≤ s(ν◦ασ→τ
Φ ). (8)

Part (4) of Proposition 4.1 gives

s(ν◦ασ→τ
Φ ) = s

(
w∗− lim

N→∞
ν◦αξN

Φυ0
◦ · · · ◦αξN

ΦυN−1

)
,

and by [LR68, Theorem 5], we have

s(ν◦αξN
Φυ0

◦ · · · ◦αξN
ΦυN−1

) = s(ν).

The upper-semicontinuity of specific entropy yields (8).
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4.2 Main results

In this section we associate to a time-dependent interaction Ψ a family of instantaneous equi-
librium states. More precisely, we will denote by Jν,ΨK a continuous map

[0,1] 3 τ 7→ (ντ,Ψτ) ∈SI(A)×Br

such that ντ ∈ Seq(Ψτ) for all τ ∈ [0,1]. We will consider the non-autonomous time evolution
on A defined by the Cauchy problem

∂tγ
t (A) = γt ◦δΨt/T (A), γs(A) = A ∈Aloc, s, t ∈ [0,T ],

in the adiabatic limit T →∞. A rescaling of the time variables s and t gives

γt =αs/T→t/T
TΨ ,

where {ασ→τ
TΨ }σ,τ∈[0,1] is the two-parameter family of ∗-automorphisms generated by the re-

scaled interaction TΨ, as described in Proposition 4.1.

Definition 4.3.

(1) A regular pair (ν,Ψ) ∈ SI(A)×Br is uniquely regular whenever Seq(Ψ) = {ν}. A path
Jν,ΨK is uniquely regular whenever (ντ,Ψτ) is uniquely regular for all τ ∈ [0,1].

(2) We say that Jν,ΨK satisfies the adiabatic theorem if

w∗− lim
T→∞

ν0 ◦α0→1
TΨ = ν1,

and the path adiabatic theorem if, for all τ ∈ [0,1],

w∗− lim
T→∞

ν0 ◦α0→τ
TΨ = ντ.

(3) We say that Jν,ΨK satisfies the entropic adiabatic theorem if

lim
T→∞

s(ν0 ◦α0→1
TΨ |ν1) = 0,

and the entropic path adiabatic theorem if, for all τ ∈ [0,1],

lim
T→∞

s(ν0 ◦α0→τ
TΨ |ντ) = 0.

In the fermionic case, gauge-invariance implies that the adiabatic theorem can hold only if
ν0(EN ) = ν1(EN ). Similarly, the path adiabatic theorem can hold only if ν0(EN ) = ντ(EN ) for all
τ ∈ [0,1]. In what follows we will discuss only the quantum spin case, and leave the elementary
reformulations needed to accommodate the fermionic setting to the interested reader.

Proposition 4.4. Suppose that (ν1,Ψ1) is a uniquely regular pair. Then the following statements
are equivalent:

(i) s(ν0) = s(ν1) and the adiabatic theorem holds for Jν,ΨK.

(ii) s(ν0) = s(ν1) and lim
T→∞

ν0 ◦α0→1
TΨ (EΨ1 ) = ν1(EΨ1 ).

(iii) The entropic adiabatic theorem holds for Jν,ΨK.

7
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Proof. Note that ν0 ◦α0→1
TΨ ∈SI(A) by Part (2) of Proposition 4.1.

(i)⇒(ii). Follows directly from Definition 4.3.

(ii)⇒(iii). The regularity of (ν1,Ψ1) gives

s(ν0 ◦α0→1
TΨ |ν1) =−s(ν0 ◦α0→1

TΨ )+ν0 ◦α0→1
TΨ (EΨ1 )+P (Ψ1). (9)

The assumption s(ν0) = s(ν1) and Proposition 4.2 yield that s(ν0 ◦α0→1
TΨ ) = s(ν1), and so

lim
T→∞

s(ν0 ◦α0→1
TΨ |ν1) =−s(ν1)+ν1(EΨ1 )+P (Ψ1) = 0,

where we used that ν1 ∈Seq(Ψ1).

(iii)⇒(i). Let ν+ be a weak∗-limit point of the net (ν0 ◦α0→1
TΨ )T>0 as T → ∞. The regularity of

(ν1,Ψ1) implies that the map SI(A) 3ω 7→ s(ω|ν1) is lower-semicontinuous, and so

0 ≤ s(ν+|ν1) ≤ liminf
T→∞

s(ν0 ◦α0→1
TΨ |ν1) = 0.

Since ν+ ∈SI(A), we deduce from

0 = s(ν+|ν1) =−s(ν+)+ν+(EΨ1 )+P (Ψ1)

that ν+ ∈Seq(Ψ1) = {ν1}. It follows that ν0 ◦α0→1
TΨ * ν1 as T →∞.

To prove that s(ν0) = s(ν1), note that the formula (9) and Proposition 4.2 yield

s(ν0 ◦α0→1
TΨ |ν1) =−s(ν0)+ν0 ◦α0→1

TΨ (EΨ1 )+P (Ψ1).

Hence,
0 = lim

T→∞
s(ν0 ◦α0→1

TΨ |ν1) =−s(ν0)+ν1(EΨ1 )+P (Ψ1) = s(ν1)− s(ν0),

where we used that ν1 ∈Seq(Ψ1).

An immediate consequence of the last result is:

Theorem 4.5. Suppose that the path Jν,ΨK is uniquely regular. Then the following statements
are equivalent:

(i) s(ν0) = s(ντ) for all τ ∈ [0,1] and the path adiabatic theorem holds for Jν,ΨK.

(ii) s(ν0) = s(ντ) and lim
T→∞

ν0 ◦α0→τ
TΨ (EΨτ

) = ντ(EΨτ
) for all τ ∈ [0,1].

(iii) The entropic path adiabatic theorem holds for Jν,ΨK.

Our next result is:

Theorem 4.6. Suppose that the path Jν,ΨK is uniquely regular. If Ψ ∈ C 1([0,1],Br ), then the
following statements are equivalent:

(i) For Lebesgue a.e. τ ∈ [0,1],

lim
T→∞

ν0 ◦α0→τ
TΨ (∂τEΨτ

) = ντ(∂τEΨτ
).

(ii) The entropic path adiabatic theorem holds for Jν,ΨK.

8
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Proof. (ii)⇒(i) follows from Theorem 4.5.

(i)⇒(ii). The map [0,1] 3 τ 7→ EΨτ
is continuously differentiable by assumption. Moreover, it

follows from Part (3) of Proposition 4.1 that for A ∈Aloc,

ασ→τ
TΨ (A) = A+T

∫ τ

σ
ασ→υ

TΨ ◦δΨυ
(A)dυ.

By the proof of Part (2) of [JPT23, Theorem 2.8], for any τ,υ ∈ [0,1] one has EΨτ
∈ Dom(δΨυ

) and

ω◦δΨτ
(EΨτ

) = 0 for all ω ∈SI(A). (10)

Moreover, there exist a sequence (EΨτ,n)n∈N in Aloc such that5 ‖δΨυ
(EΨτ,n )‖ ≤ 2‖Ψ‖2

r , and

lim
n→∞EΨτ,n = EΨτ

, lim
n→∞δΨυ

(EΨτ,n) = δΨυ
(EΨτ

).

Hence, the dominated convergence theorem yields

ασ→τ
TΨ (EΨτ

) = EΨτ
+T

∫ τ

σ
ασ→υ

TΨ ◦δΨυ
(EΨτ

)dυ,

from which we deduce

∂τν0 ◦α0→τ
TΨ (EΨτ

) = Tν0 ◦α0→τ
TΨ ◦δΨτ

(EΨτ
)+ν0 ◦α0→τ

TΨ (∂τEΨτ
).

Since ν0 ◦α0→τ
TΨ ∈SI(A) by Part (2) of Proposition 4.1, it follows from (10) that

ν0 ◦α0→τ
TΨ (EΨτ

)−ν0(EΨ0 ) =
∫ τ

0
ν0 ◦α0→σ

TΨ (∂σEΨσ
)dσ.

Taking the limit T →∞, it follows from our hypotheses and the dominated convergence theo-
rem that

lim
T→∞

ν0 ◦α0→τ
Ψ,T (EΨτ

)−ν0(EΨ0 ) =
∫ τ

0
νσ(∂σEΨσ

)dσ. (11)

The uniqueness of the equilibrium state for Ψτ implies that the pressure Br 3 Φ 7→ P (Φ) is
differentiable at Ψτ, with

P (Ψτ+Φ)−P (Ψτ)+ντ(EΦ) = o(‖Φ‖r )

for Φ ∈Br [LR68, Theorem 3]. Invoking again the differentiability of τ 7→ EΨτ
yields

∂τP (Ψτ) =−ντ(∂τEΨτ
). (12)

Combining Relations (12) and (11) we derive

lim
T→∞

ν0 ◦α0→τ
Ψ,T (EΨτ

)+P (Ψτ) = ν0(EΨ0 )+P (Ψ0).

Now, since (ντ,Ψτ) is a regular pair, we have

s(ν0 ◦α0→τ
Ψ,T |ντ) =−s(ν0)+ν0 ◦α0→τ

Ψ,T (EΨτ
)+P (Ψτ),

and so
lim

T→∞
s(ν0 ◦α0→τ

Ψ,T |ντ) =−s(ν0)+ν0(EΨ0 )+P (Ψ0) = 0.

5The norm ‖Ψ‖r of a time-dependent interactionΨ is defined in (21).
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The following example illustrates the last result. Let Φ0,Φ1 ∈ Br , and let λ ∈ C 1([0,1]) be such
that λ(0) = 0, λ(1) = 1. Set

Ψτ =Φ0 +λ(τ)(Φ1 −Φ0),

and assume that the path Jν,ΨK is uniquely regular. Then the entropic path adiabatic theorem
holds for Jν,ΨK iff, for all τ ∈ [0,1] with ∂τλ(τ) 6= 0,

lim
T→∞

ν0 ◦α0→τ
TΨ (EΦ1−Φ0 ) = ντ(EΦ1−Φ0 ).

We finish this section with the translation invariant version Theorem 3.4. This result is direct a
consequence Theorems 4.5 and 4.6 and we state it for completeness reason.

Theorem 4.7. Suppose that the path Jν,ΨK is uniquely regular. If Ψ ∈ C 1([0,1],Br ), then the
following statements are equivalent:

(i) For Lebesgue a.e. τ ∈ [0,1],

lim
T→∞

ν0 ◦α0→τ
TΨ (∂τEΨτ

) = ντ(∂τEΨτ
).

(ii) The entropic path adiabatic theorem holds for Jν,ΨK.

(iii) The path adiabatic theorem holds for Jν,ΨK.

Moreover, any of the above statements implies

(iv) For all τ ∈ [0,1],

s(ντ) = s(ν0).

4.3 Adiabaticity and the approach to equilibrium

Theorem 3.1 points to a close relation between the adiabatic theorem for local perturbations of
KMS states and return to equilibrium. In view of the formal analogy between Proposition 3.4
and Theorem 4.7, one may expect a similar relation between the adiabatic theorem for trans-
lation invariant interactions and approach to equilibrium. Our last result shows that this is not
the case.

We first recall the framework of approach to equilibrium developed in [JPT23]. Let ω ∈ SI(A)
and Φ ∈Br . Set

ω̄T = 1

T

∫ T

0
ω◦τt

Φdt .

We denote by S+(ω,Φ) the set of weak∗-limit points of the net (ω̄T )T>0 as T →∞. Approach to
equilibrium holds in this setting whenever S+(ω,Φ)∩Seq(Φ) 6= ;.

Theorem 4.8. Let (ν0,Φ0) and (ν1,Φ1) be two uniquely regular pairs and suppose that Φ0 and
Φ1 are not physically equivalent. Then the following statements are mutually exclusive.

(i) ν1 ∈S+(ν0,Φ1), i.e., approach to equilibrium holds for (A,αΦ1 ,ν0).

(ii) There exists a uniquely regular path Jν,ΨK, with Ψ ∈ C 1([0,1],Br ), connecting (ν0,Φ0) to
(ν1,Φ1) and satisfying the path adiabatic theorem.

10
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Proof. Approach to equilibrium has been characterized in terms of a strict increase of specific
entropy. According to [JPT23, Theorem 2.20], if ν1 ∈S+(ν0,Φ1), then s(ν0) < s(ν1) since Φ0 and
Φ1 are not physically equivalent. By Theorem 4.7, this fact is incompatible with the existence
of the path Jν,ΨK.

Conversely, Theorem 4.7 shows that the existence of the path Jν,ΨK implies the equality s(ν0) =
s(ν1). By [JPT23, Theorem 2.20], if ν1 ∈ S+(ν0,Φ1), then s(ν0) = s(ν1) implies ν0 = ν1 and that
Φ0 and Φ1 are physically equivalent, which contradicts the assumption of the theorem.

5 Proofs of Propositions 3.2 and 4.1

5.1 Proof of Proposition 3.2

Our standing assumption is that the map V ∈ C 1([0,1],O ) takes its value in the self-adjoint
elements of O , V̇ denoting its derivative. Denote by [0,1] 3 s, t 7→ αs→t

T the 2-parameter family
of ∗-automorphisms of O uniquely determined by the Cauchy problem

1

T
∂tα

s→t
T (A) =αs→t

T ◦δV (t )(A), αs→s
T (A) = A ∈ Dom(δ), s, t ∈ [0,1].

We start with:

Lemma 5.1. For s, t ∈ [0,1], one has

αs→t
T = γs→t

T ◦α(t−s)T
V (t ) , (13)

where γs→t
T is the inner ∗-automorphism of O given by γs→t

T (A) = Γs→t
T AΓs→t∗

T , and the 2-para-
meter family of unitaries ΓT is the solution of the Cauchy problem

i

T
∂tΓ

s→t
T = Γs→t

T

∫ t

s
α(r−s)T

V (t ) (V̇ (t ))dr, Γs→s
T =1 s, t ∈ [0,1]. (14)

Moreover, one has Γs→t
T ∈ Dom(δ) for all s, t ∈ [0,1].

Proof. Fix T > 0, s ∈ [0,1], and set

H̃t = T
∫ t

s
α(r−s)T

V (t ) (V̇ (t ))dr,

so that
∂tγ

s→t
T (A) = γs→t

T (−i[H̃t , A]). (15)

For A ∈ Dom(δ), one has ∂uδV (u)(A) = i[V̇ (u), A], and Duhamel’s formula yields

∂uα
(t−s)T
V (u) (A) = T

∫ t

s
α(r−s)T

V (u) (i[V̇ (u),α(t−r )T
V (u) (A)])dr,

so that
∂uα

(t−s)T
V (u) (A)

∣∣∣
u=t

= i[H̃t ,α(t−s)T
V (t ) (A)],

and hence
∂tα

(t−s)T
V (t ) (A) = Tα(t−s)T

V (t ) ◦δV (t )(A)+ i[H̃t ,α(t−s)T
V (t ) (A)]. (16)

Combining Relations (15) and (16), we derive

∂tγ
s→t
T ◦α(t−s)T

V (t ) (A) = γs→t
T (−i[H̃t ,α(t−s)T

V (t ) (A)])+γs→t
T (Tα(t−s)T

V (t ) ◦δV (t )(A)+ i[H̃t ,α(t−s)T
V (t ) (A)])

= Tγs→t
T ◦α(t−s)T

V (t ) ◦δV (t )(A).

11
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Since obviously γs→s
T ◦α(s−s)T

V (t ) (A) = A, Relation (13) holds.

To prove the last statement, for fixed s, t ∈ [0,1] let the sequence (Qn)n∈N ⊂ Dom(δV (t )) be such
that limn→∞Qn = V̇ (t ). Setting

Hn = T
∫ t

s
α(r−s)T

V (t ) (Qn)dr,

and observing that

T
∫ t

s
α(r−s)T

V (t ) (δV (t )(Qn))dr =
∫ t

s
∂rα

(r−s)T
V (t ) (Qn)dr =α(t−s)T

V (t ) (Qn)−Qn ,

we derive
δV (t )(Hn) =α(t−s)T

V (t ) (Qn)−Qn .

From the obvious facts that

lim
n→∞Hn = H̃t , lim

n→∞δV (t )(Hn) =α(t−s)T
V (t ) (V̇ (t ))− V̇ (t ),

the closedness of δV (t ) allows us to conclude that H̃t ∈ Dom(δV (t )) = Dom(δ) and that

δV (t )(H̃t ) =α(t−s)T
V (t ) (V̇ (t ))− V̇ (t ). (17)

Writing the solution to the Cauchy problem (14) as the uniformly convergent Dyson series

Γs→t
T = ∑

n≥0
(−i)n

∫
s≤t1≤···≤tn≤t

H̃t1 · · · H̃tn dt1 · · ·dtn ,

one deduces Γs→t
T ∈ Dom(δ) for all s, t ∈ [0,1] and that

δ(Γs→t
T ) = ∑

n≥0
(−i)n

n∑
k=1

∫
s≤t1≤···≤tn≤t

H̃t1 · · ·δ(H̃tk ) · · · H̃tn dt1 · · ·dtn ,

where the series on right hand side converges uniformly.

We now proceed with the proof of Proposition 3.2.

The previous lemma gives

S(ωV (s) ◦αs→t
T |ωV (t )) = S(ωV (s) ◦γs→t

T ◦α(t−s)T
V (t ) |ωV (t )) = S(ωV (s) ◦γs→t

T |ωV (t )),

and invoking [JP03, Theorem 1.1]6, we can write

S(ωV (s) ◦αs→t
T |ωV (t )) = S(ωV (s)|ωV (t ))− iβωV (s)(Γ

s→t
T δV (t )(Γ

s→t∗
T )). (18)

To deal with the first term on the right-hand side, we invoke Araki’s perturbation theory (see,
e.g., [DJP03, Theorem 5.1]). Setting ν=ωV (s) and Wt =V (t )−V (s), we have

S(ωV (s)|ωV (t )) = S(ν|νWt ) =βν(Wt )+ log〈Ων,e−β(L+πν(Wt ))Ων〉,
where (Hν,πν,Ων) denotes the GNS representation of O induced by ν, and L is the standard
Liouvillean generating the unitary implementation of the C∗-dynamics αV (s) on Hν. Taking
the derivative w.r.t. t of the logarithmic term and using the facts that Ws = 0 and LΩν = 0 gives

log〈Ων,e−β(L+πν(Wt ))Ων〉 =
∫ t

s
∂u log〈Ων,e−β(L+πν(Wu ))Ων〉du.

6We note that the definition of relative entropy used in [JP03, DJP03] differs in its sign with the one used here.
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Duhamel’s formula further yields

∂u log〈Ων,e−β(L+πν(Wu ))Ων〉 =−
∫ β

0

〈Ων,e−γ(L+πν(Wu ))πν(V̇ (u))e−(β−γ)(L+πν(Wu ))Ων〉
‖Ψu‖2 dγ

=−
∫ β/2

−β/2

〈Ψu ,e−γ(L+πν(Wu ))πν(V̇ (u))eγ(L+πν(Wu ))Ψu〉
‖Ψu‖2 dγ,

whereΨu = e−β(L+πν(Wu ))/2Ων is, up to normalization, the vector representative of ωV (u) in Hν.
It follows that

∂u log〈Ων,e−β(L+πν(Wu ))Ων〉 =−
∫ β/2

−β/2
ωV (u)

(
α

iγ
V (u)(V̇ (u))

)
dγ=−βωV (u)(V̇ (u)),

and hence

S(ωV (s)|ωV (t )) =βωV (s)(V (t )−V (s))−β
∫ t

s
ωV (u)(V̇ (u))du =−β

∫ t

s
(ωV (u) −ωV (s))(V̇ (u))du.

To deal with the second term on the right-hand side of (18), we note that

iΓs→t
T δV (t )(Γ

s→t∗
T ) =

∫ t

s
i∂uΓ

s→u
T δV (u)(Γ

s→u∗
T )du,

and so, using Relation (17), we have that

i∂uΓ
s→u
T δV (u)(Γ

s→u∗
T ) = Γs→u

T H̃uδV (u)(Γ
s→u∗
T )−Γs→u

T δV (u)(H̃uΓ
s→u∗
T )−Γs→u

T [V̇ (u),Γs→u∗
T ]

=−Γs→u
T (δV (u)(H̃u)+ V̇ (u))Γs→u∗

T + V̇ (u)

=−Γs→u
T α(u−s)T

V (u) (V̇ (u))Γs→u∗
T + V̇ (u)

=−αs→u
T (V̇ (u))+ V̇ (u).

It follows that

−iβωV (s)(Γ
s→t
T δV (t )(Γ

s→t∗
T )) =β

∫ t

s

(
ωV (s) ◦αs→u

T (V̇ (u))−ωV (s)(V̇ (u))
)

du,

and finally, Relation (18) gives

S(ωV (s) ◦αs→t
T |ωV (t )) =β

∫ t

s

(
ωV (s) ◦αs→u

T (V̇ (u))−ωV (u)(V̇ (u))
)

du.

5.2 Proof of Proposition 4.1

We start with some preliminary observations. By [BR81, Theorem 6.2.4], the time-dependent
derivation [0,1] 3 τ 7→ δΦτ

defined on Aloc by

δΦτ
(A) = ∑

X∩supp(A)6=;
i[Φτ(X ), A],

is closable and its closure, which we shall denote by the same symbol, generates the frozen
C∗-dynamics

R 3 t 7→αt
Φτ

= etδΦτ .
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The translation invariance of the interaction Φτ implies that ϕx (Dom(δΦτ
)) = Dom(δΦτ

) and
that

δΦτ
◦ϕx =ϕx ◦δΦτ

, (19)

for all x ∈Zd .

Note that, for A ∈Aloc, one has
δΦτ

(A) = lim
Λ↑Zd

δΦτ,Λ(A),

where the convergence is in norm and

δΦτ,Λ(A) = ∑
X⊂Λ

i[Φτ(X ), A] = i[HΛ(Φτ), A],

is such that supp(δΦτ,Λ(A)) ⊂ supp(A)∪Λ, i.e., δΦτ,Λ(Aloc) ⊂Aloc. It follows that the non-auto-
nomous C∗-dynamics generated by the time-dependent local Hamiltonian HΛ(Φτ) is given by
the norm-convergent Dyson expansion

ασ→τ
Φ,Λ (A) =


A+ ∑

n≥1

∫
∆n (σ,τ)

δΦτ1 ,Λ ◦ · · · ◦δΦτn ,Λ(A)dτ1 · · ·dτn , for 0 ≤σ≤ τ≤ 1;

A+ ∑
n≥1

∫
∆n (σ,τ)

δΦτn ,Λ ◦ · · · ◦δΦτ1 ,Λ(A)dτ1 · · ·dτn , for 0 ≤ τ≤σ≤ 1;
(20)

for A ∈Aloc, where ∆n(σ,τ) = {(τ1, . . . ,τn) | 0 ≤ min(σ,τ) ≤ τ1 ≤ ·· · ≤ τn ≤ max(σ,τ)}.

In the following, the norm of a time-dependent continuous interaction [0,1] 3 τ 7→Φ(τ) ∈Br is
taken to be

‖Φ‖r = sup
τ∈[0,1]

‖Φτ‖r . (21)

(1) A trivial extension of [Isr79, Lemma III.3.5] gives that, for A ∈Aloc and τ1, . . . ,τn ∈ [0,1],

∑
X1,...,Xn∈F

∥∥i[Φτ1 (X1), i[Φτ2 (X2), · · · , i[Φτn (Xn), A] · · · ]]∥∥≤ ‖A‖er |supp(A)|
(

2‖Φ‖r

r

)n

n!.

Hence,

sup
τ1,...,τn∈[0,1]

‖δΦτ1
◦ · · · ◦δΦτn

(A)‖ ≤ ‖A‖er |supp(A)|
(

2‖Φ‖r

r

)n

n!, (22)

and the same estimate holds with δΦτk
replaced by δΦτk

,Λ. Thus, taking the thermodynamic
limit in (20) yields that, for |τ−σ| < ε= r /2‖Φ‖r ,

lim
Λ↑Zd

ασ→τ
Φ,Λ (A) =


A+ ∑

n≥1

∫
∆n (σ,τ)

δΦτ1
◦ · · · ◦δΦτn

(A)dτ1 · · ·dτn , for 0 ≤σ≤ τ≤ 1;

A+ ∑
n≥1

∫
∆n (σ,τ)

δΦτn
◦ · · · ◦δΦτ1

(A)dτ1 · · ·dτn , for 0 ≤ τ≤σ≤ 1;
(23)

the limit being uniform for τ−σ in compact subsets of ]−ε,ε[. Since the maps ασ→τ
Φ,Λ :Aloc →A

are isometric, their limit ασ→τ
Φ is norm continuous, and hence uniquely extends by continuity

to an isometry on A. It follows that (7) holds for all A ∈A and σ,τ ∈ [0,1] satisfying |τ−σ| < ε.
Moreover, as norm-limits of ∗-morphisms, the maps ασ→τ

Φ are themselves ∗-morphisms. For
σ,τ,υ ∈ [0,1] such that max(|τ−σ|, |σ−υ|) < ε, it follows from the continuity of ασ→τ

Φ that

lim
Λ↑Zd

ασ→τ
Φ ◦ατ→υ

Φ,Λ (A) =ασ→τ
Φ ◦ατ→υ

Φ (A),

14
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for A ∈Aloc. Writing

ασ→τ
Φ ◦ατ→υ

Φ,Λ (A) =ασ→υ
Φ,Λ (A)+ (ασ→τ

Φ −ασ→τ
Φ,Λ )◦ατ→υ

Φ (A)+ (ασ→τ
Φ −ασ→τ

Φ,Λ )◦ (ατ→υ
Φ,Λ −ατ→υ

Φ )(A),

and using that

lim
Λ↑Zd

(ασ→τ
Φ −ασ→τ

Φ,Λ )◦ατ→υ
Φ (A) = 0,

lim
Λ↑Zd

‖(ασ→τ
Φ −ασ→τ

Φ,Λ )◦ (ατ→υ
Φ,Λ −ατ→υ

Φ )(A)‖ ≤ 2 lim
Λ↑Zd

‖ατ→υ
Φ,Λ (A)−ατ→υ

Φ (A)‖ = 0,

we derive
ασ→τ
Φ ◦ατ→υ

Φ (A) =ασ→υ
Φ (A), (24)

provided that |υ−σ| < ε. This identity extends by continuity to all A ∈A, and allows to extend
the family of ∗-morphisms (ασ→τ

Φ )|τ−σ|<ε to arbitrary σ,τ ∈ [0,1] by setting

ασ→τ
Φ =ασ→τ1

Φ ◦ατ1→τ2
Φ ◦ · · · ◦ατn−1→τn

Φ ◦ατn→τ
Φ , (25)

where τ0 =σ,τ1, . . . ,τn+1 = τ are such that maxk |τk+1 −τk | < ε. One easily checks that the left-
hand side of this expression does not depend on the choice of the subdivisions τ1, . . . ,τn on
the right-hand side. By construction, this extension satisfies (24) for all σ,τ,υ ∈ [0,1]. From the
telescopic expansion based on (25),

ασ→τ
Φ (A)−ασ→τ

Φ,Λ (A) =
n∑

k=0
α
σ→τ1
Φ,Λ ◦· · ·◦ατk−1→τk

Φ,Λ ◦(ατk→τk+1
Φ −ατk→τk+1

Φ,Λ )◦ατk+1→τk+2
Φ ◦· · ·◦ατn→τ

Φ (A),

we derive

‖ασ→τ
Φ (A)−ασ→τ

Φ,Λ (A)‖ ≤
n∑

k=0
‖(ατk→τk+1

Φ −ατk→τk+1
Φ,Λ )(Ak )‖,

with Ak = α
τk+1→τk+2
Φ ◦ · · · ◦ατn→τ

Φ (A). It follows that (7) holds for all A ∈ A and all σ,τ ∈ [0,1].
Note that (24) implies that ασ→τ

Φ ◦ατ→σ
Φ = ασ→σ

Φ = Id, which shows that the maps ασ→τ
Φ are

∗-automorphisms of A.

(2) The translation invariance ασ→τ
Φ ◦ϕx =ϕx ◦ασ→τ

Φ follows immediately from Relation (19).

(3) For A ∈Aloc and |τ−σ| < ε/2, combining the Dyson expansion (23) with the estimate (22),
we get

‖ασ→τ
Φ (A)− A‖ ≤ 2ε−1‖A‖ed |supp(A)||τ−σ|.

Since ασ→τ
Φ is an isometry and Aloc is dense in A, we conclude that the map (σ,τ) 7→ ασ→τ

Φ is
strongly continuous on the diagonal (τ,τ) ∈ [0,1]×[0,1]. For (σ0,τ0) ∈ [0,1]×[0,1], Property (24)
gives

ασ→τ
Φ (A)−ασ0→τ0

Φ (A) =ασ→τ0
Φ (ατ0→τ

Φ (A)− A)+ (ασ→σ0
Φ (B)−B),

with B =σσ0→τ0
Φ (A), which shows strong continuity at (σ0,τ0).

From (24) and the Dyson expansion (23), we further derive that

∂τα
σ→τ
Φ (A) = lim

υ→0

1

υ

(
ασ→τ+υ
Φ (A)−ασ→τ

Φ (A)
)= lim

υ→0

1

υ
ασ→τ
Φ (ατ→τ+υ

Φ (A)− A) =ασ→τ
Φ ◦δΦτ

(A),

holds in norm for arbitrary σ,τ ∈ [0,1] and A ∈Aloc.

(4) We will consider the case σ < τ, the opposite case is similar. We also observe that Part (1)
extends to time-dependent piecewise continuous interactions Φ. Indeed, the continuity was
only tacitly used to justify the Riemann integration in the Dyson expansions (20) and (23).
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Let Φ,Ψ : [0,1] →Br be piecewise continuous and set ε̄= r /2max(‖Φ‖r ,‖Ψ‖r ). The telescopic
expansion

δΦτ1
◦ · · · ◦δΦτn

−δΨτ1
◦ · · · ◦δΨτn

=
n∑

k=1
δΦτ1

◦ · · · ◦δΦτk−1
◦δ(Φ−Ψ)τk

◦δΨτk+1
◦ · · · ◦δΨτn

,

combined with the estimate (22), gives

sup
τ1,...,τn∈[0,1]

‖δΦτ1
◦ · · · ◦δΦτn

(A)−δΨτ1
◦ · · · ◦δΨτn

(A)‖ ≤ 2n‖A‖er |supp(A)|ε̄−n+1 ‖Φ−Ψ‖r

r
n!,

for A ∈Aloc. Thus, it follows from the Dyson expansion (23) that

sup
|τ−σ|≤ε̄/2

‖ασ→τ
Φ (A)−ασ→τ

Ψ (A)‖ ≤ 4ε̄

r
‖A‖er |supp(A)|‖Φ−Ψ‖r .

By density/continuity, we derive that

lim
Ψ→Φ

‖ασ→τ
Φ (A)−ασ→τ

Ψ (A)‖ = 0 (26)

for all A ∈ A and |τ−σ| ≤ ε̄/2. Finally, a telescopic expansion analogous to (25) and with
maxk (|τk+1 −τk |) < ε̄/2 gives

‖ασ→τ
Φ (A)−ασ→τ

Ψ (A)‖ ≤
n∑

k=0
‖(ατk→τk+1

Φ −ατk→τk+1
Ψ )(Ak )‖,

with Ak = α
τk+1→τk+2
Φ ◦ · · · ◦ατn→τ

Φ (A), from which we conclude that (26) holds for all A ∈A and
all σ,τ ∈ [0,1].

To complete the proof, given the continuous time-dependent interactionΦ, set

Φ(N )
t = 1[0,υ0[(t )Φ(t )+

N−1∑
k=0

1[υk ,υk+1[(t )Φυk +1[υN ,1](t )Φt ,

where 1I denotes the indicator function of the set I . Since

sup
t∈[0,1]

‖Φt −Φ(N )
t ‖r ≤ sup

|t−s|<ξN

‖Φt −Φs‖r ,

the uniform continuity of the map [0,1] 3 τ 7→Φτ ∈Br implies

lim
N→∞

‖Φ−Φ(N )‖r = 0.

Thus, the claim follows from (26) and the fact that

ασ→τ
Φ(N ) (A) =αξN

Φυ0
◦ · · · ◦αξN

ΦυN−1
(A).

A Glossary of terms

More details can be found in [JPT23].

• A: the C∗-algebra of a spin system on Zd , or equivalently, the gauge-invariant sector of
the fermionic CAR algebra on `2(Zd ).
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• F : the set of all finite subsets of Zd .

• Φ: an interaction, namely a translation invariant family {Φ(X )}X∈F of self-adjoint ele-
ments of A with supp(Φ) = X .

• Br : the Banach space of interactions satisfying ‖Φ‖r =
∑
X30

er (|X |−1)‖Φ(X )‖ <∞, (r > 0).

• Zd 3 x 7→ϕx : the group action of Zd on A.

• SI(A): the set of translation invariant states on A.

• s(ν): the specific entropy of a state ν ∈SI(A).

• s(ν|ω): the specific relative entropy of two states ν,ω ∈SI(A).

• P (Φ): the pressure of the interactionΦ.

• EΦ =∑
X30 |X |−1Φ(X ), so that ν(EΦ) is the expected specific energy of the interactionΦ in

the state ν ∈SI(A).

• Seq(Φ) = {ν ∈ SI(A) | P (Φ) = s(ν)−ν(EΦ)}: the set of equilibrium states for Φ (from the
Gibbs variational principle).

• WG(Φ): the set of weak Gibbs states for Φ, see [JPT23, Section 2.2].

• αΦ: the Heisenberg dynamics generated by the (time-independent) interactionΦ.

• Physical equivalence: two interactions Φ,Ψ ∈ Br are physically equivalent iff αΦ = αΨ,
see [JPT23, Theorem 2.7].
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