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ABSTRACT: Mesoscale eddies, although being on the scales of $ (20-100km), have a dispro-

portionate role in shaping the mean stratification, which varies on the scale of $ (1000km). With

the increase in computational power, we are now able to partially resolve the eddies in basin-scale

and global ocean simulations, a model resolution often referred to as mesoscale permitting. It is

well-known, however, that due to grid-scale numerical viscosity, mesoscale-permitting simulations

have less energetic eddies and consequently weaker eddy feedback onto themean flow. In this study,

we run a quasi-geostrophic model at mesoscale-resolving resolution in a double gyre configuration

and formulate a deterministic closure for the eddy rectification term of potential vorticity (PV),

namely, the eddy PV flux divergence. Our closure successfully reproduces the spatial patterns and

magnitude of eddy kinetic and potential energy diagnosed from the mesoscale-resolving model.

One novel point about our approach is that we account for non-local eddy feedbacks onto the mean

flow by solving the ‘sub-grid’ eddy PV equation prognostically in addition to the mean PV.
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1. Introduction

In the field of fluid dynamics and turbulence, formulating a closure for the governing equations

has been a long standing problem (Smagorinsky 1963; Launder et al. 1975). Resolving the flow

down to the molecular scale where kinetic energy is dissipated to internal energy due to molecular

viscosity is usually not feasible, whether in observations or a numerical model. Particularly in the

field of geophysical fluid dynamics (GFD) where the scales of interest span up to $ (1000km),
resolving the molecular scale is practically unachievable and will remain so for the foreseeable

future. Due to the lack of resolution, a numerical model will only solve the governing equations

for the “resolved” field, and some work has to be done to account for the “unresolved” field. A

significant effort in GFD has been, therefore, to formulate a closure for the unresolved field, i.e.

represent the unresolved field with the resolved momentum and/or tracer field (e.g. Mellor and

Yamada 1982; Redi 1982; Gent and McWilliams 1990; Bachman et al. 2017).

The ocean component of climate models suffers from this issue of missing the unresolved

dynamics because it hardly resolves the mesoscale eddies (horizontal scale of$ (20-100km)). This
is problematic because the unresolved (small-scale) field not only drains energy from the resolved

(large-scale) field but also partially feeds back onto the resolved field via up-scale momentum

and buoyancy fluxes, and so modifies the dynamics of the large-scale flow (Vallis 2006; Lévy

et al. 2012; Arbic et al. 2013; Aluie et al. 2018; Ajayi et al. 2021). Modelling studies with

varying spatial resolution have shown that only partially resolving the mesoscale results in weaker

mesoscale eddies, and consequently weaker feedback onto large-scale flows. It is also well-known

that mesoscale eddies exert a strong influence on oceanic jets such as the Gulf Stream (Chassignet

and Xu 2017; Kjellsson and Zanna 2017; Chassignet and Xu 2021). Considering the impact of the

jets on global tracer transport and air-sea interaction (Kelly et al. 2010; Tréguier et al. 2014; Jones

and Cessi 2018; Bellucci et al. 2020), improving the representation of the eddy feedback onto

the jet has climate implications. Hence, there has been a growing effort to represent the inverse

cascade of kinetic energy otherwise lost to grid-scale numerical viscosity at mesoscale-permitting

resolution, a process often referred to as energy backscattering parameterizations (e.g. Zanna et al.

2017; Berloff 2018; Jansen et al. 2019; Bachman 2019; Juricke et al. 2019; Perezhogin 2019; Zanna

and Bolton 2020, and references therein). Our study here is in the same realm of parameterization
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studies in which we aim to improve the large-scale state by parameterizing the net mesoscale

feedback onto the large-scale flow.

Specifically, the goal of our study is to formulate a deterministic closure and hence a model for

the eddy dynamics. Such an approach is not new; for example, Jansen et al. (2019), Juricke et al.

(2019) and Perezhogin (2019) implemented a prognostic equation for the sub-grid (unresolved)

eddy energy and achieve the backscattering via a negative viscosity. One notable difference in

our method is that while many previous studies have formulated their parameterizations based on

a local closure (i.e. relating the eddy momentum/buoyancy flux locally at each grid point to the

resolvedmomentum/buoyancy), we construct our closure by incorporating basin-scale information.

This is motivated by the fact that Venaille et al. (2011) and Grooms et al. (2013) have shown that

the eddy feedback on the large-scale flow is strongly non-local. We also focus on the sub-grid

potential vorticity (PV) equation rather than sub-grid energy within the quasi-geostrophic (QG)

framework. The QG framework has been shown to be fruitful in examining the eddy-mean flow

interaction and formulating eddy closures (e.g. Marshall et al. 2012; Porta Mana and Zanna 2014;

Mak et al. 2016; Berloff 2018). In particular, Berloff et al. (2021) have shown some success in

accounting for the non-local eddy feedback by solving for the sub-grid QGPV equation (cf. Eq. 22).

While our approach is similar, here, we propose an alternative strategy to achieve a deterministic

closure for the sub-grid PV. This approach of prognostically solving for the sub-grid dynamics

is sometimes referred to as super parameterization and has been commonly implemented for

atmospheric or oceanic convection (e.g. Randall et al. 2003; Khairoutdinov et al. 2005; Campin

et al. 2011; Beucler et al. 2020). In this paper, we will provide a proof of concept of this super

parameterization approach with a QG model. The goal of this paper is indeed to see how a QG

model can handle the small-scale eddy dynamics given a prescribed large-scale background flow.

The paper is organized as follows: we describe our QG model configuration in section 2 and in

particular the (sub-grid) eddy PV model in section 2b. We propose a closure for the sub-grid PV

model and detail on its performance in section 3. A proof of concept of a prognostic implementation

of our super parameterization is given in section 4. We give our conclusions in section 5. The

reader interested in reproducing our results will find all the technical details in the appendices.
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2. Model and methods

a. The control run

We adopt the QG framework in order to describe the well-known double gyre circulation in an

idealized midlatitude ocean basin. This model is known to capture both the large-scale and small-

scale variability of the ocean with a relatively coarse vertical resolution (cf. Berloff 2015). The QG

formalism is meant to describe dynamical regimes for a prescribed background stratification #2

and Coriolis parameter 5 . Two ingredients are necessary to reproduce the double gyre pattern: the

planetary vorticity must vary with latitude for the western boundary intensification and the wind

forcing must be cyclonic in the northern part of the domain and anticyclonic in the southern part

of the domain. In order to satisfy the first condition, we work with the V-plane approximation such

that the Coriolis parameter 5 varies linearly with latitude. This sets the planetary scale !V = 50/V
which is large compared to the deformation scale '3 = #�/ 50, (with � the depth of the ocean

and 50 the average value of the Coriolis parameter in the domain). In this formalism, the main

dynamical variable is the QG potential vorticity (PV) defined as

@ =∇2k +Γkdef
= Lk, (1)

with k the stream function, ∇2 the horizontal Laplace operator and

Γ
def
=
m

mI

5 2
0
#2

m

mI
(2)

the vertical stretching operator. The horizontal velocity is defined as

D = −mk
mH

and E =
mk

mG
, (3)

and the buoyancy is defined as

1 = 50
mk

mI
. (4)

The equation of evolution of PV is

m@

mC
+ � (k,@) + VE = �4∇4@ + A1∇2k +� , (5)
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with

� (0, 1) = m0
mG

m1

mH
− m0
mH

m1

mG
, (6)

the Jacobian operator, which corresponds to the non-linear advective term, �4 the bi-harmonic

viscosity, A1 the bottom friction coefficient which parameterizes a bottom Ekman layer (and is thus

non-zero in the lower layer only), and � the forcing resulting from an Ekman pumping in a thin

Ekman layer at the surface and is thus non-zero in the upper layer only. We build the numerical

version of this model in the Basilisk framework (Popinet 2015, basilisk.fr).

We solve Eqs. (5) and (1) in a horizontal square domain with side ! = 5000 km and of vertical

extension � = 5000m. We discretize these equations with 512× 512 horizontal points (which

correspond to a horizontal resolution of slightly less than 10 km) and 4 vertical layers of thickness

ℎ1 = 238m, ℎ2 = 476m, ℎ3 = 953m and ℎ4 = 3333m (from top to bottom). We adjust the

background stratification #2 to mimic the stratification in middle of the subtropical gyre in the

North Atlantic such that at each layer interface, we have #2
1.5 = 1.7×10−5 s−2, #2

2.5 = 1.1×10−5 s−2,

#2
3.5 = 3.2× 10−7 s−2, from top to bottom. The average value of the Coriolis parameter is 50 =

9.3× 10−5 s−1 and V = 1.7× 10−11 m−1 s−1. For these parameters, the three deformation radii

are '31 = 25 km, '32 = 10 km and '33 = 7 km. Note that these deformation radii correspond to

the inverse squared eigenvalue of the vertical stretching operator. At this resolution we choose

�4 = 6.25×109 m4 s−1, and a spindown timescale A1 = 1/166 days (which corresponds to a bottom

Ekman layer of thickness X4 = 7.5m). We solve the elliptic equation (Eq. 1) with homogeneous

Dirichlet boundary conditions k = 0 on the sides (corresponding to no flux boundary condition)

and homogeneous Neumann boundary conditions 1 = kI = 0 at the top and bottom boundaries.

The forcing is

� =
∇×τ
d0ℎ1

, with g = g0 sin3
(cH
!

)
. (7)

We use a a cubic sine function in the definition of the wind in order to reproduce a narrow

midlatitude atmospheric jet. For such a narrow jet, the boundary between the positive and negative

area of the wind stress curl pattern is sharper than if we use the traditional cosine shape for the

wind pattern. We choose g0 = 0.25Nm−2 which is an acceptable value for the difference between

the maximum and minimum value of the wind in the North Atlantic (Josey et al. 2002). We have
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also kept the wind stress axisymmetric as our interest is on eddy time scales and not low-frequency

variability (Berloff et al. 2007).

To integrate the model in time, we first perform a spin up phase of 80 years at low resolution

(ΔG = 78.13 km) followed by another 80 years at the prescribed resolution (ΔG = 9.77 km). After

this spin up of 160 years in total, the model is in a statistically steady state (i.e. m@
mC
≈ 0). We show

in Fig. 1, the meridional profile of the wind stress and snapshot of the local Rossby number (i.e.

relative vorticity normalized by 50). Except in the region of the separated jet, the local Rossby

number is much smaller than unity, consistent with the QG scaling. Henceforth, we refer to this

run as the CTRL run.

(a) (b) τ and ζ/f0
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Fig. 1: A schematic of the four-layer configuration with a rigid lid and flat bottom (a). The
background stratification is prescribed at the layer interfaces. (b) The meridional profile of the
wind stress and a snapshot of the surface relative vorticity normalized by 50. Note that the wind
pattern takes only positive values: we could have added a term −g0/2 in the definition of the wind
in Eq. (7), however this is only cosmetic because this additional term does not impact the wind
stress curl, which is what ultimately matters in QG dynamics.

b. Mean flow and eddy models

In order to set up the framework for parameterization, we perform a Reynolds decomposition of

each dynamical variable as the sum of its mean (denoted with an overbar) and a perturbation about

the mean (denoted with a prime) as shown here for the stream function

k = k +k′ . (8)
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We leave the definition of the ‘mean’ intentionally vague for now to keep the arguments general.

If we use this decomposition in the equation of evolution of PV, we get

m

mC
(@ + @′) + � (k +k′, @ + @′) + V(E + E′) = �4∇4(@ + @′) + A1∇2(k +k′) +� , (9)

and taking the mean of this equation gives

m@

mC
+ � (k,@) + VE = �4∇4@ + A1∇2k− � (k′, @′) +� . (10)

The term � (k′, @′) =∇ · (u′@′) is known as the eddy rectification of the large-scale flow. At this

point, it is common in eddy parameterization studies to reinterpret the ‘mean’ flow as the resolved

flow of a coarse resolution model and formulate a closure to model the contributions from the

sub-grid flow onto the resolved flow. Namely, the eddy rectification is the sub-grid feedback that

many studies seek to parameterize (e.g. Eden 2010; Marshall et al. 2012; Mana and Zanna 2014;

Mak et al. 2016; Berloff 2018). The reinterpretation is based on the expectation that the reduction

in variability resulting from the averaging operator would mimic the partially resolved variability

at mesoscale-permitting resolution.

A well-known approach to parameterize the role of the eddies on the mean flow is to approximate

the eddy PV flux by a term that is proportional to the local gradient of the mean PV (Gent and

McWilliams 1990):

u′@′ ≈ ^GM∇(Γk) (11)

with ^GM an eddy diffusivity coefficient and Γk, the vertical stretching component of PV. In

effect, this term corresponds to the diffusion of the thickness of an isopycnal layer or a skew

diffusion (Griffies 1998). Hence, the GM parameterization belongs to the class of “down-gradient”

parameterizations and its effect is always to flatten isopycnal surfaces.

In the present study, we want to overcome the down-gradient parameterization and we are going

to explicitly model the (sub-grid) eddy dynamics with an independent model in order to formulate

a parameterization for the eddy rectification. The equation for the (sub-grid) eddy dynamics can
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be obtained by taking the difference between Eq. (9) and Eq. (10), given by

m@′

mC
+ � (k′, @′) + � (k,@′) + � (k′, @) + VE′ = �4∇4@′+ A1∇2k′+ � (k′, @′) +�′ . (12)

Note that the presence of � (k′, @′) in this equation is somewhat cumbersome because in order

to simulate the eddy equation, which we propose as the independent model, it requires a priori

knowledge of the eddy rectification term (viz. the mean properties of eddy-eddy interaction) as a

forcing which renders the eddy model meaningless. As we shall see in section 3a, if we run the

eddy model without this term, we get a poor representation of the eddy field. The crux of this

paper is a proposition to parameterize this term with a modification to the definition of the mean

(see section 3).

c. Mean flow and eddy dynamics in the full model

We first analyze the output of reference run (CTRL) which is a mesoscale-resolving simulation.

We recall that this model solves the full PV equation (Eq. 5): we decompose the output of that

simulation into a mean and an eddy flow. We perform this decomposition with a time mean. For

the remainder of this study, the averaging operator (·) is defined as a time mean; note that because

the forcing is stationary, � = � and �′ = 0, and so the time mean is similar to an ensemble mean

here under the ergodic assumption (Galanti and Tsinober 2004). We will consider the mean and

eddy flow diagnosed from the CTRL run as the “truth”. We will then use these diagnostics to

validate the model of the eddy dynamics only (section 3).

The stream function of the full model exhibits a standard double gyre pattern with an strong ed-

dying jet that separate the cyclonic and anticylconic gyres. Such pattern has already been observed

and described in numerous studies; we wish however to highlight the mean/eddy decomposition

from an energetic perspective. In quasi geostrophy, the total energy is the sum of potential energy

%� =
1
2
12

#2 , (13)

and kinetic energy

 � =
1
2
(D2 + E2) , (14)
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and since potential and kinetic energies are quadratic quantities, we write their time average as

%� =
1
2
1

2

#2 +
1
2
1′2

#2
def
= %� +%�′, (15)

 � =
1
2
(D2 + E2) + 1

2
(D′2 + E′2)def=  � + �′ , (16)

with %� and  � the potential and kinetic energy of the time mean flow and %�′ and  �′ the

mean potential and kinetic energy of the eddy flow.

We plot in Fig. 2a, a snapshot of the eddy kinetic energy in the upper layer. We find at least two

distinct dynamical regimes: (i) the eddying jet with  �′ on the order of 0.5m2 s−2 (corresponding

to a velocity of |D′| ∼ 1m s−1). The intensity of the jet decreases downstream (eastward). (ii) A

region with moderate eddies in the middle of each gyre; the magnitude of these eddies increases

from East to West but their overall intensity is order  �′ ∼ 0.04m2 s−2 (|D′| ∼ 0.2m s−1). There

are other dynamical regions such as quiescent zone with no eddies at all at the same latitude as the

jet but near the eastern boundary, and the regions near the northern and southern boundaries.

We plot with the same colorbar the eddy potential energy for the same snapshot (Fig. 2b). We

observe that the magnitude of %�′ is similar to the magnitude of  �′ consistent with the QG

scaling. We plot in Figs. 2c and 2d the mean eddy kinetic energy and mean eddy potential energy.

The eddy potential energy and eddy kinetic energy exhibit similar patterns and are maximal in the

jet. The maximum value of eddy energy in the jet area reflects the meandering jet. These meanders

are strongest near the western boundary and decrease in amplitude moving east.

The energy stored in the mean flow exhibits a radically different pattern than the eddy energy

(Figs. 2e and 2f). The QG model exhibits the standard result that most of the large-scale energy is

stored in the form of potential energy. Note that the colorbar in Fig. 2f is extended by a factor 20

compared to the other plots because there is approximately 20 times more potential energy than

kinetic energy in the large-scale flow. This result corresponds to the traditional view of the ocean

circulation (%� � %�′ ∼  �′ >  �), expressed here in the QG framework. In Fig. 2f, we see the

bowl shape of the anticylconic gyre in the southern part of the domain (and respectively the dome

shape of the cyclonic gyre in the northern part of the domain). Potential energy is maximum in the

middle of the gyre where the buoyancy anomaly is maximum. The mean jet is much less energetic

as shown in the kinetic energy panel (Fig. 2e).
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Fig. 2: Snapshots and time-mean of potential energy and kinetic energy diagnosed from the CTRL
run. A snapshot of the eddy kinetic and potential are shown in panels (a) and (b). Their time mean
in panels (c) and (d). The mean kinetic and potential energy are shown in panels (e) and (f). Units:
m2 s−2 11
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d. Vorticity balance of the mean flow

For sufficiently long integration, the first term in the mean flow (Eq. 10) will eventually vanish.

There is thus a balance between the remaining terms of the mean PV equation. We only focus here

on the rectification term that we plot in Fig. 3. We plot in Fig. 3a the raw estimate of � (k′, @′)
computed with 500 independent snapshots that are 60 days apart (which corresponds to the eddy

decorrelation time scale, not shown). And we plot in Fig. 3b the smoothed version where we

average 16 neighboring grid points and linearly interpolate back on the fine grid for visualization

purposes. From the latter plot, a large-scale component of this field emerges in the return flow area.

The region of the separated jet exhibits a stronger signal whereas the region near the boundaries

also exhibit intense magnitude signal. We emphasize one more time that � (k′, @′) is very important

to establish the flow pattern that we described earlier: this term is of the same order of magnitude

as the other terms in Eq. (10) and if it were absent, the mean flow would be quite different.

It is also important to note that the pattern in Fig. 3a clearly has not converged because when

we sum all the terms in Eq. (10), viz. � (k,@) + � (k′, @′) + VE − �4∇4@ − A1∇2k − �, we get a

noisy field (similar to Fig. 3a), whereas we should actually get zero everywhere if the model were

run long enough ( m@
mC
∼ 0; not shown). With the purpose of formulating a deterministic model for

the eddy rectification term, some spatial smoothing is appropriate in order to filter out stochastic

variability. If we admit that the smoothed � (k′, @′) is the deterministic part and that � (k′, @′)
should converge towards its smoothed version, we can estimate the number of samples we need

for convergence with a maximum of 10% error. Indeed the standard error of the mean is given

by f/
√
= where f is the standard deviation of the time series at a given point and = the number

of samples. If we want the error bar to be 10% of the value of the mean <, the 95% confidence

interval on the mean for that tolerance is given by 0.1< = 2f/
√
= such that = = 400f2/<2. We get

an estimate of = = 105 samples to get this 10% precision for the mean. This corresponds to 104

years of simulation which is clearly out of reach in the current setup. We have tested this using the

2740 years of output from Kondrashov and Berloff (2015) and found the convergence to be very

slow (personal communication with Pavel Berloff). The fact that such a long integration is required

for accurate statistics is problematic from an eddy closure perspective, namely the eddy statistics

of today would depend on the dynamical state of the system thousands of years in the past. This

conundrum also highlights the need for a closure for the eddy rectification.
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(a) Raw J(ψ′, q′)
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Fig. 3: The raw � (k′, @′) and � (k′, @′) smoothed by averaging 16 neighboring grid points and
linearly interpolated back on the fine grid (a,b).

3. The sub-grid PV model

Our goal is now to see if we can approximate � (k′, @′) with a dynamical equation for the perturbed

quantities. Given a mean flow, the eddy or sub-grid PV equation (Eq. 12) can be prognostically

solved with the caveat of the ‘unknown’ eddy rectification forcing � (k′, @′) which appears on the

right-hand side of Eq. (12). We are going to test two strategies to handle this term: (i) we will

simply remove it, and (ii) we are going to propose a spatial filter approach. It is also important

to note that the eddy dynamics is driven only by the presence of the barred variables in the eddy

equation. In this section, we take the time mean field of CTRL run for these barred variables. With

this choice, we will test now if the eddy model is able to reproduce the eddy dynamics described

in the previous section.

In the remainder of this paper, we adopt the following convention: we write with a prime (e.g.

k′), the diagnosed eddy field from the CTRL run, and with a dagger (e.g. k†) the prognostic eddy

dynamics that result from the explicit time integration of the sub-grid model (Eq. 12) with the

mean flow (k,@) from the CTRL run as the input (Table 1). Namely,

m@†

mC
+ � (k†, @†) + � (k,@†) + � (k†, @) + VE† = �4∇4@† + A1∇2k† +R , (17)
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where we have replaced the primes with daggers to signify the reinterpretation from eddy to

sub-grid. We have also replaced � (k′, @′) by R as we are going to design a parameterization for

� (k′, @′). Our aim is to build a sub-grid model for which %�†,  �† and � (k†, @†) mimic %�′,

 �′ and � (k′, @′) diagnosed from the CTRL run.

Notation Description

(·) Time mean

(̃·) Low-pass spatial filter (Appendix B)

(·)′ Eddy terms about the time mean diagnosed from the CTRL run

(·)† Prognostic eddy terms from the sub-grid model

 �′, %�′ Time mean of the eddy kinetic and potential energy diagnosed from the CTRL run

 �†, %�† Time mean of the kinetic and potential energy diagnosed from the sub-grid model

� (k′, @′), � (k†, @†) Eddy rectification diagnosed from the CTRL run and sub-grid model respectively
by taking the time mean of the simulation outputs

R Eddy rectification forcing (i.e. the target of parameterization)

Table 1: Definition of the notations.

a. No eddy rectification forcing (R = 0)

With the lack of a good predictor for the eddy rectification forcing, we can start by examining the

sub-grid model (Eq. 17) without it on the right-hand side (viz. R = 0). We recall that Eq. (17) with

R = 0 has mostly been used to simulate local turbulence in doubly-periodic patches of the ocean

with uniform shear (e.g. Venaille et al. 2011; Grooms et al. 2013), whereas we now apply and solve

this equation prognostically in the entire domain with a large-scale flow that varies in space.

For white noise initial conditions, we can decompose the run in several stages: we first observe

a linear growth of the most unstable modes mainly in the jet and near the northern and southern

boundary. The duration of this phase is on the same order of magnitude as the inverse linear growth

rate (see Appendix A, Fig. A1a). We then enter another transient phase during which a large-scale

pattern emerges in the PV field, and after this transient phase, we reach a statistical steady state

(i.e. m@
mC
≈ 0). To illustrate this last regime, we plot in Fig. 4 the mean potential and kinetic energy as

well as snapshot of these two fields. There are several important things to notice: first we note that

%�† (Fig. 4d) is very different from %�′ (Fig. 2d): %�† is maximum along the western boundary

and does not really reflect the eddies that were present in the jet in the CTRL run. In fact when we

14

Accepted for publication in Journal of Physical Oceanography. DOI 10.1175/JPO-D-21-0217.1.Unauthenticated | Downloaded 04/07/22 08:27 AM UTC



look at a snapshot of potential energy (Fig. 4b), we see that this potential energy field is the sum of

a large-scale and small-scale flow.

Everywhere in the domain, the mean kinetic energy in this sub-grid run (Fig. 4c) is weaker than

the mean eddy kinetic energy diagnosed from the CTRL run (Fig. 2c), viz.  �† <  �′. The lower

energy levels in eddy kinetic and potential energy is also apparent in the isotropic wavenumber

spectra (Fig. 5; compare the black solid and dotted lines). We compute the eddy kinetic and

potential energy spectra ( |û|
2

2 and |1̂ |
2

2#2 respectively where ˆ(·) is the Fourier transformed amplitude)

of the first layer over the whole domain using the xrft Python package (Uchida et al. 2021b)

and taper the fields with the Hann window prior to taking the Fourier transform as is commonly

done when computing the spectra (Uchida et al. 2017; Khatri et al. 2018; Ajayi et al. 2020). The

periodogram is computed every 23 days over the last 580 days of output and then averaged.

In the eddy run, we still see a local kinetic energy ( �†) maximum in the middle of the domain

where the mean jet is and we also observe deformation radius size eddies in the rest of the gyre

(Fig. 4a). Such difference between %�† and  �† where we see larger scale patterns in the

former indicates that in this eddy run, energy is stored in the large-scale buoyancy field rather

than in small-scale eddies. We interpret these energy maps in the light of the inverse cascade in

quasi geostrophy that fluxes energy toward larger scales (Charney 1971; Vallis 2006). Because

of this inverse cascade, we see the appearance of a large-scale pattern superimposed on top of

the prescribed large-scale circulation (i.e. k and @ in Eq. 12). The sum of these two large-scale

solutions as we see in Fig. 4d corresponds to a less baroclinically unstable state and hence weaker

eddies (see Fig. 4a).

We also plot in Fig. 6a the eddy stream function for the same snapshot as the one plotted in Fig. 2,

and in Fig. 6b the sub-grid stream function of the sub-grid model for the same snapshot as in Fig. 4.

This plot confirms the differences already highlighted of a weaker baroclinicity in the eddy run

and also shows that large-scale Rossby waves present in the eddy field diagnosed from the CTRL

run (k′; Fig. 6a) are not present in the eddy model (k†; Fig. 6b). This is probably because Rossby

waves in the full model are triggered by intense eddies in the meandering jet. Since this model

only produces mild eddies, there are no Rossby wave that will emerge in the eddy model. Another

possibility is that Rossby waves are excited by the winds (� in Eq. 9), which project themselves
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Fig. 4: Snapshots and time-mean of kinetic and potential energy diagnosed from the eddy model
with no forcing (R = 0). The snapshots are shown in panels (a) and (b), and their time means in
(c) and (d) respectively. Units: m2 s−2.

onto the temporally varying fields of k′, whereas the sub-grid model (k†) has no input to excite

such waves.

The interesting point is that without the eddy rectification forcing, the large-scale pattern in k†

that emerges corresponds to a the cyclonic gyre (in blue) is in the southern part of the domain and

the anticyclonic gyre (red) is in the northern part of the domain (Fig. 6b), which is precisely the

opposite from the stream function in the CTRL run. We interpret this large-scale pattern in k† as
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(a) (b)

Fig. 5: The isotropic wavenumber spectra taken over the whole domain for kinetic and potential
energy in the first layer (a,b). The energies diagnosed from the CTRL run are shown in solid black,
from the sub-grid model with no forcing in dotted red (R = 0), and from the sub-grid model with
the varying spatial filter approach in solid red lines respectively. The sub-grid models at coarser
resolutions (256 and 128 grid points; Appendix C) are shown in green dashed and dotted lines
respectively.

the result of the rectification of the large-scale flow by small-scale eddies: the eddies tend to create

a flow that opposes the large-scale forcing from the CTRL output (k). As already noted with the

energy diagnostics, the intensity of the eddy activity increases near the central latitude and near the

western boundary. Near the central latitude, the eddies tend to form an eastward jet, which is also

the opposite of what is observed in the CTRL run (a western boundary current that penetrates into

the domain as a westward flowing jet). Although a similar mechanism of the eddies counteracting

the mean flow is well-known in the Southern Ocean where the overturning circulation by eddies

counter balance the mean Ekman steepening of isopycnals (e.g. Sinha and Abernathey 2016), we

conclude that the solution produced by the sub-grid model (k†) is not a fair reproduction of the

eddy dynamics in the CTRL run (k′; Fig. 6). We show in section 3b, however, that we have

some success in recovering the eddy dynamics from the dagger fields by parameterizing the eddy

rectification forcing.

We now focus on the rectification term � (k†, @†) (the mean of second term on the left-hand

side of Eq. 17) that emerges in this simulation from the white-noise initial condition and plot this

field in Fig. 7. The field is smoothed in a similar manner to as described in section 2d where we

average 16 neighboring grid points and linearly interpolate back on the fine grid for visualization
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Fig. 6: The eddy stream function k′ diagnosed from the CTRL run and sub-grid stream function
k† simulated from the sub-grid model with no forcing (R = 0) (a,b).

purposes. The smoothed � (k†, @†) shares many common features with the diagnosed rectification

term (� (k′, @′); Fig. 3): both fields are positive (negative) in the subpolar (subtropical) gyre. The

magnitude of this term is intensified in the region of the separated jet with roughly the same

alternance of positive and negative pattern. Lastly, the boundary dynamics is also of the same

sign. The main difference is that the simulated field � (k†, @†) is weaker in magnitude than the

diagnosed field (Fig. 3). The agreement in spatial patterns between these two fields is pleasing

given the discrepancies of the dynamics in the two simulations (cf. Figs. 2, 4, 6).

This experiment suggests that eddy dynamics feedback onto the large-scale dynamics via the

inverse cascade. In the eddy model, this feedback on the large-scale potential energy concurs to

flatten isopycnal surfaces and effectively shuts off the generation of eddies via baroclinic instability.

We conclude that although the term � (k′, @′) has no impact on the domain-integrated energetics

of the eddy flow, it is actually very important to counteract the inverse cascade and prevent the

formation of spurious large-scale mode in the eddy flow. Even though the stream function we get

from the sub-grid model is different from the diagnosed eddy stream function from the CTRL run,

we get at this point a viable candidate for the rectification of the large-scale flow by the eddies

(� (k†, @†)). This result itself is already a big improvement compared to the regional models of

Venaille et al. (2011). We recall that the main difference between the present study and Venaille
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J(ψ†, q†) (with R = 0)
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Fig. 7: � (k†, @†) diagnosed from the sub-grid model without forcing (R = 0), smoothed by
averaging 16 neighboring grid points and linearly interpolated back on the fine grid.

et al. (2011) is that they used regional model with periodic boundary conditions whereas we run the

eddy model for the entire domain. With this strategy we do capture the non-local eddy/mean-flow

interaction that is impossible to capture with regional models. In the remainder of this section, we

propose a parameterization for R in Eq. (17) and show that we can improve the eddy statistics and

� (k†, @†).

b. Parameterizing the eddy rectification forcing (R)

As noted earlier, the field � (k†, @†) converges very slowly, and so cannot be computed in practice

as a parameterization ofR to run the sub-gridmodel. In order to parameterize � (k†, @†), we propose
to use the idea developed by Pedlosky (1984), Grooms et al. (2011) and others to decompose the

flow into a large-scale component and a small-scale component. In a similar way to the definition

of the time mean, we introduce the spatial scale decomposition for a field k as

k = k̃ +k∗ , (18)

where k̃ and k∗ are respectively the large-scale and small-scale components of the field k. Based

on Pedlosky’s scale decomposition, the large-scale flow evolves on a slow time scale and the small-

scale flow evolves on a fast time scale (Pedlosky 1987). We accomplish such scale decomposition
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by enforcing @† to remain a small-scale field

m@̃†

mC
= 0 , (19)

which implies, if we set the initial condition of @̃† |C=0 = 0 then @† = @†∗ is satisfied for all time.

Because of the equivalence between the slow time scale and large-scale spatial scale, our hope is

that enforcing Eq. (19) will be equivalent to enforcing @† = 0. Note that in the run with R = 0, we

clearly did not have @† = 0. We use this argument to parameterize R as a damping of the large-scale

flow

R = − @̃
†

g 5
, (20)

where @̃† in Eq. (17) is relaxed towards zero on a three-day time scale (g 5 ; see Appendix B2 for

details on the numerical implementation). With this parameterization of the rectification term,

we can already anticipate that the spatial filtering strategy will not work well in the region of the

separated jet where there is no clear scale separation between the eddy flow and the mean flow (cf.

Jamet et al. 2021). However, as we shall see, this strategy works well in the rest of the domain.

We illustrate the effect of the spatial filter operator (Eq. 18) in Fig. 8 where we plot the same

sub-grid stream function as the one used in Fig. 4 along with its large-scale and small-scale

component. We do this scale separation by applying a low-pass filter with a discrete wavelet

transform (numerical details of the implementation are provided in Appendix B). In Fig. 8, we

use a cutoff length scale of _2 = 500 km. In the large-scale pattern, we recognize a cyclonic and

anticyclonic gyre, and a weak jet in the middle that we described earlier.

In order to use this spatial filter as a parameterization of R, we performed many tests with

either uniform _2 or spatially varying _2. Henceforth, we present our best results obtained with

non-uniform _2, and now briefly describe the reasons for opting for a non-uniform _2. We see

in Fig. 2a that the patch of high eddy kinetic energy has horizontal dimensions on the order of

1000 km. In the region of the separated jet, there is thus no clear scale separation between the eddy

flow and the mean flow. To a certain extent, this corroborates what we observe in the instability

analysis (Appendix A). In Fig. A1, we see that in the region of the separated jet, the most unstable

mode has a characteristic length scale _ = 300 km compared to the most unstable length scale in

the return flow which is _ = 230 km. We use this information to build a filter with non-uniform
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Fig. 8: Low pass and high pass filtered sub-grid stream function diagnosed from the sub-grid
model with R = 0 (a,b). The eddy stream function spatially decomposed is the one in Fig. 6b.

length scale in the form of _2 = U_, and we set U = 4.5 to get _2 ∼ $ (1000km) in the area of the

return flow. We plot in Fig. 9 the final map of _2 which corresponds to a smoothed version of the

most unstable length scale (see Appendix A). As desired, _2 has values on the order of 1000 km

with a maximum of 1350 km in the region of the separated jet and a minimum of 850 km near the

north-east and south-east corners.

From hereon, when we refer to the sub-grid model (Eq. 17), R is that of described in Eq. (20)

(i.e. the linear damping of low-pass filtered sub-grid PV). We now run the sub-grid model with

the same mean flow (k) as in section 3a: namely the mean variables from the CTRL run.

We plot the energy diagnostics in Fig. 10. Comparing Fig. 10c,d with Fig. 4c,d, we see that using

this R (Eq. 20) in Eq. (17) succeeds in increasing the eddy amplitude overall and in particular

around the separated jet (compared to the solution withR = 0). The energy levels come closer to the

eddy field diagnosed from the CTRL run (Figs. 2c and 2d), which is also apparent in the isotropic

wavenumber spectra (Fig. 5). We see clear increases in energy from the run with R = 0 and that

the varying spatial filter approach captures energy levels close to the diagnosed eddy kinetic and

potential energy except for the smallest wavenumbers (largest spatial scales; compare the black

solid and red dashed lines in Fig. 5). This is expected as we extract the large-scale component with

the spatial filter.
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Fig. 9: The cut-off length scale (_2) in meters based on the instability length scale.

If our parameterization were perfect, time averaging Eq. (17) would return the balance

� (k†, @†) = R (21)

because the linear terms should vanish. Although the balance in Eq. (21) requires there to be a

clear scale separation between the eddy and mean flow, we expect the balance to approximately

hold, viz. k† ∼ @† ∼ 0 for a converged simulation. We plot in Fig. 11, � (k†, @†) smoothed by 16

neighboring grid points and R. (The difference between Fig. 11a and 7 is in Eq. (17) prognostically
solved with and without the eddy rectification parameterization on the right-hand side.) We first

see that � (k†, @†) captures the same patterns as the diagnosed field from the CTRL run (� (k′, @′);
Fig. 3b). We also see improvements compared to the run without the rectification forcing (R = 0).

Along with this visual comparison, we plot in Fig. 12 the joint histogram of � (k′, @′) and � (k†, @†).
We see that this joint histogram aligns more around the one-to-one line with the varying spatial

filter approach compared to when R = 0. If we now compare � (k†, @†) and R, we see that the latter
captures the large-scale pattern in the return flow of the gyre but misses the small-scale variability

in the separated jet and right at the western boundary. We could have anticipated the lack of

small-scale variability in R because of the nature of our filter which only retains the large-scale

component of � (k†, @†). In the separated jet, the agreement between � (k′, @′) andR is poor and we
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Fig. 10: Potential energy and kinetic energy diagnosed from the eddy model where R is imple-
mented with the variable length scale filter. The snapshots are shown in panels (a) and (b), and
their time means in (c) and (d) respectively. Units: m2 s−2.

face here the limits of approximating the time average by a low-pass spatial filter (Eq. 20). Reducing

the length scale of the filter is problematic because it degrades the quality of the eddy solution

(not shown). Nevertheless, even with this bias, the rectification term � (k†, @†) compares well with

the diagnosed rectification (� (k′, @′); Figs. 3 and 11). We show the resolution dependence of the

sub-grid model given the same background flow from the CTRL run in Appendix C.
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Fig. 11: � (k†, @†) diagnosed from the eddymodelwith the varying spatial filter approach, smoothed
by averaging 16 neighboring grid points and linearly interpolated back on the fine grid, and
R = @̃†/g 5 (a,b).

Lastly, we note that Eq. (21) is complimentary to a recent work by Porta Mana and Zanna (2014)

and Grooms and Zanna (2017) where they find a local relation �� (k∗, @∗) '∇2 �@̃
�C
. We emphasize

that by explicitly solving for Eq. (17) and parameterizing the eddy rectification forcing with

Eq. (20), the parameterization incorporates non-local effects as it partially balances the advective

term on the left-hand side. Notably, in a recent work, Berloff et al. (2021) achieved such non-local

closure by diagnosing the eddy rectification forcing term as the mismatch between the left-hand

and right-hand side of a coarse-grained PV equation, viz.

R '
[
m@̃

mC
+ � (k̃, @̃) + VẼ + �4∇4@̃ + A1∇2k̃

]
− �̃, (22)

and then plugging it along with k̃, @̃ into the sub-grid equation (Eq. 17). While our approach is

similar, the difference is in how the eddy rectification forcing is defined: we define it by applying

a low-pass spatial filter to the sub-grid stream function (Appendix B; whereas they use the full PV

equation).
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Fig. 12: Joint histogram of the spatially smoothed � (k′, @′) and � (k†, @†) for the first and second
layer plotted against a logarithmic scaling (the masked out regions have zero values). The left
column shows the run with no forcing (R = 0) (a,c), and right the run with the varying spatial filter
approach (b,d). The one-to-one line is shown in grey dashed lines. The histograms were computed
using the xhistogram Python package (Abernathey et al. 2021).

4. Modification of the mean flow due to the eddy rectification term

The procedure described in the previous section demonstrates that the sub-grid model can fairly

reproduce the “true” eddy dynamics given a prescribed background flow. There is one caveat,

however, which is precisely the specification of this background flow. Indeed, from an eddy

parameterization perspective, taking @ as the mean of high resolution model (as we did so far) is

very different than taking @ from a coarse resolution model which has never seen properly resolved

eddies. This is because the unstable modes are very different depending on whether the eddies are
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resolved or not and so we expect the eddy dynamics to be function of the background flow. In this

section, we first explore the sensitivity of the eddy model with respect to the background flow. We

then study how our sub-grid model modifies the mean flow by feeding back onto it via the eddy

rectification forcing.

a. Non-eddying full model and mesoscale-resolving sub-grid model

In order to see how the eddy model performs in the more realistic situation where @ comes from

a coarse resolution model, we now run a coarse full QG model (Eq. 5) with the same parameters

as CTRL, except we lower the resolution to ΔG ≈ 78.13km, increase the bi-harmonic viscosity to

�4 = 6.25×1011 m4 s−1, and also use a harmonic viscosity with �2 = 1000m2 s−1. Hereon we call

this configuration the REF run. In this coarse resolution model, the flow converges to a stationary

state with almost no variability. This mean flow has less potential energy than the CTRL run and

the mid-latitude eastward jet is very weak (see Fig. 13). Note that we spun up the coarse full model

with white noise initial conditions but without any rectification term.

The sub-grid model itself is still Eq. (17) which now takes the time mean of the coarse model as

barred variables, and for R we use a spatial filter with uniform cutoff length scale _2 = 1000 km

(simply because the unstable modes of the mean flow of REF exhibit an almost uniform pattern

for both the instability time scale and the instability length scale). A snapshot of the eddies and

diagnosed eddy rectification from the eddy model are shown in Fig. 13. The eddy activity resemble

the CTRL run near the western boundary but lacks the signature in the separated jet region (Figs. 2a

and 13a). As a consequence, the eddy rectification of the separated jet in the domain interior is

negligible (Fig. 13b).

b. Impact of the rectification on the large-scale flow

In order to see how we can use this eddy parameterization for coarse resolution models, we turn

our attention to Eq. (10). The only difference between this equation and the full model is the

presence of the rectification term � (k′, @′) and the purpose of this study was to propose a closure

for this term. We can now use either � (k†, @†) or R as an approximation for � (k′, @′) and plug

it into Eq. (10) to see how it would in turn modify the flow of the coarse resolution model; note

that R is barred: R = −@̃†/g 5 . Under stationary forcing conditions as we have set up here (� = �),
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Fig. 13: Snapshot of the EKE of the eddy model driven by the low resolution background flow,
namely the outputs from REF (a). The contours show the time-mean reference stream function
from the low resolution REF run. (b) � (k†, @†) diagnosed from the high resolution eddy model
driven by the low resolution background flow, and then smoothed by 16 neighboring grid points
and linearly interpolated back on the fine grid.

a converged flow would give m@

mC
∼ 0. Hence, we gave the eddy rectification forcing as its time

mean to a priori remove time dependency. Namely, we replaced � (k′, @′) on the right-hand side

of Eq. (10) with R. We first note in Fig. 13b that the magnitude of this term is comparable to

the wind stress forcing in the western part of the basin (not shown). Also, compared to the wind

forcing, this term has a vertical structure (not shown; whereas the wind forcing is only present in

the surface layer). Hence, we expect the rectification to have a significant impact on the mean flow.

When we integrate in time the coarse resolution model with the rectification term, the circulation

changes in a few places. We plot in Fig. 14a-b the change in the stream function when we force the

coarse model with � (k†, @†) and R respectively. Both of these runs undergo very similar changes

so it does not really matter which of these term we choose to force the coarse resolution model.

Both runs exhibit a weakening of the western boundary current (patch of color of the opposite sign

as the mean circulation). However, the rectification strengthen the separated jet (patch of color of

the same sign as the mean circulation).

Since the resolution of the full model is non-eddying, a common eddy parameterization to

implement would be the GM parameterization (cf. Eq. 11). We implement it in the QG model and
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we use a diffusivity coefficient (^GM = 1000m2 s−1 applied only to buoyancy, equivalently the layer

thickness in quasi geostrophy; cf. Uchida et al. 2021a). As GM is intended to mimic the baroclinic

process of reducing PE, it would tend to further weaken the separated jet, which is what we see

over the entire domain (blue in the subtropical and red in the subpolar gyre; Fig. 14c). The two

runs with the eddy rectification forcing, on the other hand, tends to sharpen and strengthen the jet

upon separation near the western boundary as we see between the meridional extent of 150–350 km

(Fig. 14b,c). In other words, our closure captures the energy backscattering from the "sub-grid"

eddies onto the coarse full flow as they would if the eddy model were run until it reaches statistical

convergence (see the similarity between Fig. 14b,c). The benefit of using R instead of � (k†, @†) is
that it converges much faster than directly diagnosing � (k†, @†), reducing the computational cost

by a factor of $ (102). We have shown that for a non-eddying resolution, our closure provides a

potential path forward to go beyond GM.

5. Conclusions and discussion

In this study, we have examined the eddy rectification term, which encapsulates the net eddy

feedback onto the mean flow, from a quasi-geostrophic (QG) double gyre simulation. In doing so,

we decompose the QG potential vorticity (PV) into its mean flow, defined by a time mean, and

eddies as the fluctuations about the mean. This paper is an attempt to estimate the rectification

term � (k′, @′) based on the knowledge of the mean flow only. For that purpose, we solve an eddy

equation that describes the dynamics of the perturbation around that mean flow. Since we solve for

the perturbation equation, we now need a closure for non-linear interaction between the perturbation

variables as is always the case in closure problems. We have shown that we can use the eddy model

(Eq. 17) to diagnose the eddy rectification term without any closure. With R = 0, the eddy model

gives a rough estimate for the rectification term diagnosed from themesoscale-resolving full model,

viz. � (k†, @†) ∼ � (k′, @′) (Figs. 3b and 7). The improvement compared to previous studies for

which local closures were developed in a doubly periodic regional model (Venaille et al. 2011) is

that we solve the eddy model at the basin scale thus allowing non-local eddy feedback. However,

the fact that a large-scale component of the sub-grid stream function itself (k̃†) emerges opposing

the background flow without the eddy rectification forcing, which is not apparent in the eddy

stream function diagnosed from the full model (k′), perhaps warrants some attention (Figs. 6 and
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Fig. 14: Color: The difference in stream function between the coarse reference run with R = 0 and
coarse runs with eddy closures ([m2 s−1]). Contours: Stream function of the low resolution REF
run. The run with � (k†, @†) smoothed by 16 neighboring grid points (a), with R (b), and with GM
only (c).

8a). We have shown that approximating the eddy rectification forcing with the spatially-filtered

eddy PV (R = −@̃†/g 5 ) improves the eddy kinetic and potential energy and � (k†, @†) (Figs. 5,
10–12). In other words, we have provided a closure to circumvent the necessity to diagnose the

mean properties of eddy-eddy interaction from an eddy resolving simulation (section 3).
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Once the eddy rectification forcing is estimated from the (sub-grid) eddy model (R; Eqs. 10
and 17), we can then use this term in the mean flow model (Eq. (10)) as a forcing term on the

right-hand side. For a coupled system between the mean flow and sub-grid model, this leads

to a process where we march forward in time by: i) re-interpreting the mean flow model as the

full model at non-mesoscale-resolving resolutions, ii) feeding the resolved flow to the sub-grid

model as the background flow with the parameterization for the eddy rectification forcing (R),
and iii) from which we force the full model with the eddy rectification forcing estimated from the

eddy model (R). This is similar to other energy backscatter parameterization studies where they

solve the (sub-grid) eddy energy equation and take that as a forcing for the resolved momentum

equation (e.g. Jansen et al. 2019; Juricke et al. 2019; Perezhogin 2019). Here, we have formulated

a deterministic closure based on PV instead of energy; PV is a more fundamental variable in quasi

geostrophy as it is materially conserved while energy is only conserved in the volume integrated

sense. Our approach of parameterizing the eddy rectification term via a spatially-filtered eddy

stream function is complementary to a recent work by Mana and Zanna (2014) and Grooms and

Zanna (2017) where they find a closure for the rectification term in relation to the low-pass filtered

PV. One major difference here is that while their closure was local, we have accounted for non-local

effects by approximating the eddy rectification forcing prognostically from the eddy model (cf.

Berloff et al. 2021).

As a first step towards a PV-based coupled closure, we have emphasized the importance of

solving the sub-grid model explicitly and provided a proof of concept by solving the ‘partially’

coupled system within the QG framework. We emphasize ‘partially’ as the eddy rectification

forcing we gave the full model at non-eddying resolution was the time mean of the rectification

predicted from the sub-grid model (R). This has to do with the fact that we decompose the

eddy-mean flow with a temporal averaging. While the temporal averaging was chosen originally

to examine the eddy model under a prescribed double-gyre background flow and to allow for

commutability between the averaging operator and spatial derivatives, this makes the coupling

process and interpretation convoluted in our case. In other words, if the averaging operator were

orthogonal to the time dimension, we would have @total = @coarse + @† at each time step where

@coarse here is the full PV resolved at coarse resolution. In such case, the total eddy kinetic energy

would become  �′total =  �′coarse + �†, where we would be able to directly compare it with the
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eddy kinetic energy from the CTRL run. Nevertheless, we have shown that our time-mean eddy

rectification forcing sharpens the jet as the eddies would if they were resolved when the full model

is non-eddying (section 4).

We also tested a case where the full model was mesoscale-permitting (ΔG = 19.5 km; �4 =

6.25×1011 m4 s−1). The idea was to examine how an eddy model would perform if the full model

also partially resolved the eddies. We followed the same procedure as described in section 4: i) run

the full model without the rectification (R = 0), ii) diagnose the time-mean rectification (R) from
the sub-gridmodel taking themean flow from the full model as its background flow, and iii) plug the

rectification into the full model as forcing. However, as the full model was already baroclinically

unstable and partially resolved eddies, the process led to the full model having weaker eddies in

step (iii); the eddies which fed off of the mean flow of the full model in step (ii) resulted in giving

a rectification forcing that actually reduced the instability of the full flow in step (iii). In hindsight,

this may have been expected as the eddies, if resolved, tend to extract PE from the background

flow. For the case where the full model was non-eddying, the resolved flow was never unstable so

the reduction in PE upon iteration did not happen.

While we have attempted to design a deterministic super parameterization where one explicitly

solves the sub-grid processes, it is possible that we are facing the limit of deterministic closures for

the mesoscale-permitting regime. Stochastic and/or machine learning approaches may need to be

considered (Bauer et al. 2020; Guillaumin and Zanna 2021; Frezat et al. 2021). Nonetheless, we

have shown that our closure improves the eddy model in representing the eddies in comparison to

them diagnosed from a mesoscale-resolving full model. Lastly, one may ask how our results can be

extended to primitive equation models. In primitive equations, the eddy Ertel PV flux encapsulates

the eddy feedback onto the mean flow (Young 2012). In other words, a closure based on Ertel PV

may allow one to capture the eddy variability in a primitive eddy model.

As an alternative to our spatial filtering approach, we hypothesize that it is possible to obtain the

rectification term through iteratively solving for Eq. (12) as the Fixed-Point Theoremwould predict.

As we discussed in section 3a, the sub-grid model without any forcing term (R = 0) produces a

good first guess of the rectification term, namely the mean of � (k†, @†) on the left-hand side of

Eq. (12) (Fig. 7). The idea is then to re-run the sub-grid model with this first guess as the forcing

term (R = � (k†, @†)) and repeat this iterative procedure until convergence is reached. We already
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know that this convergence is extremely slow (order of million of eddy time scale; section 2d)

so this process cannot be practically done with the raw estimate of the rectification term but may

be possible for its spatially smoothed version. The proof for mathematical convergence of this

iterative process is beyond the scope of this study.
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APPENDIX A

Linear stability analysis

In this appendix, we perform a linear stability analysis of the mean state of the CTRL run described

in section 2d. Methods to perform such analysis have been reported elsewhere (e.g. Vallis 2006;

Smith 2007; Tulloch et al. 2011; Uchida et al. 2017) and we only recall the main steps here. From

the eddy equation (Eq. 12), we drop the non-linear advective term as well as the rectification term

and replace k′ by one Fourier component

k′ = k̂′(I) exp[8(:G + ;H−lC)] + 22 , (A1)

where 22 stands for complex conjugate. For each Fourier component, we get an equation with

four unknown: k̂′(I), : , ;, and l, respectively the vertical structure of the Fourier mode, the

zonal, meridional, and temporal wave number. We span the (:, ;) space in order to find k̂′(I) and
l, which are the eigenvector and the eigenvalue of the equation. If the imaginary part of l is

negative, the corresponding mode is exponentially decaying and the solution is stable but if the

imaginary part of l is positive, the solution is unstable. In the (:, ;) space, the most unstable mode

corresponds to the solution for which �<(l) is maximum. We call

T =
1

max(:,;) (�<(l))
(A2)
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the inverse growth rate of the most unstable mode, :< and ;<, the zonal and meridional wavelength

of that most unstable mode, and

_ =
2c√
:2
< + ;2<

, (A3)

the length scale of that mode. We plot T and _ in Fig. A1. One first important information from

these plots is that the large-scale solution is unstable almost everywhere in the domain (except in the

small white area at H = 2500 km near the eastern boundary). This was not obvious a priori because

we computed the most unstable mode with the same viscosity as the CTRL run and viscosity is

known to damp instabilities. We divide the time scale pattern into three distinct dynamical regimes:

the western boundary and the intergyre jet which have the fastest growing mode (order 20 days),

the return flow near the northern and southern boundary for which the instability time scale is order

60 days, and the rest of the domain for which the instability time scale is greater than 115 days

(the colorbar saturates beyond this value). We do not consider the instability with long time scale

because such long time scale is much bigger than the eddy time scale and become irrelevant for

the eddy dynamics (local instability analysis is probably not relevant in areas with such long time

scales). The instability length scale is noisier but overall in the area where T < 115 days, the

length scale of the instability is 10 times the deformation radius (consistent with the canonical

2-layer baroclinic instability; Cushman-Roisin and Beckers 2011).
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Fig. A1: Time scale and length scale of the most unstable mode (computed at every fourth grid
point) (a,b).
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When we compare these plot with Fig. 2c, there does not seem to be an obvious link between the

local instability parameter and the observed eddy kinetic energy. The path of the jet has a wider

signature in the  �′ map than in the instability analysis. The demarcation between the return flow

and the rest of the gyre that we observe in Fig. A1a also does not show up in the kinetic energy

map. This confirms the conclusion of Grooms et al. (2013) who showed that the eddies observed at

one given location are mostly not locally generated but emanate from areas afar (see also Venaille

et al. 2011).

We use these two fields to build the length scale cutoff of the spatial filter. We start by simply

setting _2 = _. However, we argue against using the raw value of _ as shown in Fig. A1b as this

field is noisy and also because some instabilities are not relevant to the dynamics. The instabilities

irrelevant to mesoscale dynamics occur in places where the instability time scale is greater than

the advection time scale (which is on the order of 20 days in most of the gyre, not shown). To

get rid of the non-relevant unstable modes, we adjust the value of _2 to 225 km everywhere where

T > 115 days. We then smooth that field with a Gaussian filter with a standard deviation of 4.5

grid points to get rid of the grid scale variations. Lastly, for each point of the domain, we create

a halo of size U_2 over which we propagate the value of _2. We take U = 4.5. This is done to let

enough space for all instabilities to develop around the formation site. Several halos overlap at one

point and so for each point we retain the maximum value of all halos that are present at that point.

We smooth the final map to damp the halo pattern that may have persisted. We plot the final map

of _2 in Fig. 9.

APPENDIX B

Numerical implementation

B1. Spatial filter

The discrete wavelet transform bears some resemblance with the multigrid solver. We define a

set of grids from the finest model resolution 2= × 2= to the coarsest resolution 20 × 20 (one grid

point). In our high resolution model (512× 512), there are =+ 1 = 10 sets of grids. The two key

operations in the filtering procedure are:

• The restriction R for which we coarsen a field by averaging 4 neighboring points;
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• The prolongation P for which we refine a field by linear interpolation of neighboring points.

Let’s suppose a field k; is defined on a grid of level ; (2; ×2;). Then we have

k;−1 =R (k;), (B1)

We define the wavelet coefficients at level ; as

k̆; = k; −P(k;−1). (B2)

Hence from the wavelet coefficients, one can reconstruct the field at the finest grid with an iterative

procedure. The wavelet coefficients at level ; hold the information about the structure of the field

at length scale of the grid size Δ;. To high pass filter a field with a cutoff length scale _2 = Δ: ,

we simply need to set to zero the wavelet coefficients k̆; for ; < : . In the case where _2 varies

smoothly in space, we can zero the wavelet coefficients locally only.

B2. Computation of R

We propose to approximate R as a damping term on the large-scale part of @† as shown in

Eq. (20). However, the filtering operation can be numerically expensive. Also, because the large-

scale component of @† grows on a slow time scale, we chose to periodically (every three days)

remove the large-scale component of @† in Eq. (17). We chose this three-day period because

it is comparable to the eddy time scale and was short enough compared to the time needed for

large-scale mode to build up observed in Fig. 8a, which is on the order of years. Lastly, we

found that removing the large-scale component of @† is less efficient than removing the large-scale

component of k† and then applying the linear operator L to k̃†. With the latter technique, we take

the derivative of the filtered field which does not create a spurious large-scale component. When

the order of operation is the other way around (first filter @† and then invert the elliptic equation

(Eq. 1) to compute k†), we observed a spurious large-scale component in k†. Hence, every three

days, we add the term

R = −L(k̃
†)

ΔC
, (B3)
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to the right-hand side of Eq. (17) for only one time step (ΔC) and then set R = 0 the rest of the time.

This is equivalent to keeping R = −L(k̃†)/g 5 constant for the three-day duration until we update

it for the next three days. To see the equivalence, the number of time steps within every three days

is = 5 = g 5 /ΔC. Therefore, the cumulative effect of R over the three-day period is

−L(k̃
†)

g 5
= 5 = −

L(k̃†)
ΔC

+0× (= 5 −1), (B4)

where the left-hand side is what we have in Eq. (20).

This time scale separation is similar to ocean models where the barotropic and baroclinic

modes are solved with different time stepping (cf. Marshall et al. 1997). The relaxation by our

parameterization damps the large-scale component of @†, i.e. m@̃
†

mC
∼ 0.

APPENDIX C

The sub-grid model at coarser resolution with a prescribed background flow

Given that the prognostic sub-grid model (Eq. 17) solved at mesoscale-resolving resolution is the

best our method can achieve (section 3b), we examine the sensitivity of how our closure scales

at coarser resolutions. We ran two additional cases of the sub-grid model with the resolution of

∼ 19.5 km and ∼ 39 km (256 and 128 grid points respectively) keeping the parameters identical to

the mesoscale-resolving run except for numerical viscosity. As noted earlier, the first deformation

radius is around 25 km, so the two resolutions can be considered mesoscale permitting (Hallberg

2013). The biharmonic viscosities were �4 = (6.25, 31.25) ×1010 m4 s−1 respectively. The mean

flow and length scale of the spatial filter (_2) were provided by coarse graining them with a 2×2

and 4× 4 box-car filter respectively. While we acknowledge there may be more sophisticated

approaches to filter the background flow (Aluie et al. 2018; Grooms et al. 2021), the box-car filter

is the simplest operator that commutes with spatial derivatives, and additional terms owing to

non-commutative properties between the filter and derivatives do not arise upon coarse graining

the background flow.

We show in Fig. C1 the time mean of the eddy kinetic and potential energies from the two runs

at coarser resolutions. Notably, the run with 256 grids and eddy rectification forcing performs

better than the highest-resolution eddy model without the forcing (Figs. 4 and C1a,b) with the
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(a)

(c)

(b)

(d)

Fig. C1: The time-mean of kinetic and potential energy diagnosed from the eddy model at coarser
resolutions with the varying spatial filter. The energies from the run with 256 grids are shown in
panels (a) and (b), and 128 grids in (c) and (d) respectively. Units: m2 s−2.

energy levels similar to the eddy energies diagnosed from the CTRL run in the separated jet region

(Fig. 2). We also see this from the wavenumber spectra where in the spatial range of ∼ 300 km, the

level of EKE is similar between  �† and  �′ (Fig. 5). Moving to the coarsest resolution, we see

that the jet penetration into the gyre deteriorates due to insufficient resolution and high viscosity

prohibiting the instabilities to grow (Fig. C1c,d). The lack of energy is apparent in the wavenumber

spectra where they fall off too quickly with wavenumber (Fig. 5).

With the numerical viscosity as a tuning parameter, we end this appendix by showing the

dependency of the system on it. Figure C2 shows the ratio between domain integrated EKE
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Fig. C2: A scatter plot showing the ratio between area integrated  �† and  �′ in the first layer,
and its dependence on the biharmonic viscosity. The runs with 256 grids are shown as black crosses
and 128 grids as red dots. Values larger than unity indicate that the coarse-resolution sub-grid
models are more energetic than the eddies in the mesoscale-resolving CTRL run.

diagnosed from the CTRL run and respectivemesoscale-permitting sub-gridmodels plotted against

the numerical viscosity. The runs we show in Fig. C1 were taken from the runs with the highest

viscosity respectively. As we decrease the viscosity, the level of EKE increases as expected, with

the run with 128 grids showing a strong dependency. While the sub-grid model with a prescribed

double-gyre background flow could be run stably with small numerical viscosity in respect to its

resolution, the poorly resolved instabilities tended to excite Rossby waves in the gyre interior (not

shown), which accumulated at the western boundary (the western boundary current is too zonally

broad in Fig. C1c). This caused the domain integrated EKE to be larger than that diagnosed from

the CTRL run, viz. values larger than unity in Fig. C2. The transition of the dynamical regime

from Rossby waves to mesoscale eddies depending on model resolution has also been documented

in realistic ocean simulations (Constantinou and Hogg 2021).
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