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Introduction

Humanity has always been striving to extend the design freedom to achieve a larger design potential. The Additive Manufacturing (AM) technique can serve as a disruptive fabrication process that provides an enormous design freedom. AM is defined as "the process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing methodologies" (ASTM, 2015). It is believed that AM technology is bringing the fourth industrial revolution which would introduce a new era of connected enterprises (Hermann et al., 2016). Indeed, AM does not require any extra tooling and can build a part with complexity unachievable by conventional manufacturing methods (Chu et al., 2008). Nowadays, AM is mostly applied for parts consolidations, weight reduction, functional customization, personalization and aesthetics (Wohlers and Gornet, 2014). AM prompts research in numerous fields: computational optimization, geometric modelling, behavioural simulation, material science, etc. (ISO, 2015). The so-called lattice structures have complex geometrical properties that are hard or even impossible to be produced without AM (Vayre et al., 2012). In this research, a lattice structure is defined as "an architecture formed by an array of spatial periodic unit cells with edges and faces" (Tao and Leu, 2016). Lattice structures provide not only an optimal performance-to-weight ratio (Frulloni et al., 2007) but also unique physical properties, e.g. increased energy-absorption, vibrational damping, etc. (Wadley, 2002). Lattice structures can be classified as homogeneous and heterogeneous (see Figure 1). In heterogeneous lattice, the thickness of struts or nodes inside of it varies over the entire structure, while these parameters stay constant in homogeneous lattice (Tang et al., 2019). Thus, geometric modelling of heterogeneous lattice, rather than homogeneous, represents a bigger challenge. The evolution process made the simplest organisms on Earth converge to complicated and robust species such as humans. It resulted in the optimal shapes and structures that are parts of living organisms developed in billions of years. A scutoid intr -. ( 2018) is the example of a unit cell that forms a biological structure by specific tessellations. This begs a question: can unit cells used in geometric modelling be of any shape, e.g., a prism, a scutoid, etc.? Moreover, as the idea of lattice structures comes directly from nature, the approach proposed in this work aims to guarantee that the geometric modelling method itself should be bio-inspired. Indeed, some lattice structures are not only non-periodic, but also conformal (Tang et al., 2016). In nature, scutoids form a cylindrical shape which is also close to conformal. The content structure is organised as follows. In Section 2, concepts and existing challenges related to this work are reviewed. In Section 3, the proposed approach is presented and then verified in Section 4. In Section 5, the summary of this work is made, and future prospects are identified. In Section 6, the acknowledgments are presented.

Overview of related concepts

Geometric modelling of lattice structures has certain challenges which are mostly related to geometrical complexity of lattice and inability of conventional Computer-Aided Design (CAD) approaches to handle this complexity accordingly (Tang and Zhao, 2016). In this work, these challenges and concepts related to the work are reviewed.

Multi-scale geometric modelling of heterogeneous lattice structures

Before approaching the topic of multi-scale geometric modeling, it is important to cover issues emerging from multi-scale mathematical models describing reality. These issues come from the fact that on different scales different laws of physics act and different mathematical models are used to describe what happens on these scales and how different entities react to each other on these scales. The main challenge of multi-scale modeling is the lack of a unified theory that could correctly describe geometry both down from its structure (~10 -9 m) and up to boundary conditions and processes present in it (~10 0 m) (Raabe et al., 2009). The ability to perform multi-scale modeling is crucial in many research fields involving computer graphics and geometric modeling. For example, Prada et al. (2017) applied multi-scale modeling concepts for 3D mesh generation process for multiscale bone analysis. Engquist et al. (2005) identified the need for an appropriate multi-scale geometric modeling tool for porous materials. In heterogeneous lattice structures, optimization of structural topology and thickness of lattice struts results in meeting the given functional requirements (Tang et al., 2015). Heterogeneity of a structure provides unique properties that cannot be provided by homogeneous structures, e.g. gradual elasticity of the structure or structural stiffness (Martínez et al., 2016). Heterogeneous lattice structures usually have multi-scale complexity which cannot be handled by conventional geometric modelling tools. For heterogeneous lattice structures, it is required to consider not only the whole structure in its mesoscale, but also each joint and strut of the lattice as they form at micro-scale (Zhang et al., 2010). Geometric modelling in engineering is mainly used for visualizing engineering systems such as parts, assemblies, etc., and represented by CAD software. While conventional CAD software is normally sufficient for engineering design in industry, there is no geometric modelling tool that would be able to appropriately represent complex heterogeneous lattice structures due to inability of existing geometric modelling tools to represent a model in multi-scale, which forms a research gap that is yet to be filled. Another issue is the computational cost of such geometric modelling tools because heterogeneous lattice structures have high geometrical complexity resulting in high computational needs using conventional methods (Dong et al., 2017).

Multi-scale geometric modeling methods are also critical in medical research. For example, Youssef (2013) introduced a bio-inspired framework for the simulation of 3-D multicellular tissue growth. However, there is no geometric modeling tool to implement this framework due to high geometric complexity. The need for such a geometric modeling approach for bio-related research is identified, e.g. in anatomy even small defects within a model are crucial (Sacks et al., 2017).

Level of detail

In computer graphics, a far-away object in a virtual environment appears obscured (similar to the effect people with myopia experience), which means that there is no need for representing all details of the object on a screen (Marschner and Shirley, 2016). However, the details appear to be more concrete when approaching the object or zooming into it. Such manipulation of the level of detail (LOD) can be achieved by reducing the polygon count for distant objects by vertex and edge removal (Luebke et al., 2002). However, decreasing LOD of a lattice structure down to a certain level can result in complete homogenization of lattice, such as removing all geometrical features corresponding to lattice structures from view (PTC, 2019). Normally, LOD is manually or automatically associated with CAD-features of solid bodies, e.g. extrusions, revolutions, etc. (Borrmann et al., 2015). However, lattice structures are designed not with CAD-features but with nodes connected by struts which are not so well-defined from the CADperspective (Vayre et al., 2012). Moreover, in heterogeneous lattice even periodicity of the lattice is not well-defined.

Volumetric modelling

One more topic worth considering when discussing multi-scale geometric modelling is the application of multi-scale volumetric modeling. Currently, there are three major approaches for volumetric modelling: voxel modelling, volumetric mesh, and functional representation (FRep). Note that this work does not cover the FRep method as it is incompatible with other modelling formats and cannot store topology information (Pasko et al., 2011).

Voxel modelling

Th w r ' x ' ri s fr ining w r s ' ri ' n 'pix ' n i is fin s "a unit of volume containing the value of the corresponding raster element in a 3D space" (Kaufman et al., 1993). Voxelised objects allow the same set of operations with polygonal objects (Cohen-Or and Kaufman, 1995). Voxel-based object simplification has been used for eliminating high-frequency details of the object ever since the introduction of voxels (Taosong He et al., 1995). Similar voxelbased approaches are used for simplification and repair of polygonal models (Nooruddin and Turk, 2003). Voxels have an advantage in terms of downsampling and acquisition of real-world data, i.e. any geometrical complexity is feasible which, however, comes at a cost due to rise of computational resources required for rendering and inability to handle zooming efficiently (Laine and Karras, 2011). As was mentioned, lattice structures are hard or even impossible to be produced without additive manufacturing techniques, there is no need in voxel size higher than 3D-printer resolution (Telea and Jalba, 2011). Voxels normally have cubic shape which is explained by render simplicity: one cubic voxel can be defined only by its position in 3D space (assuming that every voxel has the same size). Cubic shape also fits well for simulations, e.g. a cube is a common unit element for stress analysis within a structure since it easily allows modelling of plane stresses , and , as well as shear stresses , , , , and . However, representing cylindrical and other shapes with curvatures using cubes introduces an obvious distortion which gets lower as the number of cubes approaches infinity, which is not feasible from the computational point of view. Similarly, not cubic but cylindrical sector unit elements are used for simulations of cylindrical shapes, which allows modelling of plane stresses , and , as well as shear stresses and (Xu et al., 2013). Strand ( 2004) conveyed research in the area of applying non-cubic voxels and tested various voxel shapes such as bodycentred cubic (BCC) and face-centred cubic (FCC). Non-cubic grids appear more sparse than cubic grids and do not provide the most information about the structure. However, no research had been conveyed on combining different shapes of voxels, similarly to cells of different forms emerging into a single biological structure. Such research would contribute to not only additive manufacturing of heterogeneous lattice structures but also to 4D printing technique, i.e. additive manufacturing with smart materials (Sossou et al., 2019). One of the most popular voxel-based simplification methods involves using sparse voxel octrees which are based on generating multi-scale voxels which could be visible or invisible depending on the resolution and size of the screen (Laine and Karras, 2011). Moreover, recent researches show that octree-based neural networks can be applied for 3D shape analysis and learning and thus can be adapted for feature recognition (Laine and Karras, 2011;Wu et al., 2015).

Volumetric mesh

Volumetric meshes are similar to polygon meshes that are used in the majority of CAD-software with the difference in discretizing the whole solid body and not only its surface, i.e. the whole body is considered to be subdivided with polyhedrons instead of polygons (Rom and Brakhage, 2011). For instance, volumetric mesh models of macromolecules are able to provide sufficient visual information in chemistry (Feng et al., 2013). However, the computation of curvature values of polygon and polyhedron meshes is non-trivial due to their discrete nature. Moreover, a volumetric finite element is always convex since it is bounded by a finite number of planes. Therefore, finite-element volumes (FEV) introduces even more distortion when applied to non-convex geometric shapes such as lattice structures and surfaces with genus 1 and higher (Tewari et al., 2006). This implies the need in a proper meshing algorithm that takes convexity and curvature into the account and affects quality of meshed models, especially ones requiring multi-scale modelling (Seemann et al., 2016). Note that non-convex volume selection is a topic of interest in geometric modelling (Fuchs et al., 2010). Summarising the above overview, there is a gap between geometrical complexity of heterogeneous lattices and inability of current geometric modelling methods to handle such complexity. The potential of using bio-inspired algorithms is pointed out in Section 1 and leads to the proposed approach.

The proposed approach

This research aims to develop a new geometric modelling approach that would support lattice structures, especially heterogeneous lattices. There are certain similarities between existing volumetric models and living organisms: they all consist of tiny 'blocks' that form their structure. However, there is a difference in the variety of shapes of those 'blocks'. For example, while voxels in a single model have the same shape (usually cubic), living organisms consist of cells with a whole variety of shapes (ellipsoids, polyhedrons, scutoids, etc.). Currently, the sparse voxel octree technique allows modelling with voxels of different sizes (Laine and Karras, 2011). However, the cubic shape of voxels remains the same which does not allow the variety of shapes that is present in nature and introduces anisotropy which depends on the orientation of cubic grid (Strand, 2006). Similar to heterogeneous lattice structures, bio-inspired cellular materials lack an appropriate CAD software for their modelling as they require mesh-or voxel-based multi-scale geometric modelling approach (Savio et al., 2018). Voxels normally have a cubic shape (Strand, 2004) with some non-cubic approximations such the ones produced by the marching cubes algorithm (Newman and Yi, 2006). Note that cell geometry is not necessarily cubic, but also cylindrical, bacilli-like, etc. (Savio et al., 2018). For bio-inspired geometric modelling, other bio-inspired geometry classes must be considered (Schulz, 2009).

The proposed geometric model definition

Before diving into the approach, in this work a general framework for quantifying volumetric geometric model is presented. Let be a set that corresponds to the geometric model of a (heterogeneous) structure that could be mapped to a set of unit elements that form it, i.e.

where is a vector of lattice properties (for example, topology type, material, etc.), for is a set of unit elements that correspond to the geometric model , which are denoted in this work as volumetric cells (see Figure 2). First of all, is essentially a 3D-shape that is bounded by an orientable 2-manifold of finite genus, not necessarily convex. Secondly, each volumetric cell is defined, according to the complex cell theory, as a compact 3-manifold of genus 0. Therefore, can be defined as a 3D quotient space which is the result of the quotient map that attaches volumetric cells by their boundaries such that is the -th boundary of the -th volumetric cells (Equation 1).

(1)

This framework is generally the same for any other geometrical modelling method that involves discretising of volumetric data with, however, redefined constraints. First of all, unlike voxels, in the proposed approach, every volumetric cell could be different from each other both in shape and size. Secondly, unlike volumetric mesh, it is proposed that volumetric cells are not necessarily convex. 

The proposed geometrical modelling algorithms

As the model discretisation is proposed to be bio-inspired in this work, it is important to investigate mechanisms that define geometrical shapes encountered in nature. In this work, two bio-inspired algorithms are developed to represent the most common biological geometric phenomena and then combined in a single algorithm.

The long axis rule

One of most common patterns observed in cell geometry formation is the long axis rule (LAR) (see Figure 3). LAR defines the cleavage plane as the plane perpendicular to the longest axis passing though the center of mass (Minc et al., 2011). In this work a geometric modelling approach that takes LAR as a base for its discretisation technique is proposed described as follows:

1. Let be the boundary of a (heterogeneous) structure . Set . Set to be the maximum number of iterations. Let be a single volume cell that fills the space bounded by . Note that instead of centre of mass of a volumetric cell its centroid is used which is due to the fact that material of the structure is omitted, and only geometric properties are taken into the account. Note that LAR is not always followed in nature (see the bottom row in Figure 3). 

Surface-to-volume ratio

It has been observed in nature that cells tend to minimize their surface-to-volume ratio (S:V ratio) (Schmick and Bastiaens, 2014). The 3D shape with the most optimal S:R ratio in this sense is a sphere which also explains the blob-like shape of most cells. Sometimes, external geometrical constraints (as well as the physical and environmental ones which, however, are omitted in this work due to irrelevance), do not allow sphericity (Marshall, 2011). In this work a geometric modelling approach that takes the S:V ratio as a base for its discretisation technique is proposed and described as follows:

1. Define to be the boundary of a (heterogeneous) structure . Set . Set to be the maximum number of iterations. Let be a single volume cell that fills the space bounded by . 2. Define the volumetric cells and by minimizing the S:V ratio as follows: a. For and define their S:V functions defined as and , respectively, where is the surface and is the volume of and , respectively, both depending on cell division. b. Find the optimal division surface where and set and such that and . Note that is not necessarily plane.

Set

. If go to Step 2. 4. STOP. Note that minimisation of and separately results in contradiction as and produce values of such that either or while minimisation of is performed in a balanced way with no contradiction of values of .

The combined approach

At this stage of this work, the trade-off between two algorithms is performed manually, i.e. for each iteration of the division method is considered as given (see Figure 4). Note that the LOD concept can be applied to the result of the combined approach by combining neighbouring vertices of two adjacent volumetric cells and thus providing a modified version of the approach.

Verification

In this work a use-case of circular cross-section is used. For verification of the LAR method, a circular cross-section is discretised into volumetric cells (see Figure 5). But every resulting cell is convex at every iteration of the algorithm a volumetric cell is divided into two by a plane. Moreover, in LAR there is high level of inconsistency between each volumetric cell, i.e. the variety of shapes is large. The verification of the S:V ratio method is performed similarly (see Figure 35). Consider the first iteration (

) with the set of S:V functions defined (Equation 2). and for .

(2) Note that and , i.e. two values of contradict, while produces the first optimal division surface . However, the resulting volumetric cells do not fit the framework as they correspond to 2-manifolds of genus higher than 0. In this work both LAR and S:V ratio methods are combined manually and verified for with corresponding to the LAR method and corresponding to the S:V ratio method (see Figure 6). Note that volumetric cells obtained with this method are not all convex. However, inconsistency between volumetric cells remains from the LAR method. This method is modified according to the LOD concept by combining neighbouring vertices of several pairs of adjacent volumetric cells. This method provides the desired result which is similar to the unit cells used for stress analysis of cylindrical structures covered above.

Discussion and future work

In this work a novel bio-inspired volumetric discretisation approach is proposed that has potential to support heterogeneous lattice structures. The work described here is limited to a single use-case of circular 2D cross-section. Note that geometric modelling kernels normally represent a curvature as a polygonal chain for rendering and computational efficiency. At this stage of the work, curvature representation is not considered, although must be taken into the account for future work. Further development of this approach will be focused on:

1. Developing of a trade-off method between the LAR and the S:V ratio algorithms, as the question of preference of some algorithm is still an open question in cellular biology (Minc et al., 2011). 2. As only one use-case has been considered in this work, it is proposed to consider more complicated use-cases. Moreover, as the ultimate goal of this novel approach is to support geometric modelling of heterogeneous lattice structures, it is crucial to implement this approach for 3D use-cases, which, eventually, shall include heterogeneous lattices themselves. 3. Investigation of other algorithms encountered in nature that define cellular geometry, e.g. fractal-based geometry is observed not only in trees and lungs, but also in Voronoi tessellations of cells (Mazurek, 2016). 4. General optimisation of the proposed approach as in long-term it should be computationally efficient enough to run on regular machines. 5. Implementing the LOD concept which is related to the number of iterations .
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 56 Figure 5. LAR (left) and the S:V ratio minimisation (right) algorithms applied as discretisation methods to a circular cross-section for iterations. Long axes are shown as dotted lines
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