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ABSTRACT A novel Green’s function-free characteristic modes formulation is introduced in this work.
The desired impedance or admittance matrix is obtained utilizing and appropriately modifying the versatile
finite element method. For this purpose, the generalized eigenvalue problem of the electric or magnetic
field vector wave equation is formulated. In the case of the electric field wave equation, using the Schur
complement, the system is reformulated and expressed only in terms of the tangential electric field over
the radiating apertures, retaining the equivalent magnetic currents. Similarly, in the case of the magnetic
field wave equation, the electric current density on radiating metallic surfaces is isolated using the Schur
complement. In both cases, the obtained matrix is split into its real and imaginary part to yield the
characteristic modes eigenvalue problem. Key advantage of the proposed formulation is that it does
not require the evaluation of Green’s function, thereby the study of any arbitrarily shaped, multilayered
geometry loaded with anisotropic and inhomogeneous materials is feasible. To prove the validity of
the proposed methodology various classical structures, with both homogeneous, and inhomogeneous and
anisotropic materials, published in the bibliography are studied. Both the eigenvalues and eigenvectors
compared with the published results show good agreement.

INDEX TERMS Characteristic modes, characteristic mode theory, finite element method, Green’s function,
anisotropic materials, inhomogeneous structures.

I. INTRODUCTION

CHARACTERISTIC mode (CM) theory or the theory
of characteristic modes (TCM) has become extremely

popular in the last 10 years. From the late 1960s that
it was initially introduced with a series of works from
Garbacz et al. [1] and Chang and Harrington [2], until now
many advances have occurred [3]. At its original form the
electric field integral equation (EFIE) was used for the modal
analysis of arbitrarily shaped perfect electric conductive
(PEC) structures [4], [5]. For the case of dielectric and mag-
netic bodies a volume integral equation (VIE) formulation [6]
was initially introduced. Although the VIE formulation was
proven to be accurate, it requires large number of unknowns
when the electric size of the structure increases. To overcome

this problem an equivalent surface integral equation (SIE)
formulation was introduced in [2]. However, the formulation
of [2] produces spurious modes that do not exist in the VIE-
based formulation of [6]. These spurious modes have nothing
to do with the complexity of the structure. They also exist for
any dielectric/magnetic body. Furthermore, when the struc-
tures’ complexity increases (e.g., multilayer structures with
different dielectric properties), the aforementioned technique
based on method of moments (MoM) suffers from inaccu-
racies as discussed in [3], [7]. Also, for simple and small
structures, such as a sphere, some SIE-based CM formula-
tions lead to spurious modes. To overcome these problems,
significant research, with the initialization of a big number
of different formulations that tries to give solution, has been
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employed [8], [9]. In [10], [11] post processing methods are
used to remove the erroneous solutions. In [3], [12], [13] the
magnetic (electric) current is eliminated from the PMCHWT
(Poggio-Miller-Chang-Harrington-Wang-Tsai) equations and
the eigenvalue equation is expressed only in terms of elec-
tric (magnetic) current. In [14] a modified SIE is introduced
with the utilization of the generalized impedance bound-
ary condition, a continuation of the work in [15], [16].
These formulations, although look well-defined with robust
physical interpretation, are still found to produce spurious
modes [7]. For example, formulations of [14]–[17] are
shown to be immune to the spurious modes. Some of these
formulations may, however, suffer from spurious PEC-cavity
interior resonances, like the classical CM formulation of [4]
does [15].
Nonetheless, all the efforts so far, with the exception of

Garbacz’s work [1] where the modes are evaluated from
a T-matrix (transition/perturbation matrix) formulation and
the very recent papers of Gustafsson et al. [18], [19], are
expressed in MoM-based characteristic modes formulations,
in which the existence of Green’s functions requires con-
siderably greater analytical effort [20]. Furthermore, the
necessity of Green’s functions in SIE-based MoM makes the
study of complicated structures (e.g., structures filled with
complex materials of high inhomogeneity and anisotropy)
cumbersome [21]. On the contrary, VIE-based formulation
is available for any penetrable material since it requires
only Green’s functions of the background medium. However,
the determination of a volume impedance matrix remains
still extremely demanding and thus computationally pro-
hibitive [15]. For this purpose, the current work proposes a
novel characteristic modes formulation based on finite ele-
ment method (FEM). The FEM utilized herein is based on
our previous eigen-analysis work [22]. The proposed for-
mulation constitutes a robust numerical method appropriate
for the study of any arbitrarily shaped geometry loaded with
anisotropic and inhomogeneous materials. The radiation con-
dition is taken into account by applying absorbing boundary
conditions (ABCs) instead of PML (Perfect Matched Layer),
utilizing our previous approach for the spurious modes sup-
pression that arises due to the irrotational vector space
spanned by the edge element basis [22]. Although, MoM is
more efficient for scattering problems than FEM, the densifi-
cation of the mesh near the aforementioned artificial surface
provides accurate results [23]–[25].
An initial attempt with FEM-based CM formulation was

made in 2015 [26], where the eigenvalues of a patch antenna
were presented. A year after, a FE-Boundary Integral (BI)
formulation for CM was presented [27], where also the reso-
nant frequencies of a simple dielectric resonator were shown.
In the current work the generalized eigenvalue problem of the
electric (magnetic) vector wave equation is adopted. Using
linear algebra operations the system is effectively expressed
only in terms of the desired (electric or magnetic) tangential
field, retaining the equivalent currents (magnetic or electric).
This approach yields the equivalent magnetic current density

eigen-problem over radiating apertures and alternatively the
equivalent electric current density on them. The important
real (or physical) electric current density on metallic con-
ductors is also formulated. The obtained matrix as in the
classical characteristic mode analysis is split into its real and
imaginary part, defining the well-known characteristic modes
eigenvalue problem. The proposed formulation is robust and
most importantly does not require the evaluation of Green’s
function. To validate and test the introduced formulation
lossless, lossy, and anisotropic geometries are simulated.
Section II presents the FEM-based CM formulation. The
resulting characteristic eigenvalues and eigencurrents are
cross-examined both with analytical and other numerical SIE
MoM-based published results. In all the cases the validity
of the results is evident.

II. FORMULATION
The formulation of the characteristic modes based on FEM,
now, is divided into two parts. The first part characterizes the
electric currents (Js) flowing either upon metallic parts (char-
acterized as perfect electric conductors) or upon dielectric
surfaces. The second part characterizes the magnetic cur-
rents flowing on the radiating apertures (Ms), which play
the role of the interface between the studied geometries
and the air. In both cases the field equivalence principle
is utilized (e.g., [28]) to reformulate the field-based problem
of the typical FEM formulation to its equivalent current-
based problem of the known MoM formulation. Thus, it is a
problem retrieval of impedance (admittance) matrix in which
the CM is applied.
Aiming at a general formulation, an inhomogeneous three

dimensional (3D) arbitrarily shaped computation domain �

loaded with different anisotropic materials of tensor permit-
tivity (εr) and tensor permeability (μr) is considered as shown
in Fig. 1. This domain is source free and is enclosed by a
fictitious surface (Sfi) which truncates the unbounded region.
The field (electric or magnetic) vector wave equation is used
to describe the electromagnetic behavior of this domain [29]:

∇ × τ
k
r · ∇ × Fk − k2

0ν
k
rF

k = 0 (1)

where k = 1, 2 such that F1 = E,F2 = H, τ
1
r = μ

−1
r , τ

2
r =

ε
−1
r , ν

1
r = εr and ν

2
r = μr.

According to the CM formulation [4], an operator for
the electric or magnetic current flowing upon a surface is
defined. In the present formulation, the operator of interest
is the electric or magnetic field operator applied on the wave
equation:

L
{
Fk

}
= ∇ × τ

k
r · ∇ × Fk − k2

0ν
k
rF

k (2)

Following the standard Galerkin procedure, (1) is written
in its weak form [29], [30]:˚
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FIGURE 1. Arbitrarily shaped 3D open cavity loaded with different inhomogeneous
materials denoted by distinct colours.

where Z̃1 = Z0, Z̃2 = 1
Z0
, Z0 stands for the free space intrin-

sic impedance, G1 = H, G2 = E, k0 for the wavenumber,
and T for the test function [29]. The surface integral is
defined over the surface � of any element.

The infinite solution domain is truncated with the intro-
duction of the fictitious surface Sfi. To take into account the
radiation conditions, 1st kind absorbing boundary conditions
(ABCs) upon the fictitious surface (Sfi) is utilized. Thus, the
weak formulation (3) takes the form:˚

�

(∇ × T) · τ
k
r

(
∇ × Fk

)
d� − k2

0

˚
�

T ·
(
ν
k
rF

k
)
d�

±jk0

‹
Sfi

(
n̂× T

) ·
(
n̂× Fk

)
dSfi = 0 (4)

As explained in our previous work [22], the last term of (4)
represents the enforcement of 1st order ABCs over the ficti-
tious surface Sfi enclosing the structure (see Fig. 1) in order
to truncate the infinite domain. This term is clearly imag-
inary in contrast with the classical formulation of CM [4],
where the radiation leakage is expressed through the real part
of the evolved matrices, while the imaginary part expresses
the stored energy. Therefore, a multiplication of the whole
system with the imaginary unit (j) is needed, since energy
storage in Maxwell equations is related to terms including
(jωε) or (jωμ), thus, the ABCs’ imaginary part corresponds
to real power leakage.
Overall, (4) can be expressed in matrix form as:

[S]
[
f k

]
− k2

0[M]
[
f k

]
± jk0[R]

[
f k

]
= 0 (5)

with

[S] =
˚
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r
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[M] =
˚
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T ·
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k
rF

k
)
d� (7)

[R] =
‹
Sfi

(
n̂× T

) ·
(
n̂× Fk

)
dSfi (8)

By appropriately manipulating (5) two complementary
CM formulations can be derived:

a) a formulation where all the unknowns of the radiating
domain are expressed in terms of equivalent magnetic
currents (M-formulation), and

b) a formulation where all the unknowns of the radiating
domain are expressed in terms of equivalent electric
currents (J-formulation).

Notably, formulation (5) is complete including all
information to yield either the accurate field distribution or
the eigenvalues of the structures. Special attention has to
be given to the case of spurious solutions. Spurious solu-
tions is a term used loosely in the area of computational
electromagnetics depending on the method of operation.
Specifically, in the finite element method the appearance
of spurious modes is a common problem in the solution of
discretized Maxwell’s equations. Specifically, as we showed
in our previous work [22], there are certain cases where the
divergence-free condition cannot be ensured only through
the vector wave equation leading to erroneous solutions
that although are mathematically acceptable, they are phys-
ically declined. Thus, its explicit enforcement is demanded.
Therein, by appropriately modifying the discretized equa-
tions we were able to obtain a spurious-free finite element
formulation. Using the same formulation here, the solution
domain is expected to be also spurious-free in that sense.
In the characteristic mode analysis community, the term of

spurious solutions has a different meaning. First, we can find
the classification of spurious modes that can be obtained in
the sense of erroneous, non-physical solutions like the ones
reported in [2], [3], [12], [13]. Second, the “spurious internal
resonances” can be observed due to the null-space solution
of the impedance/admittance operator [21], [31], like the
ones reported in [14] and [15]. Note here that the internal
resonances constitute the resonances of the studied structures
caused by the internal waves experiencing multiple internal
reflections. Even though these modes are natural, and they
have a physical meaning, they are defined as spurious ones,
since the scope of the characteristic mode analysis is to
mainly reveal the radiating modes.
In this work our results involve also internal resonances.

The reason behind the occurrence of these solutions is due
to the poor enforcement of the radiation condition at the
artificial domain truncating surface when solving for open-
radiating structures. Notably, these also occur and at the
most established electric (EFIE) or magnetic (MFIE) field
integral equations solutions. Harrington pointed out in [32]
that only formulations that satisfy both tangential electric and
tangential magnetic field boundary conditions (at the abject
to free space interface) give unique eigensolutions at all
frequencies, i.e., free from fictitious internal resonances. An
elegant way to suppress these internal resonances is with the
incorporation of a Dirichlet-to-Neumann boundary condition
technique [33]. However, a task like that is left for future
work.
Solving (5) as a generalized eigen-problem is equivalent to

the estimation of complex eigenvalues. Fig. 2 demonstrates
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FIGURE 2. a) Modeling of a microstrip patch antenna with its radiating metallic and
dielectric apertures discretized appropriately. With red its metallic (Sj ) surface is
highlighted, and with green its radiating dielectric apertures (Si ) are noted.
b) Evaluation of the real electric current density flowing on the outer surface of a
tetrahedron that touches the metallic conductor. c) Definition of the equivalent
magnetic current flowing on the outer surface of a tetrahedron that touches one of the
radiating dielectric apertures.

a typical patch antenna and its equivalent electric and mag-
netic current densities evaluated on its radiating metallic
and dielectric apertures, respectively. Specifically, the real
electric current density flowing on the metallic conduc-
tors (Fig. 2b) can be defined through the magnetic field
as Js = n̂ × H. Alternatively, equivalent magnetic current
densities Ms = −n̂×E can be defined (sampled) on dielec-
tric interfaces (on the surface of dielectric objects) through
the tangential electric field as depicted in Fig. 2c. Hence, the
established FEM formulation (5) can be modified to yield
characteristic eigen-problems for either equivalent electric,
or magnetic current densities. Below both formulations are
derived.

A. M-FORMULATION
Equation (5), after some algebraic manipulations and in the
case where k = 1, can be expressed as:

[L(k0)][e] = 0 (9)

This system can be now written in terms of the degrees of
freedom (dofs) that belong on the radiating surfaces, or on
the surface of dielectric objects. Thus, taking the discretized
geometry of Fig. 2 the dofs are split in those that belong on
the radiating aperture Si of interest (s) and the rest ones (r).
Essentially, as s are denoted the dofs of the interface between
the patch antenna and the air. Likewise, as r are denoted the
dofs that belong in the inner and the outer domain of the
surface cover of the patch antenna, which are indeed the rest
of the dofs of the solution domain.
The tangential electric field on the radiating aperture Si is

directly related to the FEM dofs es defined along the element
edges lying on Si as Etan = es l̂, where l̂ is used to denote the
tangential (colinear) unit vector along an edge. Hence, the
equivalent magnetic current can be defined through the unit
normal n̂ of Si as Ms = es l̂×n̂, as shown in Fig. 2c. Notably,
Ms lies again on the aperture surface Si being everywhere

normal to the electric field that generates it. In this manner,
the magnetic current eigen-problem can be readily setup
either for Etan or Ms as follows:

[
Lss(k0) Lsr(k0)

Lrs(k0) Lrr(k0)

][
es
er

]
= 0 (10)

To retain only the dofs of surface Si, the Schur comple-
ment [34] is applied on (10):

j
[
Lss(k0) − Lsr(k0)L−1

rr (k0)Lrs(k0)
]
[es] = 0

⇐⇒ [Y(k0)][es] = 0 (11)

The notation Y is used to denote the admittance prop-
erties of the system since the unknowns correspond to the
equivalent surface electric field. The multiplication of (11)
with the imaginary unit (j) is done to appropriately iso-
late the radiating terms and express them as real quantities
(from the mathematical point of view), following the classi-
cal characteristic mode formulation [4]. Namely, in FEM the
radiation is solely introduced through the ABC term [35],
that is accompanied by the imaginary unit as shown in (3)
and (4), and is the only purely imaginary term in a lossless
formulation. Therefore, by multiplying with the imagi-
nary unit (j) the real part of the resulting complex matrix
Y(k0) = Grad(k0)+ jB(k0) is related with the radiated power
as in the classical Green function-based formulation [4].
Similarly, the impedance matrix used in the classical formu-
lation of CM for electric currents, flowing upon conducting
surfaces, is complex [4]. Furthermore, the matrix Y is sym-
metric following the properties of the FEM formulation [36],
and for the case where both εr and μr are symmetric. Using
now linear algebra, the Hermitian parts of Y are:

Grad(k0) = 1

2

(
Y(k0) + Y∗(k0)

)
(12a)

B(k0) = 1

2j

(
Y(k0) − Y∗(k0)

)
(12b)

In the classical CM formulation for lossless structures,
as already mentioned, the real part of impedance matrix
is related to the radiated power, while the imaginary part
represents the stored power. Therefore, the CM eigenvalue
problem takes the form:

[
Grad(k0) + jB(k0)

]
[es] = (1 + jλn)Grad(k0)[es] (13a)

B(k0)[es] = λnGrad(k0)[es] (13b)

At this point it is important to note the following. The
theory of characteristic modes is usually defined with the
use of an impedance matrix. Here, as we show with (13)
an admittance matrix is used instead. This might raise the
question of why an admittance-based eigenvalue problem can
derive a CM eigenvalue problem. The answer to this ques-
tion can be found in the seminal work of Harrington et al.,
in [6], where there an admittance-based eigenvalue problem
is defined for the case of magnetic bodies. Specifically, the
theory of characteristic modes for the magnetic bodies, and

290 VOLUME 3, 2022



the corresponding admittance matrix, are justified as dual to
that for dielectric bodies, and the corresponding impedance
matrix. For a better understanding of that the interested
reader is referred to [28] where the principle of duality can
be found.
As in the classical CM formulation, also here, it is impor-

tant to ensure that the right-hand sides of (13a), (13b)
are related only to radiation losses. In any other case,
the existence of spurious solutions is inevitable [14]. Thus,
lossy structures where the real part of the admittance may
include dissipation (finite conductivity or dielectric hystere-
sis losses) is treated separately according to the recent work
of Ylä-Oijala et al. [7], [14], [16], [37].

Eq. (13b) results in the desired eigenvalues (λn) and the
corresponding eigenvectors (es). To finally observe the clas-
sical CM formulation where the eigenvectors correspond to
currents, and not fields as in (13), the tangential electric field
(es) is replaced by equivalent magnetic currents flowing on
the radiating apertures, e.g., [28]. Thus (13b) reads as:

B(k0)
[−n̂× es

] = λnGrad(k0)
[−n̂× es

]

⇐⇒ B(k0)[ms] = λnGrad(k0)[ms]. (14)

B. J-FORMULATION
The electric current density characteristic eigenproblem can
be expressed in terms of:

a) the real current density flowing on the surface of a
metallic conductor, or

b) the equivalent electric current flowing on the surface of
a dielectric or magnetic object.

In both cases this is defined through the tangential magnetic
field Js = n̂×H as shown in Fig. 2b.

To derive the CM formulation in terms of the equivalent
electric currents, flowing upon the metallic surface Sj, (5) is
written for the case of k = 2 as:

[L(k0)][h] = 0 (15)

Splitting now the dofs into those that belong on the radi-
ating aperture Sj of interest (s) and the rest ones (r), (15)
takes the form:[

Lss(k0) Lsr(k0)

Lrs(k0) Lrr(k0)

][
hs
hr

]
= 0 (16)

In turn, applying Schur complement, the system is
expressed in terms of the desired degrees of freedom as:

j
[
Lss(k0) − Lsr(k0)L−1

rr (k0)Lrs(k0)
]
[hs] = 0

⇐⇒ [Z(k0)][hs] = 0 (17)

Note that the notation Z is used to denote the impedance
properties of the system since the unknowns correspond
to the equivalent surface magnetic field. The multiplication
of (17) with the imaginary unit (j) is needed once again to
ensure the proper correlation between the impedance matrix
resulted from FEM and that from classical CM formula-
tion. Also, matrix Z(k0) = Rrad(k0) + jX(k0) is complex

and symmetric, similar to the admittance matrix used in
the M−formulation previously. Using linear algebra, the
Hermitian parts of Z are:

Rrad(k0) = 1

2

(
Z(k0) + Z∗(k0)

)
(18a)

X(k0) = 1

2j

(
Z(k0) − Z∗(k0)

)
(18b)

Following the classical CM formulation for lossless struc-
tures, the real part of impedance matrix is related to the
radiated power, while the imaginary part represents the stored
power. Therefore, the related CM eigenvalue problem takes
the form:

[
Rrad(k0) + jX(k0)

]
[hs] = (1 + jλn)Rrad(k0)[hs] (19a)

X(k0)[hs] = λnRrad(k0)[hs] (19b)

Again, it should be ensured that the right-hand sides
of (19a), (19b) involve only radiation losses in order to
obtain spurious free solutions [14]. Lossy structures are again
treated separately in the next section. To finally observe the
classical CM formulation where the eigenvectors correspond
to currents and not fields as in (19), the tangential magnetic
field (hs) is replaced by real/physical or equivalent electric
current density, e.g., [28]. Thus (19b) reads:

X(k0)
[
n̂× hs

] = λnRrad(k0)
[
n̂× hs

]

⇐⇒ X(k0)[js] = λnRrad(k0)[js] (20)

C. CHARACTERISTIC EIGEN-PROBLEM OF LOSSY
STRUCTURES
It is important to emphasize once again that for lossy struc-
tures the right-hand side of the characteristic problem (14)
or (20) must involve only the conductance (resistance)
matrix related to radiation Grad(k0)[Rrad(k0)], while the
conductance (resistance) related to the dissipated power
must remain in the left-hand side and represented as
Gdissipated(k0)[Rdissipated(k0)]. This requirement is undoubt-
edly established by Ylä-Oijala et al., in a series of papers,
e.g., [7], [14], [16], [37]. The key issue here is to ensure
this in a practical situation. An efficient practical approach
is to perform a simulation of the lossless structure (e.g.,
PEC and tanδ=0) in order to estimate the radiation conduc-
tance (resistance) as Grad(k0) = Re{Ylossless(k0)}[Rrad(k0) =
Re{Zlossless(k0)}]. In turn, the same structure is simulated
including all losses, either material losses (tanδ) and/or
losses due to finite metal conductivity, in order to obtain
the total conductance (resistance) matrix Re{Ylossy(k0)} =
Grad(k0) + Gdissipated(k0)[Re{Zlossy(k0)} = Rrad(k0) +
Rdissipated(k0)].
Explicitly, the radiated power Prad and the related admit-

tance Grad(k0), or resistance Rrad(k0) matrix result from the
integration of the real part of the Pointing vector over the
fictitious surface Sfi enclosing the solution domain (Fig. 1).
Also, its imaginary part yields the reactive power Preacn ,
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e.g., [7]:

Pradn = 1

2
Re
¨
Sfi

(
En ×H∗

n

) · n̂dS (21a)

Preacn = 1

2
Im
¨
Sfi

(
En ×H∗

n

) · n̂dS (21b)

Notably, the corresponding radiation term in the FEM for-
mulation results from the [R] matrix defined in (8) through
the absorbing boundary conditions.
Hence, in the proposed formulation, the system (5) is

formulated considering a complex valued tensor for the
dielectric permittivity εr. In turn, the same procedure
described in M- or J-formulation section is followed in order
to get the admittance Ylossy, or impedance Zlossy matrix,
respectively. Performing the same algebraic computations as
before, the Hermitian parts of Ylossy and Zlossy are:

Glossy(k0) = 1

2

(
Ylossy(k0) + Y∗

lossy(k0)
)

(22a)

Blossy(k0) = 1

2j

(
Ylossy(k0) − Y∗

lossy(k0)
)

(22b)

Rlossy(k0) = 1

2

(
Zlossy(k0) + Z∗

lossy(k0)
)

(22c)

Xlossy(k0) = 1

2j

(
Zlossy(k0) − Z∗

lossy(k0)
)

(22d)

Regarding the radiation matrix in the lossy case, this
is the same as in the lossless case (12a), (18a), for the
M- and J-formulation, respectively, since the consideration
of losses does not affect the radiation leakage. Thus, the
lossless system of matrices is formulated prior to the lossy
system to identify the radiation contribution.
In view of the above, the formulation for the characteristic

electric currents in the lossy case is modified as:

Zlossy(k0)[js] = (1 + jλn)Rrad(k0)[js] (23a)[
Xlossy(k0) − jRdissipated(k0)

]
[js] = λnRrad(k0)[js] (23b)

where Zlossy(k0) = Rlossy(k0) + jXlossy(k0) = Rrad(k0) +
Rdissipated(k0) + jXlossy(k0).
Likewise, the characteristic eigen-problem for the equiv-

alent magnetic current densities over the radiating apertures
becomes:

Ylossy(k0)[ms] = (1 + jλn)Grad(k0)[ms] (24a)[
Blossy(k0) − jGdissipated(k0)

]
[ms] = λnGrad(k0)[ms]

(24b)

where Ylossy(k0) = Glossy(k0) + jBlossy(k0) = Grad(k0) +
Gdissipated(k0) + jBlossy(k0).
In both of these eigen-problems the eigenvalue λn becomes

complex (instead of real in the lossless case), where its real
part is related to reactive power while its imaginary part to
dissipated power [7]:

Re{λn} = Preacn

Pradn
(25a)

Im{λn} = Pdissn

Pradn
(25b)

Thus, it is clear that Re{λn} retains the same properties as
the solely real λn-eigenvalue of the lossless case. Although,
all properties of characteristic modes require some clarifi-
cation in the lossy case, all these are presented in detail by
the research group of Ylä-Oijala [7], [14], [16], [37] and a
series of related articles referred therein. Note that both (23a)
and (24a) reduce to (20) and (14), respectively, as losses go
to zero.
A very important point that needs to be addressed here

is regarding the far-field orthogonality of the characteris-
tic modes for lossy bodies. When lossy bodies are studied,
the corresponding modes correspond to complex charac-
teristic sources which their fields do not diagonalize the
scattering matrix. This results to characteristic fields that
are no longer orthogonal [6], [19]. Therefore, in all the
cases where losses are introduced, even though we uti-
lize expressions (12a), (12b) and (18a), (18b) that are real
and symmetric, the characteristic far-fields are not anymore
orthogonal.

III. NUMERICAL RESULTS
To prove the validity of the proposed CM formulation
employing the proposed finite element scheme, several exam-
ples are considered and comparisons with either previously
published results or numerical results from the use of a
commercial software are shown. These structures are stud-
ied using one time either the lossless (14) or lossy (24a)
equivalent magnetic current eigen-problem, and other time
the lossless (20) or lossy (23a) equivalent electric current
eigen-problem.

A. PEC PLATE
The case of a rectangular PEC plate is initially taken into
consideration with dimensions 150 mm × 75 mm × 1 mm,
where the height is extremely small compared to length and
width, resembling to a flat geometry. It should be mentioned
that the chosen dimensions correspond to the size of the
display in current mobile phones.
To accurately simulate this geometry, an appropriate dis-

cretization is needed on the plate’s surface and on the
fictitious surface (an appropriately designed parallelepiped
is used), where ABCs are enforced. Therefore, the dis-
cretization step for the plate’s surface is set to λmin/32
(λmin is related to the maximum simulation frequency
fmax = 2.5 GHz), while the fictitious surface is initially
placed at a distance equal to λmax/4 (λmax is related to
fmin = 0.5 GHz), and is discretized with λmin/5 step. Thus,
the resulting mesh consists of 147, 404 tetrahedral cells,
while the size of stiffness (S), mass (M) and ABCs (R)
matrices is 173, 580 × 173, 580 each. At first sight, the
aforementioned values might look prohibitive for numerical
simulation if compared with the regular discretization used
in SIE formulation. However, the dofs (edges) of interest that
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FIGURE 3. Eigenvalues of first low-order modes for the PEC plate of dimensions
150 mm × 75 mm × 1 mm. The black dots and the red crosses correspond to the
proposed J−formulation for a coarse and fine mesh, respectively, while the blue
dashed lines to the published results given in [38].

lie upon the surface of the plate are only 5, 823. Therefore,
the size of the impedance matrix Z comprising the CM
eigen-problem is reduced to 5, 823 × 5, 823.

Fig. 3 shows the resulting eigenvalues’ distributions in
the frequency range of 0.5 GHz to 2.5 GHz. The black
dots and red crosses stand for the results of the proposed
J−formulation, while the blue dashed lines for the results
of the SIE MoM-based formulation as published in [38].1

The agreement between the proposed formulation’s results
and the published ones is clearly evident around the resonant
frequencies, while slight deviations occur away from them.
These deviations are diminished by increasing the distance
between the structure and the fictitious surface from λmax/4
to λmax/2, and, increasing the surface’s discretization step
from λmin/5 to λmin/15, as presented by the red crosses in
Fig. 3. It should be noted that the discretization step at the
plate’s surface is also reduced to λmid/32 (λmid is related
to fmid = 1.5 GHz). In particular, the changes on the mesh
discretization increases the number of tetrahedral elements
to 234, 209, since the size of S,M, and R matrices rises
to 284, 588 × 284, 588, but the final impedance matrix Z
obtains a size of 2, 220×2, 220, since it only depends on the
discretization of the plate’s surface. Note that a parametric
study was also performed, but omitted here for reasons of
brevity, where we individually varied: (a) the distance of the
fictitious surface from the PEC plate by keeping the same
mesh density on its surface, and (b) the mesh density of the
fictitious surface by keeping its distance constant in respect
to the PEC plate. The combination of having the fictitious
surface in a distance of λmax/2 and with a surface mesh
density of λmin was chosen as a sweet spot to achieve average
errors below 1% in respect to the values obtained from the
literature. Further increase of the fictitious surface’s mesh
density can eliminate any deviation between the results of the
proposed FEM-based CM formulation and those published

1. Note that in [38] a conducting sheet of zero thickness is modeled,
instead of the 1 mm thick metallic sheet that is modeled here. The intro-
duction of such a thickness, however, is insignificant and it doesn’t have
any effect on the accuracy of the results.

FIGURE 4. Modal significance curves for the modes shown in Fig. 3.

in [38]. However, such changes would increase dramatically
the mesh and consequently the time consumption, which now
is estimated around 5.9 hours per frequency point for the first
mesh and around 9.8 hours per frequency point for the denser
one.2 Nonetheless, the primary concern in antenna design is
around the resonant frequencies, where the associated modes
contribute more effectively to radiation [40], and where both
the coarse (black dots in Fig. 3) and fine (red crosses in
Fig. 3) meshes show great agreement with the reference
results (dashed blue line in Fig. 3). This is also shown via
the modal significance (MS), a modal parameter which is
developed to investigate the modal parameters of the antenna
under study, and reads [40]:

MS =
∣∣∣∣

1

1 + jλn

∣∣∣∣ (26)

The closer to unit the curve of modal significance is, the most
effectively the corresponding mode radiates. Fig. 4 illustrates
the MS distributions for the PEC plate in the frequency range
of 0.5 GHz to 2.5 GHz. The black dots and red crosses stand
for the results of the proposed J−formulation for the coarse
and finer mesh, respectively, while the blue dashed line rep-
resents the published results given in [38]. As it is shown,
the results of the proposed method are almost identical with
the published ones near the resonance, where the values of
MS reach the maximum value, for both meshes. Some devi-
ations are observed for small MS values, which are evidently
reduced with the finer mesh density. Therefore, the initial
coarse discretization of the fictitious surface gives accu-
rate results within a reasonable period of time as described
above.
Fig. 5(d) illustrates the electric eigencurrents for modes

1, 3, 5 (as enumerated in Fig. 3) at 1.5 GHz. Note that
the corresponding magnitudes are arbitrary as they refer to

2. Note here that the computation time is significantly higher com-
pared to the surface integral equation-based formulation. The reason of
this high computation time is the need to apply the Schur complement, and
specifically the inversion of the Lrr matrix as appears in both M− and
J−formulations, [Eqs. (11) and (17), respectively]. Notably, since all these
matrices are obtained from a 3D FEM formulation, they are sparse having
a theoretical computational complexity for the sparse matrix factorization
of O(N2) [39].
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FIGURE 5. Electric current for the modes on the PEC plate at 1.5 GHz. (a) Mode 1.
(a) Mode 3. (a) Mode 5. (d) Color scale.

eigensolutions. All the eigencurrents are identical with the
eigencurrents shown in [38, Fig. 3]. Explicitly, mode 1 is the
first fundamental mode of a rectangular PEC plate, mode 3
has a circular weakly radiating current distribution, and 5 is
a second-order mode.

FIGURE 6. Validation on J− (red dots) and M− (blue dots) formulations against
Hu-Wang J−formulation (blue solid lines) [41] and Ylä-Oijala et al. (black dashed
lines) [14]: Magnitudes of the first four eigenvalues with the smallest magnitude for a
lossless non-magnetic dielectric sphere with α = 4.6 mm, and εr = 38.

B. DIELECTRIC SPHERE
The next study is focused on a simple lossless dielectric
sphere with radius α = 4.6 mm, εr = 38 and μr = 1. A
λmin/64 discretization step is used for the sphere’s surface,
while the fictitious surface has a mesh density of λmin/10.
The resulting mesh consists of 118, 556 tetrahedral cells,
while the size of stiffness (S), mass (M) and ABCs (R)
matrices is 141, 440 × 141, 440 each, and the dofs (edges)
of interest that lie upon the surface of the sphere are only
2, 709. Therefore, the size of the impedance (admittance)
matrix Z (Y) comprising the CM eigenproblem is reduced
to 2, 709 × 2, 709, which is greater than 750 edges (MoM
matrix 750 × 750) of the corresponding SIE formulation,
reported in [14]. However, this size is the one third of the cor-
responding matrix developed in the VIE-MoM method [10].
Both J− and M−formulations are utilized for the analysis of
the dielectric sphere and the results are compared to related
published data, whenever available.
Fig. 6 displays the magnitude of the first four eigenvalues

with the smallest eigenvalue in the frequency range between
4 GHz to 8 GHz computed both with the J-formulation
(red dots) and the M-formulation (blue dots) presented in
Section II. Comparing with the corresponding published
results (blue solid lines) computed by the corresponding
Hu-Wang J−formulation (formulation 2 of [41]), a very good
agreement is observed. A serious deviation occurs around
6.6 GHz, where the Hu-Wang formulation presents an exter-
nal resonance, while the proposed formulation results at an
internal resonance.
However, if we compare the same eigenvalues with

the results obtained from a SIE-based TCM formulation
proposed by Ylä-Oijala et al. [14], there is no external res-
onance around 6.6 GHz. This indicates that the proposed
algorithm identifies correctly both the external and internal
resonances of the studied geometries. Of course the existence
of internal resonances is not favourable for a character-
istic modes formulation, and as discussed in Section II
they are considered as spurious modes. At this moment

294 VOLUME 3, 2022



FIGURE 7. Modal significance distributions of modes shown in Fig. 6. Red and blue
dots refer to the proposed J− and M−formulations, respectively, while solid blue lines
to Hu-Wang J−formulation [41] and black dashed lines to Ylä-Oijala et al. [14].

of our research, however, we are not focused on eliminat-
ing these resonances, even though we understand that they
appear due to the null space of the impedance/admittance
operator [21], [31]. The elimination of the internal reso-
nances is left as a future task. Nonetheless, the efficient
distinction between external and internal resonances is of
primal importance, and is achieved through the modal sig-
nificance distributions shown in Fig. 7. There, all modes
around 6.6 GHz have MS far below the unit value, which
reveals that there is no mode that efficiently radiates at this
frequency.
Taking a closer look at the eigenvalue distribution of

Fig. 6, the existence of three almost perfectly overlapping
eigenvalues at the same frequency is revealed. Note here that
for a symmetric structure like the sphere, degenerate TElmn
and TMlmn modes are expected [42], for m > 0. Specifically
for m ≥ n, 2n + 1 modes exist with the same resonant
frequency (the corresponding lines in all the figures overlap
to each other), but with different field distributions. This is
clearly revealed when we investigate for example the current
distributions close to the first resonant frequency of Fig. 6,
where three degenerate modes at fr = 5 GHz appear. These
modes, right before the resonant TE1 mode show the same
eigenvalue (λ = −3.5), but different current distributions as
shown in Fig. 8.
The results of Fig. 6 are obtained when the fictitious sur-

face is placed at a distance of λmax/2. The same λmax/2
distance is preserved for all the forthcoming numerical stud-
ies. The mesh density on the fictitious surface plays also a
key role on the accuracy of the eigenvalues’ distributions, as
discussed and shown previously with the PEC plate example
(Section III-A). Herein, the descritization of the fictitious sur-
face is chosen at λmin/10. A further increase of this mesh
density will diminish any deviations away from the reso-
nances, at the expense, though, of increased computational
time. However, such a cost is unnecessary for an antenna
design procedure, since the modes around resonance are of
primal importance [40], as already mentioned.

To investigate the effect of the discretization of the
geometry under study on the accuracy of the eigenvalue
distributions, the following study is performed; the loss-
less non-magnetic dielectric sphere with α = 4.6mm and
εr = 38 is modeled with a surface discretization of λmin/32,
and λmin/64, respectively. Fig. 9 presents the distributions
of the first six modes for the J−formulation, showing minor
deviations and at only the higher order modes.
Apart from the finer mesh in the geometry’s surface, the

densification of the fictitious surface mesh has also an impor-
tant impact on the resulting eigenvalues at resonance. Fig. 10
depicts the relative error of the resulting eigenvalue for the
TE1 mode in resonance at 5.2 GHz, as the fictitious surface
mesh is densified. The corresponding value of Hu-Wang for-
mulation [41], is taken as the reference value. As the mesh
density increases from λmin/5 to λmin/10 it’s obvious how
the relative error decreases. A further rise of the mesh step
does not offer an essential improvement of the results. Thus,
the λmin/10 discretization step is chosen in all our simula-
tions as it offers a small relative error, and at the same time
an affordable mesh size that does not consume excessive
computational resources.
Similar to the J-formulation, the M-formulation is also

capable of identifying both the external and internal reso-
nances of the structure under study. However, it turns out
that the M-formulation is more sensitive compared to the
J-formulation in respect to the fictitious surface’s discretiza-
tion. The sensitivity of the M-formulation compared to the
J-formulation is attributed to the bad condition number of the
corresponding Lrr matrix in (11) which as a matter of fact
is 103 times worse than the condition number of the corre-
sponding Lrr matrix of (17). Namely, for a discretization step
of λmin/10 a deviation of even 102 can be observed between
the mode distributions of the J− and M-formulations, mainly
at areas far from the external resonances. These results are
not shown here for reasons of brevity. To eliminate these
differences a discretization step of λmin/20 and λmin/40 is
chosen for the J- and M-formulation, respectively.

The spherical structure studied so far is lossless as it
is made of an ideal material useful only for simulation
processes. However, real structures are not loss-free. The
suggested formulation is also able to handle lossy structures
via the incorporation of complex dielectric permittivity, the
imaginary part of which is related to the dielectric loss
tangent. Considering the same geometrical non-magnetic
sphere, but with εr = 38 − j1.0, the resulting magnitude
of the first four eigenvalues is depicted in Fig. 11, using
both the J− and M−formulations and compared against the
results published in [14].
Examining the imaginary part of the aforementioned

eigenvalues in Fig. 12 the abrupt rise of the imaginary part
is clearly evident at the internal resonances. This increase
confirms the strong absorption of the internal resonances,
although the material losses are relatively small. Otherwise,
the imaginary part of the eigenvalues is relatively small com-
pared with the real part [43]. Thus, the classification of the
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FIGURE 8. Lossless sphere eigenvectors: Real part of the eigenvectors at fr = 5 GHz for the first three modes of Fig. 6 at the y-z view.

FIGURE 9. Effect of mesh densification: Magnitude of the first six eigenvalues with
the smallest magnitude for a lossless non-magnetic dielectric sphere with α = 4.6 mm
and εr = 38 computed with the proposed J−formulation methodology when the
discretization step for the surface of the sphere alters from λmin/32 to λmin/64.

FIGURE 10. Relative error for the TE1 resonant eigenfrequency of the lossless
dielectric sphere, in respect to the corresponding value of Hu-Wang formulation [41].

resonances between external and internal ones can be also
realized by observing the imaginary parts of the eigenvalues
in the case of lossy structures.
To further validate our algorithm, the real part of the

first three eigenvectors of the lossy dielectric sphere for
modes TE1 (f = 5.2 GHz), TM1 (f = 7.3 GHz), and TE2
(f = 7.45 GHz) at their resonances is shown in Fig. 13. The

FIGURE 11. Lossy sphere J- (red dots) and M- (blue dots) formulations against
Ylä-Oijala et al. [14]: Magnitudes of the first six eigenvalues with the smallest
magnitude for a lossy non-magnetic dielectric sphere with α = 4.6 mm, and
εr = 38 − j1.0.

FIGURE 12. Lossy sphere J− (red dots) and M− (red dots) formulations: Imaginary
parts of the first four eigenvalues with the smallest magnitude for a lossy
non-magnetic dielectric sphere with α = 4.6 mm, and εr = 38 − j1.0.

TE−mode eigenvectors exhibit a rotation-like distribution,
while the TM−mode has a dipole-like behavior. These are
the expected electric field patterns of spherical resonators,
as also presented in bibliography [44], [45].
All the simulations throughout this article were completed

in an HP workstation Z820 with Intel R©Xeon CPU E5−2650
v2 @ 2.60 GHz ×17 and 251.8 GHz of DDR3 memory.
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FIGURE 13. Lossy sphere eigenvectors: Real part of resonance eigenvectors for the modes of Fig. 11 at the y-z view. These are in agreement with related results from [44], [45].

Table 1 summarizes the time and memory demands of the
problem for different discretization steps of both the loss-
less and lossy spheres. In general, the Schur complement
procedure consumes most of the memory and consequently
most of the time during the solution of the system. The
significant increase of computational time in the lossy case
is due to the additional simulation for the determination of
radiation matrix. If this matrix is known a priori, then the
computational time can be reduced to half.

C. DIELECTRIC CUBE
The proposed methodology is further tested simulating a sim-
ple non-magnetic (μr = 1) dielectric cube with side length
l = 25.4 mm and dielectric permittivity εr = 9.4 (Cube NL
in [10]). This example has been extensively studied in [10]
using a VIE MoM-based formulation, and the correspond-
ing results are used herein as reference. The structure is
discretized following the discretization step criteria λmin/32
for the cube, λmin/20 for the fictitious surface placed λmax/2
away from the structure, resulting in an impedance (admit-
tance) matrix of the order of 2, 601×2, 601. Fig. 14 depicts
the magnitude of the first four eigenvalues’ distributions in
the frequency range of 2 GHz to 4.2 GHz. The red lines
represent the results of the proposed J−formulation, the blue
lines those of the M−formulation, while the black dashed
lines stand for the results of the VIE MoM-based formu-
lation as published in [10]. As shown, good agreement is
observed between the proposed formulation (both J and M)
and the reference results.
The total computational time for this example is 3.5 hours

for each frequency point, when our formulation is used. To
solve the same problem using the VIE-based formulation
a slightly longer time of 3.96 hours per frequency point
is needed, as reported in [10].3 Therefore, the computation
time of a VIE-based formulation is comparable to the com-
putation time of the proposed FEM-based formulation, at
least at its current state. Of course in both formulations

3. Explicitly, [10] reports 103 hours for 26 frequency points.

TABLE 1. Time and memory consumption for the dielectric sphere solution when
the fictitious surface is placed at a distance λmax/2 for different mesh densities.

appropriate techniques can be utilized (e.g., MLFMA, [46],
for the MoM-based and adaptive cross approximation, [47],
for the FEM-based formulation) that can significantly reduce
the corresponding times. The key advantage of the FEM-
based formulation compared to the VIE-based formulation
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FIGURE 14. Validation on J− (red lines) and M− (blue lines) formulations against
VIE MoM-based formulation (black dashed lines) [10]: Magnitudes of the first four
eigenvalues with the smallest magnitude for a lossless non-magnetic dielectric cube
with l = 25.4 mm and εr = 9.4.

FIGURE 15. Modal significance distributions for the modes shown in Fig. 14. Red
and blue lines refer to the proposed J− and M−formulations, respectively, while
dashed black lines to VIE results shown in [10].

is not in the time consumption, but in the fact that it is
a Green’s function-free formulation. This explicitly means
that it does not require the evaluation of Green’s function,
thereby the study of any arbitrarily shaped, multilayered
geometry loaded with anisotropic and inhomogeneous mate-
rials is feasible without applying any modification on the
formulation. A VIE-based formulation can also handle any
complex geometry (e.g., multilayered geometry loaded with
anisotropic and inhomogeneous materials) as long as, though,
the corresponding Green’s function is available. If it is not
available, it can be definitely evaluated which requires this
corresponding analytical burden.

D. RECTANGULAR METALLIC PATCH ANTENNA
To further verify the proposed methodology, a rectangular
metallic patch antenna of length Lp = 60 mm and width
Wp = 40 mm printed on a grounded dielectric substrate
of length Ls = 100 mm, width Ws = 80 mm, and height
Hs = 1.5 mm as shown in Fig. 16 is studied. The dielectric
constant of the substrate is chosen equal to εr = 2.3. The
J−formulation is used to determine the corresponding char-
acteristic modes and is compared with the results given by
the commercial software FEKO [48].

FIGURE 16. Rectangular metallic patch antenna printed on a grounded dielectric
substrate with εr = 2.3.

FIGURE 17. Rectangular metallic patch antenna J−formulation: Eigenvalues
distribution of the rectangular patch antenna of Fig. 16. Red dots represent the results
of the proposed J-formulation, while dashed black lines are the results obtained from
FEKO [48].

Note here, that even though we don’t know the type of
integral operators FEKO uses to solve this CM problem,
we use it here only for reasons of comparison, since it’s
the only available software to our knowledge capable of
performing CM analysis on composite structures. Therefore,
in what follows in this section, we only present our results
without implying that FEKO or our formulation is less or
more accurate.
To perform this analysis we choose to discretize all

the metallic parts of the patch antenna with a step size
of λmin/32, and the fictitious surface with a correspond-
ing step of λmin/20. Fig. 17 compares the results of our
J−formulation with FEKO’s response showing a fair agree-
ment between them. Specifically, regarding the number of
the observed modes it looks that both our formulation and
FEKO have the same number of modes. However, there is
indeed some slight deviation between some of the results.
FEKO has an almost vertical line that crosses zero at
1.6 GHz, while the proposed formulation produces a less
vertical response (red-dots) that crosses zero at the same
frequency. At higher frequencies the proposed formulation
captures some modes which also seems to match with a por-
tion of FEKO’s response, even though FEKO doesn’t give
us results prior to some frequencies. This behavior is due
to the well-known FEKO’s failure of mode tracking [49],
which results in jagged responses in eigenvalues’ distri-
bution. These responses are eliminated from Figs. 17, 18
through a post-processing procedure.
What is important to note here is the behavior of the

observable eigenvalues. As we know, patch antennas are
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FIGURE 18. Modal significance distributions for the modes shown in Fig. 17. Red
lines refer to the proposed J−formulation, while dashed black lines to those obtained
from FEKO.

narrowband in principle. By observing Figs. 17 and 18
we find, however, eigenvalues that cross zero and show
high modal significance for a wide band of frequencies.
This can be misleading and can create the impression that
patch antennas are wideband, which is not the case. Let
us explain this using Figs. 18 and 19. In Fig. 18 there
are two different types of eigenvalue responses. Eigenvalues
that show steep response versus frequency and eigenvalues
that show smooth response versus frequency. The eigen-
values with steep response have the expected narrowband
behavior, and correspond essentially to the modes that are
related to the patch-radiator itself. Namely, at 1.6 GHz
and 2.3 GHz the traditional TM100 and TM010 modes are,
respectively, obtained, that can be also analytically evalu-
ated following classical microstrip patch antennas’ analysis,
e.g., Balanis [50]. The eigenvalues with smooth response
versus frequency are attributed to the finite grounded sub-
strate, they do not radiate efficiently, as they usually don’t
take any energy, and if excited, they radiate in the end-fire
direction. In general, these finite substrate modes are not the
desired radiation modes we obtain, or we are seeking for to
have, when we excite a patch antenna. To prove that indeed
the smooth responses correspond to finite ground plane sub-
strate modes that do not radiate efficiently, we compare the
current distributions for some of them with the current distri-
butions of traditional patch radiating modes. Let us take for
instance the frequency of operation of 2.3 GHz. According
to Fig. 18 three red lines dominate at this frequency, imply-
ing the existence of three radiating modes. One of the lines
has steep response while the other two are parts of lines with
smooth responses that appear for a wide band of frequencies.
By plotting the corresponding currents of these modes in
Fig. 19, the nature of each mode is clear. Namely, the first
from the left figure shows the traditional current distribution
with high current intensity on the top metallic layer of our
patch antenna, flowing perpendicular to its long edge. On
the other hand, for both the middle and the right figures, the
current intensity is significantly lower with minimal current
flowing over the top metallic layer of the patch, indicating

that these modes are not able to efficiently radiate. Note
that all three current distributions are plotted using the same
scale.
What is interesting from the CM point of view is to

develop a mechanism that can identify the true patch-radiator
modes solely and distinguish them from the “undesired”
(under most of the circumstances) substrate modes. However,
this is a subject that is beyond the tasks of the present effort.

E. ANISOTROPIC MULTILAYERED SPHERICAL
RESONATOR
So far, the proposed formulation has been tested and val-
idated against typical SIE CM formulations. However, the
use of FEM allows the study of arbitrarily shaped mul-
tilayered structures filled with anisotropic materials. This
unique advantage is also offered by VIE but with a pro-
hibitive increase of computational demands [10]. Herein,
the anisotropic spherical resonator of Fig. 20 is analyzed,
utilizing the M−formulation. The resonator consists of two
concentric spheres with different dielectric properties. The
inner sphere has radius 0.7 mm, and is uniaxially anisotropic
with εr1 = (90, 90, 9). The external spherical shell has outer
radius 3.5 mm, and εr2 = 10. The inner sphere herein is dis-
cretized with λmin/50 while the outer with λmin/32 resulting
in a CM admittance matrix Y of size 4, 201 × 4, 201. As
expected, the study of multilayered structures increases the
number of dofs at the “radiating” surface Si of the outer
sphere. Although the discretization criteria for the outer
sphere are the same with the dielectric sphere studied earlier
(λmin/64 for the surface of the outer sphere and λmin/10 for
the fictitious surface) and its radius is smaller, the resulting
dofs are significantly increased due to the necessary finer dis-
cretization of the inner sphere which has significant impact
on the whole mesh. This inconvenience appears mainly in
spherical topologies, where a denser mesh is needed in order
to represent the curved interfaces more accurately. However,
this rise of CM admittance matrix Y is not excessive to
render the solution of the system prohibitive. Notably, the
uniaxial anisotropy of the inner sphere does not cause any
increase neither in the dofs nor in the computational cost. The
distribution of the first eight eigenvalues with the smallest
magnitude is presented in Fig. 20, where two modes res-
onate, the mode TM110 (orange line) at fr = 11.41 GHz,
and the TE110 (blue line) at fr = 12.97 GHz. The resonance
of TE110 complies with Wolff’s analytical solution (vertical
black dashed line) [51]. The electric field distributions of two
modes at resonance are depicted in Fig. 21 and clearly reveal
the rotation-like behavior of TE modes [Fig. 21(a)], and the
corresponding dipole-like behavior of TM ones [Fig. 21(b)],
in accordance with the electric field patterns of spherical
resonators presented in bibliography [44], [45].
As it is shown throughout this work, the proposed Green’s

function-free methodology for CM is able to easily handle
multilayered geometries loaded with anisotropic materials
without any further modification in the formulation. An ini-
tial attempt to solve multilayered structures with the use
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FIGURE 19. Current distribution for the three red lines of Fig. 18 at 2.3 GHz for the patch antenna of Fig. 16.

FIGURE 20. Anisotropic multilayered sphere M−formulation: First eight eigenvalues
of an anisotropic spherical resonator consisting of two concentric non-magnetic
dielectric spheres. The radius and dielectric permittivity of the inner sphere are
r1 = 0.7 mm and εr1 = (90,90,9), respectively, while the radius and dielectric
permittivity of the outer sphere are r2 = 3.5 mm and εr2 = 10, respectively. The
vertical black dashed line represents the analytical resonant frequency given in [51].

of the conventional SIE-based CM analysis is made in
the latest work of Ylä-Oijala [7]. Therein, the initial for-
mulation is modified in order to express the equivalent
electric and magnetic currents at all interfaces between adja-
cent layers. On the contrary, the herein proposed FEM-CM
formulation can be readily applied without the need of
modification.

F. CIRCULAR PATCH ANTENNA WITH FERRITE POST
The last example describes a fully inhomogeneous geometry
filled with an anisotropic material. This is a circular patch
antenna loaded with a ferrite post offering frequency tun-
ability as shown in Fig. 22. To make the antenna able to
resonate at the ISM band/ tunable around 2.42 GHz, for its
dominant TM110 mode, the radius of the circular patch is
chosen as b = 7.5 mm. This geometry was proposed and
extensively studied in the past by our research group [52].
Following [52], the radius of the ferrite post, a, is chosen
to be half of the radius of the circular patch, thus a = 0.5b.
Ceramic-PTFE TMM10 with εrD = 9.2, tanδ = 0.0009,
and thickness h = 0.8 mm is used for our substrate. The

FIGURE 21. Anisotropic multilayered sphere: Real part of resonant eigenvectors
for: a) TM110 at fr = 11.41 GHz, and b) TE110 fr = 12.97 GHz modes of Fig. 20 at the
y-z view.

ferrite is a YIG−Al doped type GA−65 ferrite Domen with
4πMs = 650 Gauss [≡ 10−4 T], εrF = 14.2 and �H = 45
Oe [≡ (4π)−1 × 103 A/m].
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FIGURE 22. Geometry of a circular patch antenna tuned by transversely magnetized
ferrite post.

The anisotropic nature of this geometry stems from the
transversely magnetized-biased ferrite post, whose magnetic
permeability is of the form:

μ =
⎡
⎣

μF jκF 0
−jκF μF 0

0 0 μ0

⎤
⎦ (27)

where:

μF = μ0

(
1 + ωm(ω0 + jaFω)

(ω0 + jaFω)2 − ω2

)
= μ0μrF (28)

and

κF = μ0
ωωm

(ω0 + jαFω)2 − ω2
= μ0κrF (29)

where ω = 2π f refers to the operating angular frequency,
αF = μ0γ�H

2ω0
is the damping factor, γ is the gyromagnetic

ratio, �H is the ferrite linewidth [53], ω0 = μ0γH0 = 2π f0,
ωm = μ0γMs = 2π fm, H0 is the DC biasing magnetic
field, and Ms is the saturation magnetization. The sub-
script F is used to denote the ferrite. Since the scope,
herein, is to explore the capabilities of FEM-CM formu-
lation, tunability is beyond our purpose. Thus, some fixed
magnetic biases are assumed. Indicatively, H0 = 63661.98
A/m results in f0 = 2.8 MHz/A/m ·H0(A/m) = 2.24 GHz,
fm = 2.8 MHz/A/m ·4πMs(T) = 1.82 GHz, and aF = 2.8
MHz/A/m ·�H(A/m)/2ω0 = 0.0045 according to [53].
These values are then substituted in (28) and (29) to yield
μrF = −3.842 − j0.3036 and κrF = −5.2326 − j0.3027.

Fig. 23 presents the real part of the resulting eigenvalue
distributions for different DC magnetizations, compared
to the results provided by the analytical method in [52].
An almost perfect agreement is achieved for the resonant
frequencies between the proposed algorithm and the pub-
lished results. The slight deviation of 0.6% around the
frequency of fr = 3.59 GHz can be due to the approximations
of [52] and/or the mesh density herein.
Fig. 24 presents a 1 − D representation of the abso-

lute value for the normalized φ component-magnetic current
distribution around the edge of the circular patch antenna

FIGURE 23. Real part of the eigenvalues for a circular patch antenna loaded with a
ferrite post. Colourful lines show the proposed method results, while the black
symbols stand for the resonant frequencies shown in [52].

FIGURE 24. Absolute value of the normalized φ component-magnetic current
distribution around the edge of the circular patch antenna for the TM110 mode. The
blue solid line indicates the result from the proposed FEM-CM formulation, while the
dotted red line the results from [54].

for the TM110 mode. This is the first resonant mode at
fr = 2.42 GHz, when the DC biasing magnetic field is
H0 = 63661.98 A/m. The resulting distribution of the
proposed methodology is qualitatively compared to its ana-
lytical counterpart. Namely, this normalized φ magnetic
current distribution around the edge of the circular patch
antenna is in accordance with the expected theoretical anal-
ysis met in [54] for the case of TM110 mode. The observed
deviations are due to the fact that the theoretical analysis is
made for a lossless circular patch (here we model a circular
patch antenna loaded with lossy material), and due to the
relatively coarse mesh discretization in this area.

IV. CONCLUSION
This work presented thoroughly a novel method for the study
of electromagnetic structures utilizing a characteristic modes
analysis based on the finite element scheme. The validity of
the method was proved through the study of known struc-
tures, whose resulting eigenvalues and eigenvectors were
cross-examined with the corresponding results in bibliogra-
phy. Thus, a wide new era arises in the field of characteristic
modes, as any arbitrary shaped multilayered electromagnetic
structure loaded with possibly anisotropic and/or highly inho-
mogeneous materials can be studied based on the robustness
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and flexibility of finite element method. It should be men-
tioned that no modification of the formulation is needed in
order to study either isotropic or anisotropic material with
and without inhomogeneity.
The method presented in this work is a computational

paradigm shift for formulating CM problems, opening sev-
eral new directions of research. Amongst them we have
identified three main problems that are seeking solution:

• Investigate the reasons of internal resonances in both
proposed J− and M−formulations, and eliminate them
with the appropriate modification of the correspond-
ing formulation (e.g., introduction of an equivalent
formulation to the combined field integral equation
approach [15], or introduction of a DtN approach [33]).

• Investigate the reasons of why the proposed
M−formulation is more sensitive compared to the
proposed J−formulation.

• Investigate the reasons of why the CM analysis of a
patch antenna returns eigenvalues that appear to be close
to zero across a very wide frequency band, implying
that this structure has wideband performance, which is
against the common narrowband behavior of a patch
antenna.
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