
HAL Id: hal-03633318
https://hal.science/hal-03633318v1

Submitted on 6 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Proof Pearl: Formalizing Spreads and Packings of the
Smallest Projective Space PG(3,2) using the Coq Proof

Assistant
Nicolas Magaud

To cite this version:
Nicolas Magaud. Proof Pearl: Formalizing Spreads and Packings of the Smallest Projective Space
PG(3,2) using the Coq Proof Assistant. The International conference Interactive Theorem Proving
(ITP) 2022, Jul 2022, Haïfa, Israel. �10.4230/LIPIcs.ITP.2022.25�. �hal-03633318�

https://hal.science/hal-03633318v1
https://hal.archives-ouvertes.fr

Proof Pearl: Formalizing Spreads and Packings of1

the Smallest Projective Space PG(3,2) using the2

Coq Proof Assistant3

Nicolas Magaud !Ï �4

Lab. ICube UMR 7357 CNRS Université de Strasbourg, France5

Abstract6

We formally implement the smallest three-dimensional projective space PG(3,2) in the Coq proof7

assistant. This projective space features 15 points and 35 lines, related by an incidence relation. We8

define points and lines as two plain datatypes (one with 15 constructors for points, and one with 359

constructors for lines) and the incidence relation as a boolean function, instead of using the well-10

known coordinate-based approach relying on GF(2)4. We prove that this implementation actually11

verifies all the usual properties of three-dimensional projective spaces. We then use an oracle to12

compute some characteristic subsets of objects of PG(3,2), namely spreads and packings. We formally13

verify that these computed objects exactly correspond to the spreads and packings of PG(3,2). For14

spreads, this means identifying 56 specific sets of 5 lines among 360 360 (= 15 × 14 × 13 × 12 × 11)15

possible ones. We then classify them, showing that the 56 spreads of PG(3,2) are all isomorphic16

whereas the 240 packings of PG(3,2) can be classified into two distinct classes of 120 elements.17

Proving these results requires partially automating the generation of some large specification files as18

well as some even larger proof scripts. Overall, this work can be viewed as an example of a large-scale19

combination of interactive and automated specifications and proofs. It is also a first step towards20

formalizing projective spaces of higher dimension, e.g. PG(4,2), or larger order, e.g. PG(3,3).21

2012 ACM Subject Classification Replace ccsdesc macro with valid one22

Keywords and phrases Coq, projective geometry, finite models, spreads, packings, PG(3,2)23

Digital Object Identifier 10.4230/LIPIcs...24

1 Introduction25

Projective incidence geometry [9, 6] is one of the simplest description of geometry, where26

only points and lines as well as their incidence properties are considered. In addition, in27

such a setting, we assume that two coplanar lines always meet. There exist some finite and28

infinite models of projective incidence geometry. Finite projective spaces are usually built29

from finite (Galois) fields of cardinality n denoted GF (n) via a homogeneous coordinate30

system. Finite projective spaces arising from GF (n) are denoted by PG(d, n) where d is31

the dimension of the space and n the order of the underlying field. Several finite models32

are related to interesting mathematical puzzles and sometimes have practical and enjoyable33

applications. This is the case for the finite projective plane PG(2,7), which was used to34

design the card game Dobble1. In this game, players must identify a symbol which appears35

on both their card and their opponent’s card. As the card desk (almost exactly) implements36

the projective plane PG(2,7), given two cards (=lines), there always exists a symbol (=point)37

which belongs to both cards. In a three-dimensional setting, the smallest projective space38

PG(3,2) can be used to find some solutions to an old combinatorial problem: Kirkman’s39

schoolgirl problem [7], which is stated as follows: Fifteen young ladies in a school walk out40

three abreast for seven days in succession: it is required to arrange them daily, so that no41

1 https://en.wikipedia.org/wiki/Dobble

© Nicolas Magaud;
licensed under Creative Commons License CC-BY 4.0

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:magaud@unistra.fr
https://dpt-info.u-strasbg.fr/~magaud
https://orcid.org/0000-0002-9477-4394
https://doi.org/10.4230/LIPIcs...
https://en.wikipedia.org/wiki/Dobble
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

XX:2 Spreads and Packings of PG(3,2) in Coq

points # lines # points per line
PG(2, 2) 7 7 3
PG(2, 3) 13 13 4
PG(2, 5) 31 31 6
PG(2, n) n2 + n + 1 n2 + n + 1 n + 1
PG(3, 2) 15 35 3
PG(3, 3) 40 130 4
PG(3, 4) 85 357 5
PG(3, q) (q2 + 1)(q + 1) (q2 + q + 1)(q2 + 1) q + 1

Figure 1 Numbers of points, lines and points per line depending on the dimension and the order
of projective planes and spaces

two shall walk twice abreast. As noted by Hirschfeld in [14, page 75], some solutions to42

this problem correspond to some packings of PG(3,2), which are one of the substructures of43

PG(3,2) that we study in this article.44

Finite projective spaces have been studied extensively from a mathematical point of45

view (see e.g [14]). Recently [4], we started studying small finite projective planes/spaces46

from a computer science perspective. We formalized usual projective planes such as PG(2,2),47

PG(2,3) or PG(2,5) as well as the smallest projective space PG(3,2) using the Coq proof48

assistant [8, 2]. We especially focused on proving that the synthetic axioms for projective49

geometry hold in these models. In this paper, we follow up on experiments carried out50

recently [16] and we formally describe some of the characteristic subsets of PG(3,2), namely51

spreads of lines and packings of spreads as well as their properties.52

In a three-dimensional setting, the number of points and lines increase rapidly with the53

order, as shown in Fig. 1. Thus we need to design extremely efficient proof techniques for54

PG(3,2) if we want our approach to be scalable to projective spaces of higher dimension55

or larger order. The whole Coq formalization is available online and can be retrieved at:56

https://github.com/magaud/PG3q2. Pointers to specific parts of the development are given57

throughout the document. Visual representations of the smallest projective space PG(3,2)58

can be retrieved from https://demonstrations.wolfram.com/15PointProjectiveSpace/.59

For illustration purposes, we reproduce a figure taken from wikipedia3, which presents PG(3,2)60

as a tetrahedron (see Fig. 2).61

This paper is organized as follows. In Sect. 2, we show how to formally describe PG(3,2)62

in Coq using plain inductive types. In Sect. 3, we define the notions of collineations, spreads63

and packings in the setting of PG(3,2). In Sect. 4, we characterize all the spreads of PG(3,2)64

and show that they are all isomorphic. In Sect. 5, we characterize all the packings of PG(3,2)65

and then classify them into two distinct classes. In Sect. 6, we present some proof engineering66

techniques and suggest some additional optimizations to make the proof development smaller67

and easier to compile. Finally, in Sect. 7, we draw some conclusions and outline how this68

work can be extended to projective spaces of higher dimension or larger order.69

2 Be aware that compiling all the .v files of this development requires about 13 hours on a standard PC.
3 https://en.wikipedia.org/wiki/PG(3,2)

https://github.com/magaud/PG3q
https://demonstrations.wolfram.com/15PointProjectiveSpace/

N. Magaud XX:3

Figure 2 The smallest projective space PG(3,2), represented as a tetrahedron.

2 Formal Description of the Projective Space PG(3,2) in Coq70

We first present an abstract interface (a Coq module) to describe what a projective space71

is. We also propose an implementation of PG(3,2), relying on plain inductive datatypes for72

points and lines. We then show that all axioms of the projective space are verified by this73

implementation.74

2.1 Specification of Projective Spaces75

A three-dimensional projective space is parameterized by two types Point and Line as well76

as an incidence relation incid_lp (see Fig. 3 for the actual specification in Coq). The two77

types are equipped with an equality. Axiom a1_exists expresses that given two distinct78

points, one can always define a line going through these points. Axiom uniqueness states79

that given 2 points A and B and 2 lines l and m, if A and B are both incident to both l80

and m, then either A = B or l = m. Axiom a2, also known as Pasch axiom, states that two81

coplanar lines always intersect. Axiom a3_1 expresses that given a line, there are always82

three distinct points on it. Axiom a3_2 expresses that there exist two lines which are not83

coplanar, thus making the dimension n > 2. Finally axiom a3_3 states that, given 3 lines l1,84

l2 and l3, there always exists a fourth line m which intersects these 3 lines. This last axiom85

bounds the dimension so that n ≤ 3.86

2.2 Points, Lines and the Incidence Relation87

We choose to use two simple inductive types to represent points and lines of PG(3,2). Points88

are represented by an inductive datatype of 15 constructors without arguments. Lines are89

represented in the same way using 35 constructors.90

91
Inductive Point :=92

| P0 | P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 | P993

| P10 | P11 | P12 | P13 | P14.94

95

Inductive Line :=96

| L0 | L1 | L2 | L3 | L4 | L5 | L6 | L7 | L8 | L9 | L10 | L11 | L1297

| L13 | L14 | L15 | L16 | L17 | L18 | L19 | L20 | L21 | L22 | L2398

| L24 | L25 | L26 | L27 | L28 | L29 | L30 | L31 | L32 | L33 | L34.99100

XX:4 Spreads and Packings of PG(3,2) in Coq

Parameter Point , Line : Type.

Parameter eqP : Point -> Point -> bool.
Parameter eqL : Line -> Line -> bool.

Parameter incid_lp : Point -> Line -> bool.

Definition Intersect_In (l1 l2 :Line) (P:Point) :=
incid_lp P l1 && incid_lp P l2.

Definition dist_3p (A B C :Point) : bool :=
(negb (eqP A B)) && (negb (eqP A C)) && (negb (eqP B C)).

Definition dist_4p (A B C D:Point) : bool :=
(negb (eqP A B)) && (negb (eqP A C)) && (negb (eqP A D))
&& (negb (eqP B C)) && (negb (eqP B D)) && (negb (eqP C D)).

Definition dist_3l (A B C :Line) : bool :=
(negb (eqL A B)) && (negb (eqL A C)) && (negb (eqL B C)).

Axiom a1_exists : forall A B : Point ,
{l : Line| incid_lp A l && incid_lp B l}.

Axiom uniqueness : forall (A B :Point)(l1 l2:Line),
incid_lp A l1 -> incid_lp B l1 ->
incid_lp A l2 -> incid_lp B l2 -> A = B \/ l1 = l2.

Axiom a3_1 : forall l:Line ,
{A:Point & {B:Point & {C:Point | (dist_3p A B C) &&

(incid_lp A l && incid_lp B l && incid_lp C l)}}}.

Axiom a2 : forall A B C D:Point , forall lAB lCD lAC lBD :Line ,
dist_4p A B C D ->
incid_lp A lAB && incid_lp B lAB ->
incid_lp C lCD && incid_lp D lCD ->
incid_lp A lAC && incid_lp C lAC ->
incid_lp B lBD && incid_lp D lBD ->
(exists I:Point , incid_lp I lAB && incid_lp I lCD) ->
exists J:Point , incid_lp J lAC && incid_lp J lBD.

Axiom a3_2 : exists l1:Line , exists l2:Line ,
forall p:Point , ~(incid_lp p l1 && incid_lp p l2).

Axiom a3_3 : forall l1 l2 l3:Line ,
dist_3l l1 l2 l3 ->
exists l4 :Line , exists J1:Point , exists J2:Point , exists J3:Point ,
Intersect_In l1 l4 J1 &&
Intersect_In l2 l4 J2 &&
Intersect_In l3 l4 J3.

Figure 3 Projective spaces of dimension 3: definitions and properties (pg3x_spec.v)

N. Magaud XX:5

As there are three points per line, the incidence relation incid_lp4 can be represented in a101

compact way using the match ... with construct of Coq specification language.102

103
Definition incid_lp (p:Point) (l:Line) : bool :=104

match l with105

| L0 => match p with P0 | P1 | P2 => true | _ => false end106

| L1 => match p with P0 | P3 | P4 => true | _ => false end107

| L2 => match p with P0 | P5 | P6 => true | _ => false end108

| L3 => match p with P0 | P7 | P8 => true | _ => false end109

| L4 => match p with P0 | P10 | P9 => true | _ => false end110

| [...]111

end.112113

In order to avoid writing too many specifications and proof scripts manually in Coq, we114

choose to build an external specification and proofs generator (a simple C program) which115

takes as input the number of points, the number of lines as well as the incidence relation116

as a plain file (pg32.txt5) which contains for each line of the projective space, the list of117

the points which are incident to it. Given these three elements, the system automatically118

builds the inductive datatypes for points and lines as well as the incidence relation. It119

also defines an artificial order on points and lines based on the index of the corresponding120

points and lines, i.e. P0 < P1 < P2 < . . . < P14. The specification generator also builds121

some auxiliary functions, which will be useful to prove existential statements of the form122

∀l1 l2 : Line, exists P : Point,123

Using plain inductive datatypes may seem naive. An alternative approach to specify124

points and lines of PG(3,2) could be to use finite types ′In of ssreflect and the mathematical125

components library [12, 17]. However the main drawback is that ssreflect is designed for126

formal reasoning rather than computing. Thus checking the incidence between a point and a127

line is a highly expensive operation, which prevents us from carrying out proofs efficently.128

Using plain inductive types is much more efficient both to check incidence properties and129

to perform case analysis. The only drawback is that inductive datatypes and functions are130

huge to write, but this is not that important as we manage to generate these specifications131

automatically. Overall, our choice is to use the main features of ssreflect, especially the132

small-scale reflection pattern, but with our own datatypes.133

2.3 Formal Proofs134

Once the projective space PG(3,2) is described, we check whether all the axioms for projective135

space geometry hold for this model. This requires proving all axioms of the module defined136

in https://github.com/magaud/PG3q/blob/master/generic/pg3x_spec.v and presented137

in Figure 3. This is pretty straightforward and we try and make these proofs as generic and138

efficient as possible. We especially focus on writing general-purpose Ltac tactics, which can139

be easily reused for other models of projective space such as PG(3,3).140

We also rely on our specification generator to enhance producing witnesses for existential141

quantification. We use a form of skolemisation to write functions which compute the142

existential variable from the other arguments. For instance, to achieve the proof of lemma143

a3_3, we automatically build a (large) Coq function f_a3_3 which, given three lines l1, l2144

and l3 computes a line l4 as well as its three intersection points with lines l1, l2 and l3.145

4 https://github.com/magaud/PG3q/blob/master/pg32/pg32_inductive.v
5 https://github.com/magaud/PG3q/blob/master/pg32/pg32.txt

https://github.com/magaud/PG3q/blob/master/generic/pg3x_spec.v
https://github.com/magaud/PG3q/blob/master/pg32/pg32_inductive.v
https://github.com/magaud/PG3q/blob/master/pg32/pg32.txt

XX:6 Spreads and Packings of PG(3,2) in Coq

146
f_a3_3 : Line -> Line -> Line -> Line * (Point * Point * Point)147148

As a consequence, proving the statement a3_3 boils down to feeding Coq with the correct149

existential variables for the line and the three intersection points, obtained by applying the150

function f_a3_3 instead of trying all possible lines and points (there are 35 possible lines151

and 15 possible points) for each of the 353 = 42 875 possible cases for parameters l1, l2 and152

l3 of lemma a3_3.153

Once that we checked that our implementation of PG(3,2) verifies all the axioms of154

projective space, we shall study some specific subsets of points and lines, namley spreads155

and packings.156

3 Collineations, Spreads and Packings of PG(3,2)157

Spreads are sets of lines of a projective space which can be defined when the number of points158

per line divides the number of points. This is the case for all PG(n,q) whose dimension n is159

odd. PG(3,2) features 15 points and has 3 points per line. Thus spreads exist in PG(3,2).160

3.1 Collineations161

A collineation is a couple of two functions fp : Point→ Point and fl : Line→ Line where162

both fp and fl are bijections and respect the incidence relation.163

164
Definition inj {A:Set} {B:Set} (f:A->B) : Prop :=165

forall x y:A, f x = f y -> x = y.166

Definition surj {A:Set} {B:Set} (f:A->B) : Prop :=167

forall y:B, exists x:A, y=f(x).168

169

Definition bij {A:Set} {B:Set} (f:A->B) : Prop := (inj f) /\ (surj f).170

171

Definition is_collineation fp fl :=172

((bij fp) /\ ((bij fl) /\173

(forall x l, incid_lp x l -> incid_lp (fp x) (fl l)))).174175

Collineations, which are automorphisms of PG(3,2) which respect the incidence relation,176

shall be useful to establish that two given sets of lines are isomorphic, thus allowing us to177

classify spreads and packings into equivalence classes.178

3.2 Spreads179

3.2.1 Definition and Properties180

A spread of PG(3,q) is a set of q2 + 1 lines which are pairwise disjoint and thus partition the181

set of points. In PG(3,2), it corresponds to some sets of 5 lines. As recalled in [3, 7, 15], it is182

well known that there is only one spread (up to isomorphism) in PG(3,2).183

3.2.2 Generating all Spreads of PG(3,2)184

Using our external specification and proofs generating program, we automatically compute185

all sets of lines of PG(3,2) which are disjoint and cover all the points. As lines contain186

exactly 3 points, they need to be sets of exactly 5 lines so that all the points of PG(3,2) are187

accounted for. We generate 56 distinct spreads (modulo permutations of the order of the188

lines involved). These spreads are defined in Coq as a list of 56 sets of 5 lines, as follows:189

N. Magaud XX:7

190
Definition S0 := [L0; L19; L24; L28; L33].191

Definition S1 := [L0; L19; L26; L29; L32].192

[...]193

Definition spreads := [S0 ; S1 ; S2 ; ... ; S54; S55].194195

We also generate automatically the collineations6 which allows to go from the spread Si196

to the spread S((i+1) mod 56) of the list spreads7 as shown in the following example for the197

spreads S0 and S1.198

199
Definition fp0_1 (p:Point) := match p with P0 => P0 | P1 => P1 | P2 =>200

P2 | P3 => P3 | P4 => P4 | P5 => P5 | P6 => P6 | P7 => P11 | P8 => P12201

| P9 => P13 | P10 => P14 | P11 => P7 | P12 => P8 | P13 => P9 | P14 =>202

P10 end.203

204

Definition fl0_1 (l:Line) := match l with L0 => L0 | L1 => L1 | L2 =>205

L2 | L3 => L5 | L4 => L6 | L5 => L3 | L6 => L4 | L7 => L7 | L8 => L9 |206

L9 => L8 | L10 => L11 | L11 => L10 | L12 => L12 | L13 => L14 | L14 =>207

L13 | L15 => L15 | L16 => L18 | L17 => L17 | L18 => L16 | L19 => L19 |208

L20 => L20 | L21 => L21 | L22 => L22 | L23 => L25 | L24 => L26 | L25209

=> L23 | L26 => L24 | L27 => L30 | L28 => L29 | L29 => L28 | L30 =>210

L27 | L31 => L34 | L32 => L33 | L33 => L32 | L34 => L31 end.211212

3.3 Packings213

Once that we have built spreads as (disjoint) sets of lines covering all the points, we can214

define packings as sets of spreads covering all the lines of PG(3,2).215

3.4 Definition and Properties216

A packing of PG(3,q) is a set of q2 + q + 1 spreads which are pairwise disjoint and thus217

partition the set of lines. In PG(3,2), it corresponds to some sets of 7 spreads. There are 240218

packings, each of them being a list of 7 spreads. As recalled in [3, 7, 15], there are (up to219

isomorphism) exactly two distinct classes of packings in PG(3,2).220

3.5 Generating all Packings of PG(3,2)221

We generate all sets of spreads which are disjoint and cover all the lines, and which thus are222

packings. As before, these sets of spreads must have 7 elements, as the number of spreads223

multiplied by the number of lines in each spread must be equal to the number of lines (35)224

of PG(3,2). As expected (see Theorem 17.5.6 in [14]), we find 240 labelled packings.225

226
Definition PA0 := [S0; S9; S19; S24; S36; S46; S53].227

Definition PA1 := [S0; S9; S19; S28; S38; S40; S53].228

Definition PA2 := [S0; S9; S20; S27; S36; S46; S49].229

[...]230

Definition packings := [PA0 ; PA1 ; PA2 ; ... ; PA238 ; PA239].231232

These packings belong to two distinct classes class0 and class18.233

6 https://github.com/magaud/PG3q/blob/master/pg32/pg32_spreads_collineations.v
7 https://github.com/magaud/PG3q/blob/master/pg32/pg32_spreads_packings.v
8 https://github.com/magaud/PG3q/blob/master/pg32/pg32_spreads_packings.v

https://github.com/magaud/PG3q/blob/master/pg32/pg32_spreads_collineations.v
https://github.com/magaud/PG3q/blob/master/pg32/pg32_spreads_packings.v
https://github.com/magaud/PG3q/blob/master/pg32/pg32_spreads_packings.v

XX:8 Spreads and Packings of PG(3,2) in Coq

234
Definition class0 := [PA0; PA3; PA5; ... PA237; PA239].235

Definition class1 := complement class0 packings .236237

As for spreads, we automatically generate the collineations9 which allow to go from one238

packing of the list class0 (resp. class1) to the next packing of class0 (resp. class1).239

Now that all externally-computed spreads and packings are defined in Coq, we shall240

formally verify that they actually are spreads and packings of PG(3,2). We shall also check241

that all the spreads are isomorphic and that the 240 packings can be classified into two242

distinct classes of 120 elements.243

4 Properties of the Spreads of PG(3,2)244

4.1 Characterizing all Spreads of PG(3,2)245

Spreads can be specified using the following definitions: the boolean function is_partition246

computes whether the lists of points p, q, r, s and t partition the set of points and is_spread510247

used in conjunction with the function all_points_of_line computes whether the lines248

l1, l2, l3, l4 and l5 actually constitutes a spread. The boolean function forall_Point is a249

finite universal quantification: this means that forall_Point (fun t => X t) stands for250

X P0 && X P1 && X P2 . . . && X P14.251

252
Definition is_partition (p q r s t: list Point) :bool :=253

(forall_Point254

(fun x => inb x p || inb x q || inb x r || inb x s || inb x t))255

&&256

(forall_Point257

(fun x => negb (inb x p && inb x q && inb x r &&258

inb x s && inb x t))).259

260

Definition is_spread5 (l1 l2 l3 l4 l5:Line) : bool :=261

disj_5l l1 l2 l3 l4 l5 &&262

is_partition (all_points_of_line l1) (all_points_of_line l2)263

(all_points_of_line l3) (all_points_of_line l4)264

(all_points_of_line l5).265266

Once these definitions are set, we prove that the spreads of PG(3,2) are exactly the ones267

automatically generated by our external program. On the one hand, we easily check that all268

the computed spreads belonging to the list spreads actually verify the property is_spread5269

of being a spread. On the other hand, we prove that all sets of 5 lines verifying the270

property is_spread5 belong to the proposed list spreads. Due to the size of the proofs271

and in order to make them accepted by the Coq proof assistant, we need to decompose272

this part of the proof into 35 specific cases. Each of them corresponds to one of the cases273

l1 = L0, l1 = L1, . . . , l1 = L34. Eventually, using all these auxiliary lemmas, we prove the274

following property:275

276
Lemma is_spread_descr : forall l1 l2 l3 l4 l5 ,277

leL l1 l2 && leL l2 l3 && leL l3 l4 && leL l4 l5 ->278

(is_spread5 l1 l2 l3 l4 l5) <-> In [l1;l2;l3;l4;l5] spreads .279280

9 https://github.com/magaud/PG3q/blob/master/pg32/pg32_packings_collineations.v
10 https://github.com/magaud/PG3q/blob/master/pg32/pg32_spreads.v

https://github.com/magaud/PG3q/blob/master/pg32/pg32_packings_collineations.v
https://github.com/magaud/PG3q/blob/master/pg32/pg32_spreads.v

N. Magaud XX:9

In the previous statement, leL is a total order on the datatype Line, which expresses that281

L0 ≤ L1 ≤ . . . L34 and allows to only consider ordered spreads of lines.282

4.2 Classifying all Spreads of PG(3,2)283

The next step consists in proving that all 56 spreads of PG(3,2) are isomorphic. It can be284

expressed by stating that there exists a collineation, i.e. an automorphism of PG(3,2) which285

respects incidence, between any two spreads of PG(3,2).286

287
Definition are_isomorphic (s1:list Line) (s2:list Line) : Prop :=288

exists fp , exists fl , ((is_collineation fp fl) /\ (map fl s1 = s2)).289290

We show that the property are_isomorphic11 is reflexive and transitive. Thanks to these291

results, we show that proving the equivalence can be achieved by simply proving that there292

exists a collineation (we actually build it) from the n-th element of the list to the (n+1 mod 56)-293

th element of the list spreads. Using this transitivity property and the collineations computed294

by our external program, we fairly easily prove the following statement:295

296
Lemma all_isomorphic_lemma : forall t1 t2 : list Line ,297

In t1 spreads -> In t2 spreads -> are_isomorphic t1 t2.298299

Overall, in this section, we formally proved in Coq that there are 56 labelled spreads in300

PG(3,2) and that there are all isomorphic.301

5 Properties of Packings of PG(3,2)302

In the following, we shall prove that there are 240 labelled packings in PG(3,2) and that303

they can be classified into two distinct classes.304

5.1 Characterizing all Packings of PG(3,2)305

A packing is defined using the predicate is_packing712 as a set of 7 spreads (each being a306

list of lines) which are disjoint and form a partition of the set of lines.307

308
Definition is_partition7 (p q r s t u v: list Line) : bool :=309

(forall_Line310

(fun x => inbL x p || inbL x q || inbL x r ||311

inbL x s || inbL x t || inbL x u || inbL x v))312

&&313

(forall_Line314

(fun x => negb (inbL x p && inbL x q && inbL x r && inbL x s &&315

inbL x t && inbL x u && inbL x v))).316

317

Definition is_packing7 (s1 s2 s3 s4 s5 s6 s7:list Line) : bool :=318

disj_7s s1 s2 s3 s4 s5 s6 s7 &&319

is_partition7 s1 s2 s3 s4 s5 s6 s7.320321

Checking that all computed elements of the list packings are actual packings is straightfor-322

ward. Proving that all packings of PG(3,2) are in the list packings is a lot more challenging,323

11 https://github.com/magaud/PG3q/blob/master/pg32/pg32_spreads_collineations.v
12 https://github.com/magaud/PG3q/blob/master/pg32/pg32_packings.v

https://github.com/magaud/PG3q/blob/master/pg32/pg32_spreads_collineations.v
https://github.com/magaud/PG3q/blob/master/pg32/pg32_packings.v

XX:10 Spreads and Packings of PG(3,2) in Coq

especially because of the number of cases to deal with. In order to make it tractable in Coq,324

we prove several (56) lemmas of the form statement_packings13 s for some s.325

326
Definition statement_packings s :=327

forall s2 s3 s4 s5 s6 s7 : list Line ,328

In s2 spreads -> In s3 spreads -> In s4 spreads ->329

In s5 spreads -> In s6 spreads -> In s7 spreads ->330

ltS s s2 -> ltS s2 s3 -> ltS s3 s4 ->331

ltS s4 s5 -> ltS s5 s6 -> ltS s6 s7 ->332

is_packing7 s s2 s3 s4 s5 s6 s7 ->333

In [s;s2;s3;s4;s5;s6;s7] packings .334335

In each of them, we fix the first spread (e.g. s=S0) and then verify that all packings containing336

s as the first spread actually belong to the list packings.337

338
Lemma aux_S0 : statement_packings S0.339

[...]340

Lemma aux_S55 : statement_packings S55.341342

Finally, we agregate all 56 lemmas to obtain the following property:343

344
Lemma is_packing_descr : forall s1 s2 s3 s4 s5 s6 s7 : list Line ,345

ltS s1 s2 && ltS s2 s3 && ltS s3 s4 &&346

ltS s4 s5 && ltS s5 s6 && ltS s6 s7 ->347

In s1 spreads -> In s2 spreads -> In s3 spreads -> In s4 spreads ->348

In s5 spreads -> In s6 spreads -> In s7 spreads ->349

(is_packing7 s1 s2 s3 s4 s5 s6 s7) <->350

In [s1;s2;s3;s4;s5;s6;s7] packings .351352

In the above statements, ltS is an order on spreads, which implements the lexicographic353

order on spreads using the order on lines ltL as its basic order.354

5.2 Classifying all Packings of PG(3,2)355

In order to classify the packings of PG(3,2), we shall first prove that there are at most two356

distinct classes of packings in PG(3,2). This is achieved using the collineations relating357

packings provided in Sect. 3. Finally, considering two packings (one in each of the conjectured358

classes), we show that no collineation can transform the first one into the second one.359

5.2.1 There are at most 2 Classes of Packings in PG(3,2)360

When considering packings, the relation are_isomorphic14 is a bit more complex as collin-361

eations may transform a packing into a packing whose spreads are not sorted in increasing362

order any more. Therefore we enforce that the images of the spreads computed using fl must363

be sorted with respect to the relation ltL.364

365
Definition are_isomorphic366

(p1:list (list Line)) (p2:list (list Line)) : Prop :=367

exists fp , exists fl ,368

is_collineation fp fl /\369

forall s:(list Line), In s spreads -> In s p1 -> In370

(sort (map fl s)) spreads /\ In (sort (map fl s)) p2.371372

13 https://github.com/magaud/PG3q/blob/master/pg32/pg32_packings.v
14 https://github.com/magaud/PG3q/blob/master/pg32/pg32_packings_collineations.v

https://github.com/magaud/PG3q/blob/master/pg32/pg32_packings.v
https://github.com/magaud/PG3q/blob/master/pg32/pg32_packings_collineations.v

N. Magaud XX:11

Once again, we prove that the property are_isomorphic is reflexive and transitive. This373

allows to prove that all elements of a class are isomorphic by performing a circular permutation,374

simply proving that there exists a collineation (which was built explicitly by our external375

specification and proofs generating program) from the n-th element of the list class0 (resp.376

class1) to the (n + 1 mod 120)-th element of the list class0 (resp. class1).377

378
Lemma all_isomorphic_lemma0 : forall t1 t2 : (list (list Line)),379

In t1 class0 -> In t2 class0 -> are_isomorphic t1 t2.380

381

Lemma all_isomorphic_lemma1 : forall t1 t2 : (list (list Line)),382

In t1 class1 -> In t2 class1 -> are_isomorphic t1 t2.383384

At this stage, we only proved that there are at most two classes of packings in PG(3,2). The385

last step of the proof consists in proving that the two classes class0 and class1 are distinct.386

To do that, we choose two packings, e.g. PA0 and PA1, one in each of the supposed classes.387

We then generate all collineations of PG(3,2) and verify that none of these collineations388

allows to go from the packing PA0 to the packing PA1.389

5.2.2 Characterizing all collineations of PG(3,2)390

So far we defined a collineation as a pair of two bijective functions fp and fl and a property391

that these functions respect the incidence relation. We shall see that a collineation (fp, fl)392

can be exactly characterized by simply defining the images of the four following points P0,393

P1, P3 and P7. This relies on the property that there are only three points by line and that394

collineations are bijections which respect the incidence relation.395

Let us start by choosing an image for the first point P0. Let us then choose an image for396

the second point P1. Then the image of the point P2, which is on line L0=(P0P1) is imposed.397

It is the third point of the line generated by fp P0 and fp P1. Let us choose the image of398

the third point P3, which lies outside line L0. The images of points P4, P5, P6 (see Fig. 4399

for an visual interpretation of the process) are imposed by the rules of the projective spaces400

and the collineation properties. We can then choose a fourth point P7. This point is outside401

the plane generated by P0, P1 and P3. Once these four images fp P0, fp P1, fp P3 and fp P7402

are chosen, the images of all remaining points P8, P9, P10, P11, P12, P13, P14 are imposed403

as being third points of some lines defined by the combination of images of the four initial404

points P0, P1, P3 and P7. In addition, the images of all lines are fully determined as well.405

Indeed, the image of the line going through points A and B is the line going through points406

fp A and fp B.407

From a combinatorial point of view, we can choose the image of P0 by fp among 15408

points. The image of P1 by fp can be chosen among 14 points (all points except P0). The409

image of P3 by fp can be chosen among 12 points (all points except those on line L0, which410

contains points P0, P1 and P2). Finally, the image of the fourth point P7 by fp can only411

be chosen outside of the images of points P0, P1, P2, P3, P4, P5, and P6, thus leaving only412

8 options available. Once the images of these four points are chosen, the collineation is413

fully characterized because both fp and fl must be bijective and that they must respect the414

incidence relation. This means that there are 15× 14 × 12 × 8 = 20 160 different ways to415

define a collineation of PG(3,2).416

Our external specification and proofs generating program takes care of computing all417

possible collineations of PG(3,2). It generates some very large files: pg32_automorphisms.v15418

15 https://github.com/magaud/PG3q/blob/master/pg32/pg32_automorphisms.v

https://github.com/magaud/PG3q/blob/master/pg32/pg32_automorphisms.v

XX:12 Spreads and Packings of PG(3,2) in Coq

Figure 4 Describing a collineation of PG(3,2) can be achieved by simply providing the images of
points P0, P1, P3 and P7

(where the 20 160 collineations are enumerated), pg32_automorphisms_inv.v as well as files419

pg32_collineationsX.v and pg32_decompX.v, with X ranging from 0 to 14. The list of all420

collineations is splitted into smaller lists of size 96 in order to be able to handle the proofs in421

Coq. Each subset of 96 collineations corresponds to specific collineations whose images of422

points P0 and P1 are the same.423

424
Definition all_c0 := [425

(fp_0 , fl_0); (fp_1 , fl_1); ... ; (fp_94 , fl_94); (fp_95 , fl_95)].426

[...]427

Definition all_collineations :=428

all_c0 ++ all_c1 ++ all_c2 ++ ... ++ all_c208 ++ all_c209 .429430

On the one hand, for each of these subsets, we can check that the given collineations431

actually verify the property is_collineation. On the other hand, we verify that all432

collineations which verify the following conditions: fp P0 = PX and fp P1 = PY actually433

belong to the corresponding subsets of collineations, namely all_cZ where Z = 14×X + Y .434

As an example, all collineations which respect the conditions fp P0 = P8 and fp P1 = P2435

belong to the subset of collineations all_c114.436

437
Lemma is_collineations_descr_B_P8_P2 :438

forall fp fl , is_collineation fp fl -> fp P0 = P8 -> fp P1 = P2 ->439

In (fp ,fl) all_c114 .440441

Splitting the main statement characterizing all collineations into 210 smaller statements allows442

to handle the proofs in Coq. Thankfully, all these 210 statements are almost automatically443

generated and only some minor parts require to be fixed by hand. The last step consists in444

agregating all these lemmas to obtain the following statement, which explicitly characterize445

all collineations of PG(3,2).446

447
Lemma is_collineations_descr : forall fp fl ,448

is_collineation fp fl <-> In (fp ,fl) all_collineations .449450

5.2.3 There are exactly 2 Distinct Classes of Packings in PG(3,2)451

Now that we have a list of all collineations of PG(3,2) at our disposal, we can traverse it to452

verify that none of these collineations allow to transform a packing of the class class0, say453

N. Magaud XX:13

PA0 into a packing not in class0, say PA1. The proof simply consists in assuming, for each454

collineation that they allow to transform the packing PA0 into the packing PA1 and exhibit a455

contradiction. As we must check all collineations, the Coq file has more that 20 160 lines.456

457
Lemma not_iso : ~ are_isomorphic PA0 PA1.458459

The statement not_iso16 shows that the two classes of packings class0 and class1 are460

distinct. We can conclude that the 240 packings of PG(3,2) belong to two distinct classes,461

each of these classes containing exactly 120 elements.462

6 Discussion463

The Coq development is quite large. It contains more than 50 files. Thankfully, most for464

them are automaticaly generated. It consists in more than 317 345 lines of specifications and465

proofs, among them more than 290 000 are proof steps. Some files have about 20 000 lines,466

which makes them difficult (or at least very slow) to handle in an editor for Coq. Compiling467

the whole development requires about 13 hours (584 minutes on a Intel (R) Core(TM) i5-4460468

CPU @ 3.20GHz with 32GB of memory). Therefore it is important that all proofs are as469

concise as possible and the development must be well structured as changes in the structure470

may result in several hours of compilation before being able to resume interactive theorem471

proving. In the following, we present some proof engineering techniques which proved very472

useful in our development. We also propose some possible improvements to our work.473

6.1 Proof Engineering474

6.1.1 Using bool instead of Prop475

As we work with finite types, equality and the other relations that we use are decidable.476

We can directly implement such relations as operations producing elements of the boolean477

datatype bool. This is more convenient than defining them as operations producing elements478

of type Prop together with a decidability property: ∀ x y, {x = y}+{¬x = y}. This practical479

approach is inspired by the ssreflect [11] and the mathematical components [17] libraries.480

In this setting, logical reasoning (eliminating conjunctions or disjunctions) is a bit more481

technical. However this makes most proofs much easier to complete by simply computing a482

boolean value and checking that it is equal to true.483

6.1.2 Optimizing proofs484

We design some optimization techniques for generating and checking proof terms. We focus485

on the current goal, applying some sort of locality principle which means that we try to486

prove a (sub-)goal the very first time we face it. This means sequences of tactics such as487

488
intros a; case a; intros H;489

try (exact (degen_bool)_ H).490

solve_goal .491492

must be replaced by more efficient sequences like493

494
intros a; case a; intros H;495

solve [(exact (degen_bool)_ H | solve_goal].496497

16 https://github.com/magaud/PG3q/blob/master/pg32/pg32_packings_two_distinct_classes.v

https://github.com/magaud/PG3q/blob/master/pg32/pg32_packings_two_distinct_classes.v

XX:14 Spreads and Packings of PG(3,2) in Coq

Figure 5 An illustration of the new form of Pasch axiom used to deal with symmetries

In this simplified example, we try to apply the tactic (exact (degen_bool)_ H) for a498

subgoal and then we switch to the next subgoal. Eventually we solve the remaining subgoals499

using the solve_goal tactic. The idea here is to solve the goal the first time we encounter500

it. It is achieved by having several possibilities of tactic applications to solve the goal (this501

corresponds to the solve [t1|t2|t3] syntax). The order of the tactics t1, t2 and t3 can502

be highly significant as well: we should always call the tactic which is the most successful503

one on such subgoals first.504

As we face a huge number of cases, we need to design extremely efficient prototype tactics505

on some specific subgoals and apply them automatically to all the subgoals at stake. Fine506

tuning the tactics rapidly is the key to making the proofs faster to complete.507

Finally, Coq provides some sort of task parallelism in the form of the par tactical. It is508

very useful to deal with all the sub-goals of a proof, once we figure out how to prove the509

first one. The generic tactic proving the first goal, say mytactic can be easily applied to510

all sub-goals in parallel (in some cases, we have 35x35=1225 or more goals to deal with) by511

simply writing par:mytactic.512

6.1.3 Without Loss of Generality513

Most proofs are highly branching. For instance, performing case analysis on all three lines514

to prove the lemma a3_3 leads to 353 = 42875 cases. In order to make the proof more515

tractable, we propose a new tactic named wlog17, which implements the without loss of516

generality principle, as it is described in [13]. This allows to reduce the number of cases to517

solve explicitly. To use it, we build a virtual order on the points and lines, simply mapping518

point Pi (resp. line Li) to the value i of its index and then extend statements of the form519

∀l1, l2 : Line, . . . to ∀l1, l2 : Line, l1 < l2→ . . .520

Surprisingly, using the without loss of generality tactic forces us to generalize our statement521

for Pasch axiom to accommodate all cases, depending on the order in which we consider522

points A, B, C, and D, as shown in Fig. 5. The usual conclusion of Pasch axiom:523

524
(exists I:Point , incid_lp I lAB && incid_lp I lCD) ->525

{ exists J:Point}, incid_lp J lAC && incid_lp J lBD.526527

17 https://github.com/magaud/PG3q/blob/master/generic/wlog.v

https://github.com/magaud/PG3q/blob/master/generic/wlog.v

N. Magaud XX:15

is transformed into a conjunction of two existential properties:528

529
(exists I:Point , incid_lp I lAB && incid_lp I lCD) ->530

(exists J:Point , (incid_lp J lAC && incid_lp J lBD)) /\531

(exists K:Point , (incid_lp K lAD && incid_lp K lBC)).532533

The principles behind the tactic wlog were also extremely useful when dealing with534

spreads and packings, especially when checking inside Coq which sets of lines are actual535

spreads and which sets of spreads are actual packings.536

6.2 Improvements537

While carrying out such a proof development, one of the main difficulties is to decide what538

a small Coq proof is. Our first experiments crashed because we assumed Coq will handle539

very large specifications and proofs easily. Instead we needed to scale down our proofs and540

decompose them a lot to make sure they can be compiled. The current decomposition is541

probably too strong, but it has the advantage of being tractable by Coq.542

Most definitions and properties used in this development are first order. So it would be543

interesting to implement the same formal description in a first-order prover such as Z3 [10].544

It can also be of interest to use first-order tools such as [1] provided in Coq.545

From a specification point of view, as collineations can be simply characterized by the546

images of only four points, we shall study how to remove the bijection on lines from the547

definition of the collineation and reconstruct it from the bijection on points. This would548

make the proof development much smaller and reduces the number of objects we are handling549

simultaneously. Finally, most proofs are very similar to one another. In the near future,550

we shall study how symmetry arguments could help reduce the number of cases to handle.551

We shall also investigate how to carry out circular permutations of the set of points so that552

some proofs can be factorized by simply specifying the first point or line at stake and then553

rotating the statement to obtain the other cases.554

7 Conclusion and Future Work555

In this work, we show how to formalize in Coq the spreads and packings of PG(3,2). Using556

an external specifications and proofs generating program, we build automatically all the557

spreads and packings, as well as all the collineations of PG(3,2). We then easily verify that558

these generated sets of lines (resp. spreads) are actual spreads (resp. packings). We also559

successfully prove that they are the only ones. In addition, we classify the spreads and560

packings, showing that there is only one class for the 56 spreads and that the 240 packings561

are splitted into two classes of 120 elements. Showing that these two classes are distinct562

required generating and characterizing in Coq all the 20 160 collineations of PG(3,2).563

All the proofs carried out in this work are very large. A single case analysis on a point564

generates 15 cases, and a single case analysis on a line generates 35 cases. In order to let565

Coq deal correctly with all these proof scripts, we had to decompose our statements into566

several smaller lemmas, which could each be independently handled by Coq. During this567

study, we faced case analysis with a huge number of cases as well as debugging proof script568

with thousands of sub-goals. We propose some proof engineering techniques to make Coq569

process the files more easily e.g by directly providing witnesses or by pruning the proof tree570

by using a without loss of generality principle.571

So far, we only address properties and transformations which remain in the same (pro-572

jective) space. We are currently working on generating specifications of projective spaces573

XX:16 Spreads and Packings of PG(3,2) in Coq

automatically in order to easily have a formal description of two different projective spaces574

and thus to be able to formally describe constructions as the Bruck-Bose construction which575

allows to build translation planes from projective planes [5]. In parallel, we plan to formalize576

the spreads and packings of PG(3,3) and their properties, as presented in [3]. This would577

allow to check whether our specification and proofs techniques scale well when shifting for a578

projective space with 15 points and 35 lines to a much bigger one with 40 points and 130579

lines.580

References581

1 Mickaël Armand, Germain Faure, Benjamin Grégoire, Chantal Keller, Laurent Théry, and582

Benjamin Werner. Verifying SAT and SMT in Coq for a Fully Automated Decision Proced-583

ure. In International Workshop on Proof-Search in Axiomatic Theories and Type Theories584

(PSATTT’11), 2011.585

2 Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Development,586

Coq’Art : The Calculus of Inductive Constructions. Texts in Theoretical Computer Science,587

An EATCS Series. Springer-Verlag, Berlin/Heidelberg, May 2004. 469 pages.588

3 Anton Betten. The packings of pg(3, 3). Designs, Codes and Cryptography, 79(3):583–595,589

2016. doi:10.1007/s10623-015-0074-6.590

4 David Braun, Nicolas Magaud, and Pascal Schreck. Formalizing Some "Small" Finite Models591

of Projective Geometry in Coq. In Jacques Fleuriot, Dongming Wang, and Jacques Calmet,592

editors, Proceedings of Artificial Intelligence and Symbolic Computation 2018 (AISC’2018),593

number 11110 in LNAI, pages 54–69, Sept. 2018. URL: https://hal.inria.fr/hal-01835493.594

5 R.H Bruck and R.C Bose. The construction of translation planes from projective spaces. Journal595

of Algebra, 1(1):85–102, 1964. doi:https://doi.org/10.1016/0021-8693(64)90010-9.596

6 Francis Buekenhout, editor. Handbook of Incidence Geometry. North Holland, 1995.597

7 F. N. Cole. Kirkman parades. Bull. Amer. Math. Soc., 28(9):435–437, 12 1922. URL:598

https://projecteuclid.org:443/euclid.bams/1183485271.599

8 Coq development team. The Coq Proof Assistant Reference Manual, Version 8.13.2. INRIA,600

2021. URL: http://coq.inria.fr.601

9 Harold Scott Macdonald Coxeter. Projective Geometry. Springer Science & Business Media,602

2003.603

10 Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An Efficient SMT Solver. In604

Proceedings of TACAS 2008, volume 4963 of LNCS, pages 337–340. Springer, 2008. doi:605

10.1007/978-3-540-78800-3_24.606

11 Georges Gonthier and Assia Mahboubi. A Small Scale Reflection Extension for the Coq system.607

Technical Report RR-6455, INRIA, 2008. URL: http://hal.inria.fr/inria-00258384/.608

12 Georges Gonthier, Assia Mahboubi, and Enrico Tassi. A small scale reflection extension609

for the coq system. Research Report RR-6455, Inria, Saclay Ile de France, 2015. URL:610

https://hal.inria.fr/inria-00258384.611

13 John Harrison. Without loss of generality. In Stefan Berghofer, Tobias Nipkow, Christian Urban,612

and Makarius Wenzel, editors, Theorem Proving in Higher Order Logics, 22nd International613

Conference, TPHOLs 2009, Munich, Germany, August 17-20, 2009. Proceedings, volume 5674614

of LNCS, pages 43–59. Springer, 2009. doi:10.1007/978-3-642-03359-9_3.615

14 J. W. P. Hirschfeld. Finite projective spaces of three dimensions. Oxford mathematical616

monographs. Clarendon Press ; New York : Oxford University Press, Oxford, 1985.617

15 R.H. Jeurissen. Special sets of lines in PG(3, 2). Linear Algebra and its Applications, 226-228:617618

– 638, 1995. Honoring J.J.Seidel. doi:https://doi.org/10.1016/0024-3795(95)00200-B.619

16 Nicolas Magaud. Spreads and packings of pg(3,2), formally! Electronic Proceedings in620

Theoretical Computer Science, 352:107–115, Dec 2021. doi:10.4204/eptcs.352.12.621

17 Assia Mahboubi and Enrico Tassi. Mathematical Components. Draft, 2016. URL: https:622

//math-comp.github.io/mcb/.623

https://doi.org/10.1007/s10623-015-0074-6
https://hal.inria.fr/hal-01835493
https://doi.org/https://doi.org/10.1016/0021-8693(64)90010-9
https://projecteuclid.org:443/euclid.bams/1183485271
http://coq.inria.fr
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
http://hal.inria.fr/inria-00258384/
https://hal.inria.fr/inria-00258384
https://doi.org/10.1007/978-3-642-03359-9_3
https://doi.org/https://doi.org/10.1016/0024-3795(95)00200-B
https://doi.org/10.4204/eptcs.352.12
https://math-comp.github.io/mcb/
https://math-comp.github.io/mcb/
https://math-comp.github.io/mcb/

	1 Introduction
	2 Formal Description of the Projective Space PG(3,2) in Coq
	2.1 Specification of Projective Spaces
	2.2 Points, Lines and the Incidence Relation
	2.3 Formal Proofs

	3 Collineations, Spreads and Packings of PG(3,2)
	3.1 Collineations
	3.2 Spreads
	3.2.1 Definition and Properties
	3.2.2 Generating all Spreads of PG(3,2)

	3.3 Packings
	3.4 Definition and Properties
	3.5 Generating all Packings of PG(3,2)

	4 Properties of the Spreads of PG(3,2)
	4.1 Characterizing all Spreads of PG(3,2)
	4.2 Classifying all Spreads of PG(3,2)

	5 Properties of Packings of PG(3,2)
	5.1 Characterizing all Packings of PG(3,2)
	5.2 Classifying all Packings of PG(3,2)
	5.2.1 There are at most 2 Classes of Packings in PG(3,2)
	5.2.2 Characterizing all collineations of PG(3,2)
	5.2.3 There are exactly 2 Distinct Classes of Packings in PG(3,2)

	6 Discussion
	6.1 Proof Engineering
	6.1.1 Using bool instead of Prop
	6.1.2 Optimizing proofs
	6.1.3 Without Loss of Generality

	6.2 Improvements

	7 Conclusion and Future Work

