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Computation time reducing via non linearity isolating and constraint
handling in fixed-point based hierarchical control framework

Xuan-Huy Pham1,2, Mazen Alamir1, François Bonne2 and Patrick Bonnay2

Abstract— This paper presents an extension of a recently
proposed hierarchical control framework applied to a cryogenic
system: [1]. Under the assumption made in [1], each subsystem
in the decomposition needed at least one control input and
one regulated output, which is not practical, especially when a
nonlinear subsystem could be decomposed into several smaller
subsystems. Consequently, such an assumption limit those valid
decompositions that may result in more tractable optimization
control problems and thus reduce the computation burden.
In this paper, this assumption is removed, allowing greater
flexibility in the definition of the decomposition graph, meaning
that small nonlinear entities and large linear-considerable
subsystems are detached, resulting in more tractable control
problems. The impact of this increased flexibility on the com-
putational time and its performance are shown using the same
cryogenic station where a decomposition into four subsystems
is made possible (instead of two in the previous framework).

I. INTRODUCTION

Decentralized control methods have been an active field,
especially when the considered systems are large-scale sys-
tems. Generally, this method could be separated into two
categories: distributed framework and hierarchical frame-
work. In the former, each subsystem communicates with
its neighbors by receiving the other subsystem state and
input trajectory in order to update its trajectory throughout
many iterations to optimize the centralized cost. Whereas
in the latter, the paradigm master-slave is used where the
subsystems communicate only with a master (or coordinator)
that attempts to coordinate the subsystem behavior to achieve
global performance. In [2], the authors have excellently
reviewed and proposed a classification of a number of
decentralized, distributed, and hierarchical control frame-
works. Moreover, the survey book [3] listed more than 35
approaches, which serves as a starting point for developing
different techniques.

Recently, a hierarchical control framework has been sug-
gested by [1], in which the system under study is de-
composed into a network of interacting subsystems. This
framework is structured in two distinct layers. In the lower
local layer, each subsystem implements a linear controller in
order to regulate a specific output vector. The upper layer
consists of a coordinator that exchanges information with
the subsystems and optimizes the overall performance by
minimizing a global cost through an appropriate set-point
vector that is sent to the subsystems (each receives its own
set-point vector). In [4], the same framework is validated in
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the presence of model nonlinearities and in the presence of
constraints while using a complexity reduction technique to
ensure real-time implementability.

In the two previous works, however, the decomposition
of the whole process into a network of subsystems is
constrained by the fact that each subsystem is a controlled
system, i.e., having at least one control input and one or
more regulated outputs. Suppose that the large system could
be decomposed into several subsystems; among them, ones
have control input and output, ones do not have any control
input and output. Moreover, the dynamic of these subsystems
is influenced by the coupling signal among them. Assuming
that nonlinear model predictive controls (NMPCs) are used,
the previous decomposition constraint implies that the sub-
systems without input and output need to be combined with
others which has inputs and output, resulting in a new large-
scale nonlinear system. Consequently, the high-dimensional
NMPC becomes the bottleneck for the overall computation
time.

This is the starting point of the present contribution.
Indeed, the constraint mentioned above on the decomposition
graph is relaxed, making eligible decomposition architec-
tures where some of the subsystems show no control or
even no regulated output. This enables to use the NMPCs
for the particular nonlinear subsystem with a smaller size
while considering the coupling influence coming from its
neighbors. In addition, the second contribution of this paper
is to validate constraint handling properties via local cost by
using the proposed hierarchical control framework. Finally,
the effectiveness in performance and computation given by
relaxing the decomposition constraint will be assessed in this
paper.ly

The paper is organized as follows: Section II describes the
hierarchical framework investigated in this paper extending
the eligibility condition of a decomposition topology. Section
III briefly recalls the different steps of the overall hierarchical
control. Finally, section IV presents numerical simulation
showing the significant advantages that can be obtained
thanks to the extension of eligible decomposition topology.

Notation. The following notation is extensively used in
the paper. For a sequence of vector qi1 , qi2 , . . . , the following
notation concatenation operator is used:⊕

i∈I
qi := [qTi1 , q

T
i2 , . . . ]

T , with i1 < i2 < · · · ∈ I (1)

Moreover, the bold-faced notation p denotes the profile of
a vector variable p over a prediction horizon of length N ,



namely:

p = [pT (k), . . . , pT (k +N − 1)]T ∈ RN ·np (2)

II. HIERARCHICAL CONTROL FORMULATION

In order to better understand the paradigm studied in this
contribution, let us consider the situation described in Fig.
1 where a set of interacting subsystems indexed by N :=
{1, . . . , ns} is represented. This set is subdivided into two
different subsets:
• The subset of controlled subsystems N ctr ⊂ N having

each its control input vector and regulated output vector,
denoted by us and ys respectively.

• The complementary subset of subsystems that includes
no control input denoted by Nunc := N −N ctr.

Each subsystem Ss sees its dynamics impacted through the
so-called coupling signals vs′→s coming from all subsystems
{Ss′}s′∈Ns

with indices s′ that belong to the set of indices
Ns (set of indices of subsystems impacting Ss). Fig. 1
presents the interconnected subsystems at the local layer
and the coordinator at the coordination layer. The process
between the two layers will be described hereafter.

S1

Decision u1
S2

S3

Decision u3

Coordinator

Coordination layer

Local layer
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Fig. 1. Example of the hierarchical control architecture and the interconnec-
tion network between the subsystems. The presented sets correspond to this
example are N := {1, 2, 3}; N ctr := {1, 3}, N1 = {2, 3}, N2 = {1, 3},
N3 = {1, 2}.

Let vins and vouts denote respectively the incom-
ing/outgoing coupling profiles of the subsystem Ss. More
precisely:

vins :=
⊕
s′∈Ns

vs′→s ; vouts :=
⊕

s′|s∈Ns′

vs→s′ (3)

The following assumption is considered regarding the pro-
cessing that is available locally at the subsystem’s level:

ASSUMPTION 1: Each subsystem Ss, when given
• a presumed incoming profile vins and
• a given individual set-point rs (required if s ∈ N ctr),

can process an algorithm to compute what would be:
• Its resulting outgoing profile vouts and
• Its contribution Js to the central cost

The central cost is assumed to be of the form:

Jc(r,v
in) :=

∑
s∈N ctr

Js(rs,v
in
s ) +

∑
s∈Nunc

Js(v
in
s ) (4)

where r :=
⊕

s∈N ctr

rs and vin :=
⊕
s∈N

vins

Note that the computation processed at the local subsystem
level depend on the current states xs of each subsystem of
which the coordinator is unaware. As a result, each time
the coordinator sends (r,vin), the subsystems receive the
information that enables to construct the corresponding vout,
namely there is a map (that depends implicitly on the current
state of the system):

vout = gout(r,v
in) (5)

Moreover, the elements of the outgoing coupling profile vout

are also those of the incoming coupling profile vin but
arranged in a different order. Indeed, both vin and vout are
composed of all the profiles of the form vs→s′ , for s ∈ Ns′ .
Therefore, there exists a permutation matrix Gin such that :

vin = Gin · vout (6)

Injecting (6) in (5) yields:

vin = Gin · gout(r,vin) (7)

Indeed, equation (7) governs the dynamic of the subsys-
tems at the local layer according to the setpoint r. However,
the coordinator at the upper layer is obliged not to know
this information of the subsystems. This is the modular
privacy preservation requirement which is made in order
to simplify any changes in the local layer when they occur
(readers are referred to [1] for more information).

Then, the central optimization problem presents at the
coordination layer can be stated:

min
r,vin

Jc(r,v
in) (8)

subject to vin = Gin · gout(r,vin) (9)

As a matter of fact, the true decision variable in the
above optimization problem is r since the constrains (9)
fully determine vin for any r. The difficulty lies in the fact
that the mathematical expression involved in (9) is totally
unknown to the coordinator (modular privacy preservation
requirement). That is the reason why, in order to solve
(8), [1] proposed an algorithm based on fixed-point iteration.
Briefly, the algorithm could be summarized as below:

During an updating period [k, k + 1]Ts with Ts being the
sample time, the process occurring between the two layers
are separated into two sub-processes, namely:

Estimate the central cost Jc: For a setpoint r given by the
coordinator to the subsystem

1) The coordinator starts by sending an initial guess
v
in,(σ=0)
s regarding the incoming profiles,

2) The subsystems compute their control profiles us (if
any) and the corresponding outgoing coupling profiles
v̂
out,(σ)
s ,



3) The subsystems send the outgoing coupling profiles
v̂
out,(σ)
s to the coordinator from which the coordinator

can constitute the corresponding incoming coupling
profiles v̂

in,(σ)
s based on (6).

4) To ensure the convergence of the iteration, a stabilizing
filter is used to update the profile denoted by v

in,(σ+1)
s ,

5) The iterations continue until the termination criteria
ε := max(|vin,(σ+1) − vin,(σ)|) ≤ is satisfied. Then,
the subsystems compute their local costs Js and send
it to the coordinator. The coordinator can thus compute
the the central cost Jc in 8.

Optimize Jc with respect to r: Repeating the process
described above for different values of r, the coordinator
disposes of a successive clouds of values of the form:{

r(i), Jc(r,v
in,?(r(i)))

}
(10)

That can be used to derive an iterative and modular
privacy-preserving solution of the original problem (8)-(9).
(see [1], [4] for the detailed description of the derivative-
free trust region based optimization process) and gets the
sub-optimal solution ropt in terms of the auxiliary reference
vector r. These two sub-processes are described in the next
section.

III. RECALL ON THE HIERARCHICAL CONTROL
FRAMEWORK

A. Evaluate central cost by using fixed-point iteration:

In this section, the auxiliary set-point r and the cur-
rent state xs are assumed to be frozen. The following
describes the fixed-point iteration leading to the computation
of Jc(r,vin,?(r)) mentioned briefly in the previous section.
The coordinator starts with some initial guesses about the
incoming coupling profiles:

vin,(σ)s , s ∈ N , σ = 0 (11)

These current guesses are sent to the subsystems Ss, s ∈
N , so that each subsystem can compute the corresponding
outgoing coupling profile v̂

out,(σ+1)
s and sends it to the

coordinator, namely:

v̂out,(σ+1)
s = g

(s)
out(r,v

in,(σ)
s ) (12)

where g
(s)
out(·) is the function available at subsystem Ss that

computes the outgoing coupling profile v̂
out,(σ+1)
s . Note that

the value of v̂out,(σ+1)
s depends implicitly on the current state

at the subsystem Ss.
After receiving these profiles, the coordinator can allocate

the elements of the outgoing coupling profile v̂out,(σ+1)

in the estimate of the incoming coupling profile of each
subsystem that is compatible with the received outgoing
profiles:

v̂in,(σ+1)
s = G

(s)
in · v̂

out,(σ+1) (13)

concatenating these profiles enables to update the total in-
coming profile vin,(σ+1) according to a filtering step:

vin,(σ+1) = (I−Π) · vin,(σ) + Π · v̂in,(σ+1) (14)

where I is the identity matrix with the appropriate dimension.
The matrix Π is an advanced filter that is computed so that
the resulting operator is a contraction (for more information
about Π, readers are referred to [1]). Then, the coordinator
sends v

in,(σ+1)
s (for s ∈ {1, . . . , ns}) to the subsystem Ss

for the next round.
It is essential to note that the coherence constraints (9)

is fulfilled only when the fixed-point iteration converges
to some fixed-point vin,(∞). In practice, the procedure de-
scribed above is repeated until some termination condition
is met. This can be defined by the logical condition

ε = ‖vin,(σ+1) − vin,(σ)‖ ≤ εmax or σ ≥ σmax

After the convergence of the iterations, each subsystem Ss
computes the the local cost: Js(·) and sends it back to
coordinator in order to compute the central cost, namely:

Jc(r,v
in,(∞)) :=

∑
s∈N ctr

Js(rs,v
in,(∞)
s )

+
∑

s∈Nunc

Js(v
in,(∞)
s ) (15)

The detail of the local cost will be described in the section
IV-B. The resolution of ropts , for s ∈ N ctr, is described in
the next subsection.

B. Optimizing the central cost

The previous section presented an algorithm that is used to
evaluate the central cost Jc associated with a given setpoint
r. Then, as mentioned in II, the whole process is launched
in an updating period [k, k + 1]Ts in order to find the
optimal setpoint to be sent to the subsystems. To do so, one
can use any derivative-free solver (BOBYQA [5], Genetic
algorithm [6], see also [7]), which uses the evaluated central
cost associated to the setpoint r to find the optimal one.
For instance, a method was proposed in [1] to find the
optimal setpoint by evaluating each setpoint in a G grid.
This grid is defined in an iteratively updated trust-region built
around the previous solution ropt(k − 1). By having a map
of these setpoints, the coordinator can perform a quadratic
approximation, which is solved for the optimal setpoint. This
is also the method used in this paper.

Finally, having the optimal setpoint ropt sent from the
coordinator, the subsystem Ss, s ∈ N ctr compute their
decision profiles and applies the first element to the plant.

IV. SIMULATION-BASED VALIDATION

The objective of this section is to validate the relevance
of extending the eligibility of subsystems definition in the
decomposition architecture. The plant is first recalled, for
which two possible decomposition topologies are defined,
where the first exploits the new degrees of freedom while
the second respects the previous decomposition condition.
Comparison between the results of the two architectures in
terms of performance and computation time is made in order
to validate the contribution of the paper.



A. Investigated system introduction

The investigated system that is used in order to validate the
framework is a cold box of a cryogenic refrigerator. Fig. 2
shows a block diagram of the cold box system consisting of a
Joule-Thomson cycle and a Brayton cycle. The Brayton cycle
consists of two heat exchangers, which are NEF2, NEF34

and a turbine T1. The helium flow is cooled down using the
cryogenic turbine T1 to extract thermal energy from the fluid
and by exchanging the heat power through a series of heat
exchangers (NEFx). A part of the helium gas is liquefied
by the valve CV155 through the isenthalpic process. The
allowed flow rate Mout for this installation is 70 g/s for
safety reasons.
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Fig. 2. Block diagram of the cold box plant.

The Manipulated Inputs: There are three control inputs
which are CV155, NCR22 that are defined below:

1) CV155 ∈ [0%, 100%]: This valve is situated at the inlet
of the helium bath.

2) NCR(a)
22 : This heating actuator is located inside the

helium bath (S1). The value of NCR(a)
22 is in the range

of [0, 55] W. Note that the variable NCR22 in Fig. 2 is
decomposed into two terms:

NCR22 := NCR(a)
22 + NCR(w)

22 (16)

where NCR(w)
22 represents the disturbance coming from

the heat source.
3) ∆P156 ∈ [0, 12] bar: The pressure drop between the

inlet pressure and outlet pressure of the valve CV156. It
should be noted that the valve CV156 is used to control
the pressure drop ∆P156 between its inlet and outlet
pressure. To do so, the local NMPC of the turbine T1

computes and sends an appropriate value of the pressure
drop ∆P156 to the PID controller, which acts on the
opening position of the valve CV156 (Fig. 2).

The Regulated Outputs: There are three regulated outputs
(see Figure 2. for the notation):

1) Ltb131: The helium liquid level (%). The set-point is
chosen by the operator. In the usual operation, it is set
at Ltbsp131 = 60.5%.

2) Ttb108: The temperature at the inlet of the J-T valve
must be tightly controlled in order to ensure the effi-
ciency of the liquefaction of the helium.

3) Ttb130: The temperature at the turbine T1’s outlet.
In this contribution, two decomposition topologies of the

overall system are compared:
Four-subsystems-decomposition (4ss strategy):The

whole system can be seen as a network of four
interconnecting subsystems, which are: the Joule-Thomson
cycle (S1), the heat exchanger NEF2 (S2), the heat exchanger
NEF34 (S3) and the turbine T1. In this network, the turbine
employs a nonlinear model while the heat exchanger models
and the Joule-Thomson cycle are linearized around an
operating point xop. Note that only the turbine T1 and
Joule-Thomson cycle are controlled by NMPC and MPC,
respectively, while the other subsystems are impacted by
their decisions. Table I shows the inputs us, outputs ys, and
the coupling signal of this topology. Then, the subsystem’s
state-space representations are listed below:

Subsystem S1: The Joule-Thomson cycle:

x+1 = A1x1 +B1u1 +
∑
s′∈N1

Gs′→1vs′→1 + F1w1, (17)

y1 = C1x1, (18)
v1→s′ = Cv1→s′x1, s′ ∈ N1 (19)

where x1 ∈ R30 is the state vector of subsystem S1 and
w1 = [NCR(w)

22 ] indicates the disturbance vector.
Subsystem S2 and S3 : The heat exchangers NEF2 and

NEF34, respectively:

x+s = Asxs +
∑
s′∈Ns

Gs′→svs′→s (20)

ys = Csxs, for s ∈ {2, 3}, s′ ∈ Ns (21)
vs→s′ = Cvs→s′xs (22)

where x2 ∈ R34 and x3 ∈ R32 are the state vectors of subsys-
tem S2 and S3, respectively. Note that these two subsystems
do not have any control input while their dynamic is affected
by other subsystems’ decisions through the coupling signal
vs′→s. Moreover, the subsystem S3 has one output which
is Mout, and because the subsystem S2 does not have any
output, its output equation y2 does not exist.

Subsystem S4 : Turbine T1:

y4 = h4(u4, v
in
4 ) (23)

v4→s′ = g4(u4, v
in
4 ), s′ ∈ N4 (24)

where vin4 :=
⊕

s′∈N4

vs′→4. Note that the subsystem S4 is

only a static function of control input u4 and the incoming
coupling signal vin4 .

Two-subsystems-decomposition (2ss strategy): This de-
composition consists of two subsystems that are the Joule-
Thomson cycle (S1) and the Brayton cycle (S2) as already
depicted in Fig. 2. Note that the turbine T1 and the two



heat exchangers NEF2 and NEF34 are now combined to
become a subsystem S234 that represents the Brayton cycle.
This subsystem now has one control input and one regulated
output, which follows the assumption made in previous
work [1]. The model equation of Joule-Thomson cycle is
kept unchanged, while the state-space representation of the
Brayton cycle can be easily obtained by combining the
equations of S2, S3 and S4, namely:

x+234 = f234(x234, u4, w3) (25)
y234 = h234(x234, u4) (26)

v234→1 = g234(x234, u4) (27)

where

x234 = [xT2 , x
T
3 ] y234 = y4 v234→1 = [v2→1] (28)

It can be noted that in this new subsystem S234, the non-
linearity of the turbine makes the whole model become
large-scale nonlinear system despite the fact that the heat
exchanger parts are linear.

TABLE I
THE INPUTS, OUTPUTS AND THE COUPLING VARIABLES OF THE

4-SUBSYSTEMS TOPOLOGY. THE NOTATIONS TC , MC AND PC /TH ,
MH AND PH REPRESENT THE TEMPERATURE, THE FLOW RATE AND

THE PRESSURE OF THE COLD/HOT PIPELINE, RESPECTIVELY.
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Fig. 3. The interconnection network between the subsystems of the Cold
Box.

B. Parameters setting:
The following local costs of each subsystem are defined

as below:
For S1 and S4 that need to track the desired set-points rds :

Js(r|rds) =

N−1∑
i=0

‖ys(k+i)−rds‖2Q(s)
c

+‖us(k+i)‖2
R

(s)
c

(29)

where Q(s)
c and R(s)

c , for s ∈ {1, 4} are chosen to be positive
definite matrices, namely:

Q(1)
c = diag([104, 104]) Q(4)

c = 104 (30)

R(1)
c = diag([0, 0]) R(4)

c = 0 (31)

with diag() denoting a diagonal matrix.
For S3 that has output Mout to be constrained, the

constraint violation cost is defined, namely:

J3(r|y3) =

N−1∑
i=0

‖max(y3(k + i)− y3, 0)‖2
Q

(3)
c

(32)

where y3 = 0.07kg/s and Q(3)
c = 1012.

Finally, S2 does not have any contribution to the central
cost, its cost is simply defined by J2(r) = 0.

The local costs for the 2-subsystems topology can simply
be deduced from the previous choices so that the resulting
central cost is identical. In addition, the termination criteria
on convergence error εmax and the maximum number of
iteration described in section III-A are set at εmax = 10−5

and σmax = 30, respectively.
For local controller synthesis, readers are referred to the

works in [8], [4]. The system investigated in this simulation is
modeled by using the Simulink-based Simcryogenic library
[9].

C. Numerical simulation

First, the system behavior using the mentioned strategies
are shown in Fig. 4. In this scenario, the system with the
hierarchical control is simulated under a disturbance profile
NCR

(w)
22 (subplot(3,2,5)). Obviously, the 2ss strategy gives

better tracking performance on Ttb130 (subplot(3,2,3)) since
the dynamic of the Brayton cycle is taken into account
in the local control problem. Besides, the constraint on
Mout (subplot(3,2,4)) is satisfied thanks to the constraint
penalization cost added in the central. However, it is essential
to note that the computation limit is not considered in this
simulation, which means the control is applied even though
the algorithm can not be finished within the updating period.
In addition, Fig. 5 shows the setpoint tracking scenario where
the coordinator ensures the constraint satisfaction on Mout

while proceeding with the setpoint tracking objective.
Second, Fig. 6 shows that the computation time of 4-

subsystems topology is significantly shorter than the compu-
tation time of the 2-subsystems topology since the large-scale
problem optimization control problem of S2 (2-subsystems
topology) is decomposed into more tractable ones.

V. CONCLUSION

In this paper, a hierarchical control method has been
applied to a generic case with multiple subsystems. Specif-
ically, the previous assumption made in [1] is removed,
allowing for a more flexible decomposition, which gives
better performance in terms of computation time and control
quality. It is also shown that this hierarchical control method
has the ability to take into account subsystem constraints
by defining the corresponding local costs. Promising results
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Fig. 4. Comparison of the output behavior between two strategies using
hierarchical control where rd indicates the desired setpoint. Thanks to
constraint penalization cost on Mout, the coordinator drives the system
in a way such that Mout satisfies the constraint. Obviously, the Ttb130
in the 2ss strategy is better tracking the desired setpoint. However, it is
essential to note that in this simulation, the computation time limit is not
considered, which means the control is updated even that the computation
time exceeds the updating period.

have been obtained with models from the Simcryogenics
library on a MATLAB simulation.

Ongoing work aims to validate the control structure, in-
cluding verifying this approach with a full cryogenic facility
(more subsystems) and replacing the filter in (14) with a
residual-based iterative method so that the coordinator com-
pletely ignores knowledge of the subsystem mathematical
equations. The application of machine learning to replace
the local layer controllers is also considered.
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