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Behavioral/Cognitive

Differential Brain Mechanisms of Selection and Maintenance
of Information during Working Memory
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and X Leonardo G. Cohen1

1Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, Maryland 20892, 2New York University, New York, New York 10003,
and 3Frankfurt Institute for Advanced Studies, 60438 Frankfurt am Main, Germany

Working memory is our ability to select and temporarily hold information as needed for complex cognitive operations. The temporal
dynamics of sustained and transient neural activity supporting the selection and holding of memory content is not known. To address this
problem, we recorded magnetoencephalography in healthy participants performing a retro-cue working memory task in which the
selection rule and the memory content varied independently. Multivariate decoding and source analyses showed that selecting the
memory content relies on prefrontal and parieto-occipital persistent oscillatory neural activity. By contrast, the memory content was
reactivated in a distributed occipitotemporal posterior network, preceding the working memory decision and in a different format than
during the visual encoding. These results identify a neural signature of content selection and characterize differentiated spatiotemporal
constraints for subprocesses of working memory.
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Introduction
Working memory enables the brief holding of information (Bad-
deley and Hitch, 1974; Baddeley, 2010) crucial for a wide range of

cognitive tasks in everyday life (Klingberg, 2010). For example,
while driving a car, prior visual inputs providing important con-
textual information must be maintained for several seconds to act
appropriately, as is the case when conversing with a friend,
watching a movie, or learning a motor skill. Previous work con-
tributed to characterize neural substrates underlying working
memory. Lesion studies pointed to the prefrontal cortex as a
crucial brain region mediating this function (Jacobsen, 1935;
Bauer and Fuster, 1976; Petrides, 2005). Intracranial recordings
in monkeys and neuroimaging studies in humans showed that
sustained neural activity within prefrontal regions supports
working memory (Fuster and Alexander, 1971; Funahashi et al.,
1989; Goldman-Rakic, 1995; Courtney et al., 1998). It has been
proposed that this sustained activity stores memory content
(Fuster and Alexander, 1971; Funahashi and Kubota, 1994). On
the other hand, recent electrophysiological and decoding work
pointed to a prominent contribution of dynamic neural activity
in the form of dynamic coding (Stokes, 2015), neural oscillatory
activity (Fuentemilla et al., 2010), brief bursts of activity (Lund-
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Significance Statement

Our brain selects and maintains information during short time windows in a way that is essential to reasoning and learning. Recent
advances in multivariate analysis of brain activity allowed the characterization of brain regions that stores the memory. We
applied multivariate analysis to time-resolved brain signals to characterize the spatiotemporal signature underlying these sub-
processes. The selection of information relies on sustained oscillatory activity in a network that includes the ventrolateral pre-
frontal cortex while memory content is transiently replayed in an occipitotemporal network that differs from encoding. Our
results characterized differentiated spatiotemporal activity underlying encoding, selection, and maintenance of information
during working memory.
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qvist et al., 2016), or activity-silent periods (stored as patterns of
synaptic weights; Mongillo et al., 2008; Stokes, 2015) to content
maintenance.

While early work proposed that neurons in the lateral pre-
frontal cortex store working memory information (Fuster and
Alexander, 1971; Funahashi and Kubota, 1994), recent studies
show that the maintenance of information during working mem-
ory engages different brain regions depending on the type or
modality (Harrison and Tong, 2009; Christophel et al., 2012; Han
et al., 2013; D’Esposito and Postle, 2015; Ester et al., 2015; Lee and
Baker, 2016). For example, the maintenance of visual orientation
information engages early visual areas (Riggall and Postle, 2012),
the maintenance of single auditory tones engages the auditory
cortex (Kumar et al., 2016), and the maintenance of spatial infor-
mation (Jerde et al., 2012) or more abstract concepts (Lee et al.,
2013) engages the frontal cortex. These results led to the hypoth-
esis that the brain regions encoding the memory content show a
gradient of abstraction from sensory areas reflecting low-level
sensory features to prefrontal regions encoding more abstract
and response-related content (Christophel et al., 2017). Never-
theless, content-specific activity of low-level features has also
been observed in frontal regions (Ester et al., 2015).

In addition to maintenance of a content, working memory
requires encoding and subsequent selection of appropriate con-
tent among distractors (Myers et al., 2017). The neural substrates
of these working memory subprocesses [i.e., (1) the encoding, (2)
the selection rule that identifies the relevant information to be
held in mind, and (3) the maintenance of this information for
future processing; Vogel et al., 2005] are incompletely under-
stood (Myers et al., 2015). Prefrontal cortex activity, which exerts
top– down influences on sensory regions, may contribute to the
selection of information for goal-directed behavior (Curtis and
D’Esposito, 2003; Gazzaley and Nobre, 2012). Less is known on
the neural dynamics that select and manipulate information dur-
ing working memory.

To address this question, we investigated the contribution of
sustained, transient, and oscillatory neural activity to the encod-
ing, selection, and maintenance of working memory content.
Time-resolved multivariate pattern analysis (MVPA) of magne-
toencephalographic (MEG) activity revealed that the selection
rule relies on sustained oscillatory neural activity of �20 Hz
within a distributed frontoparietal network. Additionally, memory
content was decoded from a new pattern of transient activity in
sensory areas. These results indicate that persistent frontoparietal
oscillatory activity may drive the reformatting and reactivation of a
previously encoded content to generate the appropriate working
memory decision.

Materials and Methods
Participants and experimental sessions. Thirty-five healthy volunteers par-
ticipated in the study after providing informed consent. They all had
normal physical and neurological examinations and normal or
corrected-to-normal vision. Participants who reached 75% correct re-
sponses during the working memory task in a screening session returned
for one structural magnetic resonance imaging (MRI) and two MEG
sessions (23 participants: 17 women, 6 men; mean age, 26.6 � 6.7 years).
One participant moved out of the area and participated in only one MEG
session.

Visual working memory task. Visual stimuli were displayed using
MATLAB (MathWorks) and the Psychophysics Toolbox (Psychtool-
box-3; Brainard, 1997) running on a MacBook Pro laptop computer.
During the MEG session, visual stimuli were back-projected on a trans-
lucent screen in front of the participants. Each trial started with the
fixation dot in the middle of the screen. Participants were instructed to

fixate on the fixation dot during the entire trial. After 400 ms (�50 ms
jitter), two visual gratings, one in each half of the visual field, were simul-
taneously presented for 100 ms (Fig. 1). Each grating had one of five
possible spatial frequencies (1, 1.5, 2.25, 3.375, or 5.06 cycles/°), and one
of five possible orientations (�72°, �36°, 0°, 36°, and 73°, with 0° being
the vertical). A visual cue, lasting 100 ms, was presented 900 ms (�50 ms
jitter) after the stimulus onset, indicating the side (spatial rule indicating
left or right) and the feature (feature rule indicating orientation or spatial
frequency) to be remembered. A probe was provided 1600 ms (�50 ms
jitter) after the cue onset, and participants had to match the cued item
with the probe (same or different) by responding with their right index
and middle finger on a button box. The probe displayed only one orien-
tation and one spatial frequency. In half of the trials, the correct response
was “different” (i.e., the probe had randomly one of the four other pos-
sible attributes compared with the cued attribute). The term “uncued
item” in the article refers to the feature on the opposite side of the cue
(i.e., the left line orientation when the cue indicated the right line orien-
tation). The probe disappeared when the participants gave their re-
sponse. The fixation dot turned green for a correct answer or red for an
incorrect one during 100 ms at the end of each trial. Eye movements were
monitored across the trial with an eye-tracker (Eyelink, 1000, SR Re-
search) to ensure correct central fixation. Fixation was considered to be
broken when a participant’s gaze was recorded outside a circular spot
with a 2.5° visual radius around the center of the fixation dot or if they
blinked during the period from the stimulus onset to the probe onset. In
that eventuality, participants received an alert message on the screen, and
the trial was shuffled with the rest of the remaining trials and repeated.
Each session was composed of 400 trials with correct fixation inter-
spersed with rest periods every block of 50 trials. A total of 800 trials with
correct fixation were obtained from each participant during two MEG
sessions (except for one participant who came for only one MEG session;
400 trials). The group average behavioral performance during this task
was 83 � 3.6%. Participants were better at recalling the orientation than
the spatial frequency trials (85 � 4.5% vs 81 � 3.5%, p � 0.001). No
difference was found between performances in left and right cue trials
(82 � 4.8% vs 83 � 3.2%; Fig. 1B).

One-back task. In 17 participants (22 MEG sessions), a one-back task
(160 trials with correct fixation) was performed before the working
memory task to control for the visual processing of the cue. During this
task, one of the four cues used in the working memory task appeared
every 1500 ms, and the participant had simply to press a button if two
consecutive cues were similar. Eye movement monitoring was per-
formed. If participants broke visual fixation, the trial was shuffled with
the remaining trials and repeated. The group average behavioral perfor-
mance during this task reached 89% of correct responses.

MRI acquisition and preprocessing. MRI data were acquired with a
Siemens Skyra 3 T Scanner using a 32-channel coil. High-resolution
(0.93 � 0.93 � 0.9 mm 3) 3D magnetization-prepared rapid gradient
echo T1-weighted images were acquired (repetition time � 1900 ms;
echo time � 2.13 ms; matrix size � 256 � 256 � 192). A stereotactic
neuronavigation system (Brainsight, Rogue Research) was used before
the MEG recordings to record MRI coordinates of the three head posi-
tion coils placed on the nasion and preauricular points. These coil posi-
tion coordinates were used to coregister the head with the MEG sensors
for source reconstruction. Brain surfaces were reconstructed using the
FreeSurfer software package (Dale et al., 1999; Fischl et al., 1999). A
forward model was generated from the segmented and meshed MRI
using Freesurfer (Fischl, 2012) and MNE-Python (Gramfort et al., 2013)
and was coregistered to the MRI coordinates with the head position coils.

MEG recordings. Neuromagnetic activity was recorded with a sampling
rate of 1200 Hz on the National Institutes of Health (NIH) 275-channel
CTF MEG device (MEG International Services). The MEG apparatus was
housed in a magnetically shielded room. During recording, participants
were seated alone in the shielded MEG room, and their heads were cen-
trally positioned within the sensor array. The head position was recorded
before and after each block. If the difference between the two recordings
exceeded 3 mm, participants were asked to reposition their head to its
original position while their real-time head position was displayed. A
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digital-to-analog converter was used to record the eye tracker signal with
the MEG acquisition system.

MEG preprocessing. Brain MEG activity was bandpass filtered in the
range of 0.05–25 Hz and decimated by 10, resulting in a sampling fre-
quency of 120 Hz. The MEG signal was epoched based on the onset of the
stimulus (�0.2 s, 0.9 s), the onset of the cue (�0.2 s, 1.5 s), and the onset
of the probe (�0.2 s, 0.4 s). The two MEG sessions per participant were
concatenated. The epoch data for the three events were all baselined
between �0.2 and 0 s according to the stimulus onset for all sensors
analyses. For the source reconstruction, to compute an accurate noise
covariance matrix, the stimulus and cue epoch were baselined on the
prestimulus and precue periods, respectively. Despite different baselines,
similar decoding performances were obtained in sensors and source
space. MVPA was used from sensor space, time: - frequency, and source
space data. Twenty-nine Morlet wavelets between 2 and 60 Hz were used
to extract the time–frequency power from epochs with no bandpass fil-
tering. To estimate the time series in source space, the linearly con-
strained minimum variance beamformer was computed on single-trial
data using MNE-Python. The regularized noise covariance matrix was
computed on a prestimulus period (�0.3s, 0 s according to stimulus
onset). The regularized data covariance was computed during a period
starting 40 ms after the event of interest (i.e., stimulus, cue, or probe
onset) until the end of each epoch (respectively, 900, 1500, and 400 ms).

MEG multivariate pattern analysis. Data were analyzed with multivar-
iate linear modeling implemented in MNE-Python (Gramfort et al.,

2013; King et al., 2016). MVPA decoding aimed at predicting the value of
a specific variable y (e.g., the cued spatial frequency or line orientation)
from the brain signal X. The analysis consists of (1) fitting a linear esti-
mator, w, to a training subset of X(Xtrain); (2) from this estimator, pre-
dicting an estimate � ȳtest) of the variable ytest on a separate test subset
(Xtest); and, finally, (3) assessing the decoding score of this prediction
compared with the ground truth �score(ytext, ȳtext)). Estimators were
trained at each time sample (sampling rate � 120 Hz) and tested at the
same time sample (for the time–frequency and source analyses) and at all
time samples of the epoch in case of temporal generalization (for the
sensor analyses). The variable y was categorical for the rules (right vs left
for the spatial rule and line orientation vs spatial frequency for the feature
rule), ordinal for the spatial frequency (1, 1.5, 2.25, 3.375, or 5.06 cycles/°),

and circular for the line orientation�2�
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, 2� rad�. The data (X)

were the filtered raw sensor MEG data (273 dimensions corresponding to the
273 channels), the frequency power in one frequency band (273 dimensions)
repeated over frequency bands from 2 to 60 Hz, the source data (8196 di-
mensions corresponding to 8196 virtual channels), or the frequency power
in one frequency band in source data (8196 dimensions) repeated over the
two frequency bands of interests. The data (X) were whitened by using a
standard scaler that z scored each channel at each time point across trials. An
l2 linear model was then fitted to find the hyperplane (w) that maximally
predicts the variable of interest (y). All parameters were set to their default

Figure 1. Behavioral task and performance. A, Visual working memory task. The stimulus appears for 100 ms and is composed of the following four different visual attributes: left and right spatial
frequency (each chosen from among five possible: 1, 1.5, 2.25, 3.375, or 5.06 cycles/°) and left and right orientation (each chosen from among five possible: �72°, �36°, 0°, 36°, and 72°; 0° �
vertical). After a delay of 800 � 50 ms, the cue appears for 100 ms and indicates which visual attribute of the stimulus the participant has to compare with the upcoming probe. A left or right solid
line cue indicates respectively the left or right orientation, and a left or right dotted line indicates respectively the left or right spatial frequency of the stimulus. After a 1500 � 50 ms delay, the probe
appears and the participant is required to answer whether the cued stimulus attribute is the same or different from the corresponding probe attribute. In the trial depicted in the figure, the solid line
cue pointing to the left instructs the participant to compare the orientation on the left side of the stimulus with the orientation in the probe (the correct answer in this case is “different”). We refer
to the time between the stimulus and the cue as the stimulus epoch, the time between the cue and the probe as the cue epoch and the time after the probe as the probe epoch. B, Behavioral
performance. The values are the mean percentage and SD of correct responses across participants. The mean performance across all trials was 83 � 3.6%. Participants were better when they had
to remember an orientation compared with a spatial frequency (85% vs 81%, p � 0.001, paired t test). Performances were similar for trials with a left and right cue.
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values as provided by the scikit-learn package (Pedregosa et al., 2011). A
logistic regression classifier was used to decode categorical data (cue side or
cue type), and a ridge regression was used to decode the spatial frequency. A
combination of two ridge regressions was used to perform circular correla-
tions to decode the orientation, fitted to predict sin(y) and cos(y). The pre-
dicted angle � ȳ� was estimated from the arctangent of the resulting sine and
cosine: ȳ � arctan2 (ȳsin, ȳcos). Each estimator was fitted on each participant
separately, across all MEG sensors (or sources) and at a unique time sample
(sampling frequency � 120 Hz).

The training and testing sets were independent, and the folds were
made by preserving the percentage of the sample for each class. The
cross-validation was performed using a 12-fold stratified folding, such
that each estimator was trained on 11/12th of the trials (training set) and
then generated a prediction on the remaining 1/12th trials (testing set).
With 800 trials, it means that, at each cross-validation, the estimator was
trained on 734 trials and tested on the remaining 66 trials. Ordinal effects
(decoding of spatial frequency) were summarized with a Spearman cor-
relation R coefficient (range, �1 to 1; chance � 0). Categorical effects
(decoding of cue side and cue type) were summarized with the area under
the curve (range, 0 –1; chance � 0.5). Circular decoding was summarized
by computing the mean absolute difference between the predicted angle
�ȳ� and the true angle (y; range, 0 to �; chance � �/2). To facilitate
visualizations, this “error” metric was transformed into an “accuracy”
metric (range, ��/2 to �/2; chance � 0; King et al., 2016).

In addition, within each analysis, the temporal generalization was
computed. Each estimator trained on time t was tested on its ability to
predict a given trial at time t	 to estimate the similarity of the coding
pattern at t and t	, and thus the stability of the neural representation. The
results of this temporal generalization are presented in a 2D matrix, with
training time on the vertical axis and testing time on the horizontal axis.
The degree to which the trained estimators generalize across time sheds
light on the stability of the neural representation. A thin diagonal, where
each estimator generalizes only during a brief period, will indicate a chain
of process (e.g., see Fig. 7B, first part of the visual processing), while a
square-shaped decoding performance, where each estimator generalizes
during several time samples, will indicate that the same pattern of activity
code for the information of interest during an extended period of time
(e.g., see Fig. 4, temporal generalization of both spatial and feature rules).

MVPA was also applied on the frequency power and in the source
space. The interpretation of the weight of multivariate decoders (i.e., the
source spatial filters) can lead to wrong conclusions regarding the spatial
origin of the neural signals of interests (Haufe et al., 2014). To investigate
the spatial distribution of brain regions contributing to decoding perfor-
mance, we thus transformed these spatial filters into spatial patterns
using the method of Haufe et al. (2014). For each analysis, these individ-
ual spatial patterns were then morphed on the surface-based “fsaverage”
template of Freesurfer (Fischl, 2012) and averaged across subjects. Sub-
jects’ spatial patterns lead to an activation matrix of 20,484 (virtual chan-
nels morphed on the template) by 133 (time samples during the target
epoch) or 205 (time samples during the cue epoch). To summarize these
activations, we used a principal component analysis and illustrate the two
first components (90% variance explained on average; see Figures 3, 6).
All decoding analyses were performed with the MNE-Python (Gramfort
et al., 2013) and scikit-learn (Pedregosa et al., 2011) packages.

To test the similarity between the neural representation during visual
perception and working memory, estimators were either trained on stim-
ulus decoding and tested on the memory content or the inverse, on the
same epochs used during other sensor analyses. Because a reactivation of
sensory encoding during memory maintenance would be hemisphere
specific (i.e., the reactivation of the sensory code for the left spatial fre-
quency should specifically involve the right hemisphere), estimators
were trained separately for trials with a left and a right cue. An estimator
trained/tested on the left (or right) spatial frequency of the stimulus was
trained/tested on the memorized cued spatial frequency only when the
cue indicated the left (or right) side of the stimulus. The same 12-fold
stratified folding as performed in other analyses was used. The results of
this generalization across conditions were then averaged between left and
right for statistical testing and visualization. This work used the compu-

tational resources of the NIH High Performance Computing Biowulf
cluster (http://hpc.nih.gov).

Experimental design and statistical analysis. Each analysis was first per-
formed within each subject separately using all meaningful trials. All
trials (n � 800) were used to decode visual attributes of the stimulus and
or probe, cue side and cue type. Trials with a cue indicating either the
spatial frequency or the orientation (n � 400) were used to decode the
specific memory content. In the cross-condition generalization, estima-
tors were trained separately for the left and right cue, resulting in 200
trials for the memory content, and then averaged. Statistical analyses
were based on second-level tests across participants and were performed
on the temporal generalization or time–frequency matrix of decoding
performance with a nonparametric one-sample t test corrected for
multiple comparisons with cluster-based permutations (Maris and Oost-
enveld, 2007), using the default parameters of the MNE-Python
spatio_temporal_cluster_1samp_test function. Color-filled areas on de-
coding performance curves or dashed contours on temporal generaliza-
tion and time–frequency matrices correspond to a p value of �0.05
resulting from this permutation test. To test the overall decoding perfor-
mance on a full epoch, decoding performances were averaged across all
time samples in each participant and epoch period starting from the
event onset (stimulus, cue, or probe) and then tested at the group level
with a one-sample t test against chance level (***p � 0.001, **p � 0.01,
and *p � 0.05).

Results
We recorded MEG in 23 participants while they performed a
retro-cue working memory task. Each trial started with the visual
presentation of a four-dimensional stimulus with two distinct
visual gratings (left and right) that varied in line orientation and
spatial frequency. A small retrospective visual cue presented

900 ms after the stimulus onset indicated the visual attribute to
be retained for a subsequent probe. Specifically, a small line indi-
cated the side (left or right) and the feature (orientation or spatial
frequency) of the stimulus to be remembered, corresponding to
the cued attribute. Participants then indicated whether the cued
attribute matched the corresponding attribute of a visual probe
presented 
1500 ms after the cue onset (Fig. 1). To isolate the
neural representation of the encoding, the selection rule, and the
memory content, we applied MVPA to decode the four visual
attributes of the stimulus (orientation and spatial frequency of
each visual grating), the selection rules (spatial and feature rule),
and the memory content (cued attribute) during the stimulus
epoch (�0.2 to 0.9 s around stimulus onset), the cue epoch (�0.2
to 1.5 s around the cue onset), and the probe epoch (�0.2 to 0.4 s
around the probe onset; Fig. 2).

Parallel and transient encoding of four visual attributes
Left and right spatial frequencies could be decoded from 33 and
25 ms after stimulus onset, respectively (cluster level, p � 0.05
corrected). The decoding performance peaked at 
50 ms and
rapidly decreased afterward but remained above chance through-
out most of the stimulus epoch (Fig. 2A). Mean spatial frequency
decoding performance over the stimulus epoch was significantly
above chance (both p � 0.001). By contrast, these visual attri-
butes could not be decoded during the cue or the probe epochs.
Similar results were observed for the decoding of the left and right
orientation. Specifically, orientation decoding started at 
46 ms
after stimulus onset, peaked at 
100 ms, and remained above
chance throughout most of the stimulus epoch. Mean orientation
decoding performance was significantly above chance during the
stimulus epoch (both p � 0.001). Very weak but still significant
decoding was also observed during the cue epoch (right orienta-
tion, p � 0.001; left orientation, p � 0.01) and the probe epoch
(both p � 0.01; Fig. 2A). Similar decoding results were observed
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in the time–frequency domain with significant decoding clusters
during the first 400 ms after the stimulus onset (Fig. 2B).

To estimate the brain sources underlying these decoders,
the MEG signal was reconstructed in the source space at a
single-trial level, and the same decoding analyses were per-

formed on the source signal. The weights of the estimators
were transformed into interpretable patterns of activity
(Haufe et al., 2014). The source pattern of activity indicated
that the calcarine, the cuneus, and lateral occipital regions
encoded this information (Fig. 3A).

Figure 2. Neural dynamics of visual perception, selection rule, and memory content in evoked and time–frequency domains. A, Time course of MEG decoding performance. The x-axis corresponds
to the time relative to each event (stimulus, cue, and probe; see top), and the y-axis corresponds to the decoding performance for the stimulus attributes, the selection rule, the memory content, and
the probe attributes. Vertical gray bars indicate the visual presentation of each image (stimulus, cue, and probe). Color-filled areas depict significant temporal clusters of decoding performance
(cluster-level, p � 0.05 corrected). Variance (thickness of the line) is shown as the SEM across participants. Note that the successful decoding of the four visual attributes of the stimulus, the spatial
and feature rules, the memory content (cued � uncued) for both spatial frequency and orientation and for the two attributes of the probe. The asterisks indicate the significance of the mean
decoding performance over the entire corresponding epoch (***p�0.001, **p�0.01, and *p�0.05). B, Decoding performance in the time–frequency domain. The x-axis corresponds to the time
relative to each event (stimulus, cue, and probe; see top), and the y-axis depicts the frequency of MEG activity (between 2 and 60 Hz). Significant clusters of decoding performance are contoured with
a dotted line. Note the successful decoding in the time–frequency domain of the four visual attributes of the stimulus, both the spatial and the feature rules and the two attributes of the probe, but
not the memory content.

3732 • J. Neurosci., May 8, 2019 • 39(19):3728 –3740 Quentin et al. • Memory Selection and Maintenance Brain Mechanisms



Overall, our decoding results during visual perception con-
firmed that multiple visual attributes are simultaneously encoded
in the early neural response for several hundred milliseconds, but
rapidly become undetectable after 
1 s (Fig. 2A).

Selection rules are encoded in stable oscillatory activity
involving the prefrontal cortex
The cue side (spatial selection rule) and the cue type (feature
selection rule) could be decoded shortly after the cue presenta-
tion and during the entire cue and probe epochs (Figs. 2A, Fig. 4).
The cue side and cue type were decoded at 58 and 75 ms, respec-
tively, after cue onset (cluster level, p � 0.05 corrected), and the
decoding performance remained above chance throughout both
the cue and probe epochs (Fig. 2A). To ensure that these decoded

patterns of brain activity corresponded to the selection rule and
not to the sensory features of the cue, we decoded the same visual
cue in a one-back control task. In the initial 200 ms following cue
onset, the decoding performances of the cue side and type were
comparable in both tasks (with and without the associated selec-
tion rule). Subsequently, decoding was significantly higher in the
working memory condition than in the one-back control task
(Fig. 4). Our one-back control task contains fewer trials than the
visual working memory task. To ensure that our differences be-
tween the selection rule and the visual signal of the cue itself are
not a consequence of less signal, estimators trained on cue side
and cue type during the working memory task were tested on all
trials during the control task. This analysis also showed higher
decoding performance when tested during the working memory

Figure 3. Spatial source representation of stimuli, selection rule, and memory content. A, Encoding of visual attributes during the stimulus epoch. The calcarine cortex, the cuneus, and lateral
occipital regions encoded the visual attributes of the stimulus during the stimulus epoch. B, Selection rule during the cue epoch. A large cortical network, including the ventrolateral prefrontal regions
and the insula, encoded the selection rule. C, Memory content during the cue epoch. The neural representation of memory content involves an occipitotemporal brain network. D, Decoding
performances from the source signal. Time course of decoding performance during the stimulus epoch for the visual encoding of the spatial frequency (average of left and right spatial frequency) and
the line orientation (average of left and right orientation), and during the cue epoch for the rules (the cue side and the cue type) and the memory content (the cued orientation and the cued spatial
frequency) in the source space. Note that these decoding performances in source space are similar to the decoding performance in sensor space shown in Figures 4 and 5. ***p � 0.001.
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task than when tested during the control task, confirming that the
sustained and frequency-specific neural representation of the se-
lection rule is not present during the control task, when no selec-
tion rule is associated with the cue (Fig. 5).

Overall, these decoding results demonstrate that the sustained
activity encoding the cue is related to the selection rule. To test
the dynamics of the neural representation of the rule, each esti-
mator trained on time t was tested on its ability to predict the
variable of interest at time t	 (King and Dehaene, 2014). This
temporal generalization analysis showed very stable neural rep-
resentations for both spatial and feature selection rules (Fig. 4,
middle).

To investigate the oscillatory representation of these selection
rules, we computed the time–frequency decomposition at the
single-trial level using Morlet wavelets and applied MVPA to
power estimate time series for each frequency band. The cue side
and type were decoded both from the alpha (
10 Hz) and theta
(
3 Hz) bands during the working memory task, with decoding
performance peaking during the period immediately following

the cue onset through the end of the cue epoch (p � 0.05 cor-
rected). In the one-back control task, the cue side was decoded
within the frequency domain only for a brief period (�400 ms)
following the cue onset, while the cue type could not be decoded
at all (Fig. 4, right).

The same decoding analyses were also performed on the
source space MEG signal and produced similar decoding perfor-
mances (Fig. 3D). Both spatial and feature selection rules were
encoded in a network involving the ventral prefrontal, parietal,
and occipital cortices (Fig. 3B). Specifically, the activity pattern
encoding the spatial selection rule involved bilateral orbitofron-
tal regions, bilateral insula, bilateral inferior parietal lobules,
right superior parietal and temporoparietal junctions, and bilat-
eral occipital regions and fusiform areas. The activity pattern for
the feature selection rule, on the other hand, involved the right
orbitofrontal region, inferior frontal gyrus and insula, bilateral
pericentral regions, the right superior parietal lobule, bilateral
middle temporal regions, and bilateral occipital regions, includ-
ing the fusiform area. Overall, our source space decoding results

Figure 4. The selection rule is encoded in a persistent and stable pattern of low-frequency brain activity. On the left, the time course (x-axis) of decoding performance (y-axis) during the cue epoch
for the cue side (top) and the cue type (bottom) during the working memory task when the cue is associated with the selection rule (blue) and the control one-back task when it is not (gray). Note
that decoding performance was significantly higher in the working memory task than in the control one-back task. The time generalization matrices (middle panels), in which each estimator trained
on time t was tested on its ability to predict the variable at time t	, identified stable neural representations for both spatial and feature rules. The right panel shows the decoding in the
time–frequency domain. Note that both rules are maintained within the low-frequency alpha (
10 Hz) and theta (
3 Hz) band activity. ***p � 0.001.
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showed that both the spatial and feature selection rules are asso-
ciated with sustained oscillatory neural activity involving the pre-
frontal cortex.

Finally, to investigate the topography of the decoding in the
time–frequency domain, the time–frequency analysis was also
computed in the source space for the two frequencies with higher
decoding performance (3 and 10 Hz). Interestingly, the involve-
ment of the prefrontal cortex is restricted to the theta band and is
not visible in the alpha band (Fig. 6).

The memory content is transformed and encoded in a
distributed posterior network
Significant decoding performance for the memory content (the
cued orientation or spatial frequency on a given trial) started at

500 ms after the cue onset (p � 0.05 corrected) and remained
above chance throughout the cue epoch. The mean decoding
performance was significantly higher for the cued than the non-
cued orientation or spatial frequency (Fig. 2A). More specifically,
the mean decoding performance was above chance during the
cue epoch both for the cued orientation (p � 0.001) and cued
spatial frequency (p � 0.01; Fig. 7A). By contrast, neither the
uncued orientation nor spatial frequency could be decoded (Fig.

7B). The working memory content could
not be decoded in the time–frequency do-
main (Fig. 2B). Temporal generalization
analyses showed a stable representation
over time for both items (Fig. 7A). As for
the selection rules, decoding analyses were
performed on the source space MEG sig-
nal and produced the same decoding per-
formances (Fig. 3D). Estimated source
space patterns of activity representing
memory content cued stimulus orienta-
tion and spatial frequency showed a dis-
tributed and posterior network involving
bilateral occipital regions, bilateral infe-
rior temporal and temporoparietal
junctions, bilateral posterior temporal re-
gions, and left premotor areas (Fig. 3C).

To test whether the neural representa-
tion of the memory content was similar to
that of visual encoding, we tested the gen-
eralization across conditions. Specifically,
we trained the decoders on the visual at-
tributes during perception of the stimulus
and tested their ability to decode the
memory content, and, conversely, trained
the estimators on the memory content
and tested their ability to decode visual
attributes during visual encoding. These
cross-condition decoding analyses re-
vealed no decoding levels above chance
(Fig. 8), demonstrating that the neural
representation of the memory content
differs from the representation of the
same attribute during sensory encoding.

Discussion
To investigate the neural dynamics of
working memory subprocesses, we used a
series of time-resolved MVPAs of MEG
signals recorded during a retro-cue work-
ing memory task to isolate temporal, os-
cillatory, and anatomical signatures of

each of these mechanisms. We report three main findings. First,
working memory selection engages a distributed network char-
acterized by sustained oscillatory neural activity that includes the
lateral prefrontal cortex. Second, working memory selection but
not memory content was decoded from alpha and theta oscilla-
tory brain activity. Third, working memory content and sensory
encoding have different neural representations, with the memory
content transiently decodable in posterior brain regions 400 –500
ms after the cue preceding the subject response.

Working memory selection
The experimental paradigm allowed us to identify the represen-
tation of two different selection rules, a spatial rule indicated by
the cue side and a feature rule indicated by the cue type. Both
rules share similar spatiotemporal neural properties: a very stable
neural representation (Fig. 4), a low-frequency oscillatory mech-
anism in the theta and alpha band (Figs. 2, 4), and the involve-
ment of the prefrontal and occipitoparietal regions (Fig. 3B).
Time–frequency source analyses show that both theta and alpha
frequency bands encode the rule selection. Specifically, the alpha-
band activity encoding the rule is restricted to posterior regions,

Figure 5. The sustained and frequency-specific neural representation of the rule is not present in the control one-back task.
Estimators trained on cue side and cue type during the working memory task are tested during the same task (blue) or are tested
during the control task (gray). On the left, the time course (x-axis) of decoding performance (y-axis) during the cue epoch for the cue
side (top) and the cue type (bottom). The right panel shows the decoding in the time–frequency domain. These analyses served as
a control for the analyses in Figure 4.
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Figure 6. Spatial source representation of the selection rule in the theta (3 Hz) and alpha (10 Hz) bands. A, Selection rule during the cue epoch decoding from theta power (3 Hz). A large cortical
network, including the ventrolateral prefrontal regions and the insula, encoded the selection rule in the theta band (left) with the corresponding decoding performance in time–frequency source
space (right). B, Selection rule during the cue epoch decoding from alpha power (10 Hz). A posterior network encodes the selection rule in the alpha band (left) with the corresponding decoding
performance in time–frequency source space (right). ***p � 0.001, **p � 0.01.

Figure 7. The memory content is transiently reactivated 500 ms after the cue. A, Time course of decoding performance (y-axis) during the cue epoch for the cued orientation (five possible
orientations) and the cued spatial frequency (five possible spatial frequencies) during the working memory task and their corresponding time generalization analysis. B, Same analysis for the uncued
orientation and spatial frequency. Note that the decoding performance was significantly above chance for the cued but not the uncued orientation and spatial frequency. Additionally, decoding was
significantly higher for the cued than the uncued item (Fig. 2, for this difference). ***p � 0.001, **p � 0.01.
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Figure 8. Different neural representations of memory and perceptual content. A, Left, Average decoding performance for each participant when estimators are trained on the stimulus attributes
(average of orientation and spatial frequency) during the stimulus epoch and tested either during the same epoch or on the corresponding memory content during the cue epoch. Right, Average
decoding performance for each participant when estimators are trained on the memory content (average of orientation and spatial frequency) during the cue epoch and tested either during the same
epoch or on the corresponding stimulus attribute during the stimulus epoch. B, Time generalization matrix trained on the stimulus attribute (left, line orientation; right, spatial frequency) during the
stimulus epoch (y-axes) and tested on the memory content during stimulus (orange matrix) and cue (red matrix) epochs (x-axis). C, Time generalization matrix trained on the memory content during
the cue epoch (y-axes) and tested on the stimulus attribute during stimulus (left orange matrix) and cue (right red matrix) epochs (x-axis). Note that an estimator trained to decode a visual feature
during perception cannot decode the corresponding memory content during the cue epoch, and that an estimator trained to decode a memory content during the cue epoch cannot decode the
corresponding stimulus feature during perception. ***p � 0.001.
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while the theta-band is present in both posterior and prefrontal
cortices (Fig. 6). In line with previous findings (Riggall and
Postle, 2012), these results show that the sustained brain re-
sponses in frontal regions previously reported during working
memory tasks relate to selection mechanisms rather than the
encoding of memory content. The neural dynamics characterized
by time generalization analysis is consistent with previous reports
using MVPA on intracranial recordings in primates during the
period where monkeys are needed to maintain a rule (Stokes et
al., 2013). A neural representation that is stable over time is likely
to be more easily readable by interconnected brain regions than a
constantly changing representation that would require continu-
ous shifting of readout algorithms (Murray et al., 2017). The
sustained activity observed during more than a second suggests
that it is not only necessary for the initial selection of the infor-
mation, but also drive the successful reactivation of this informa-
tion in sensory areas. Further, the working memory selection
neural resources identified here share similarities with those un-
derlying spatial attention [i.e., a frontoparietal activity that en-
gages alpha (Worden et al., 2000; Sauseng et al., 2005) and beta or
low-gamma (Buschman and Miller, 2007; Phillips and Takeda,
2009) brain oscillatory activity (Wallis et al., 2015)], which is in
line with the reported oscillatory synchronization of local field
potentials representing these selection rules in monkeys
(Buschman et al., 2012). Such similarities might be related to the
fact that participants orient their attention to specific parts of an
internal representation. In this context, the involvement of the
ventrolateral frontal cortex is not surprising given its recognized
role in mediating top-down influences (Sreenivasan et al., 2014)

and its contribution to rule representation (Woolgar et al., 2011;
Reverberi et al., 2012) and active selection (Petrides, 1996). Sim-
ilarly, parietal regions have been related to the control of memory
representations (Gosseries et al., 2018).

While the spatial rule is independent from the specific content
to remember, the feature rule indicates one of the two types of
content (orientation or spatial frequency). It is not possible to
conceptually dissociate this feature rule from the maintenance of
a type of content. However, the different temporal, spatial, and
oscillatory signatures of these two components suggest that they
reflect different processes.

It is possible that magnetic artifacts due to eye movements
contributed to the decoding of the spatial rule. However, several
controls suggest that this potential confound cannot account for
the overall decoding performance. First, on-line eye-movement
detection allowed us to abort trials where blinks or saccades oc-
curred in real time. Second, the time–frequency decoding of the
spatial rule in the alpha and theta frequency band cannot be
attributed to microsaccades appearing approximately every sec-
ond (Martinez-Conde et al., 2013). Third, decoding analyses to
the eye-tracker time series revealed a significant peak much later
(500 ms; Fig. 9) than the one observed with MEG signals (150 ms;
Fig. 4). As expected, the decoding performance of the feature rule
from the eye movement recordings was at chance level. Overall,
the spatial and temporal similarities of the neural representation
of the spatial and feature rules suggest that the low-frequency
neural responses and the prefrontal activity represent a general
mechanism of selection in working memory.

Figure 9. Small saccades are informative about the side of the cue, but not about the memory content. Time course of decoding performance during the cue epoch for the cue side, the cue type,
the cued orientation, and the cued spatial frequency from eye position data only. ***p � 0.001.
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Working memory maintenance
The memory content was decoded a few hundred milliseconds
after the cue onset (Fig. 6). Decoding of the stimulus visual attri-
butes fell back to chance level 
900 ms after the stimulus onset.
Decoding of the cued visual attribute became significant only

500 ms after the cue. Our paradigm thus revealed a period of
time after the cue onset, for which visual attributes are not decod-
able anymore and the memory content is not yet decodable. It has
been proposed that short-term changes in synaptic weights in the
absence of persistent neural activity may be enough to maintain
information in working memory (Lewis-Peacock et al., 2012;
Stokes et al., 2013). Such silent states can theoretically be reacti-
vated by probing the brain with a light flash (Wolff et al., 2017) or
transcranial magnetic stimulation pulse (Rose et al., 2016) as a
result of a matched filter mechanism (Sugase-Miyamoto et al.,
2008). However, our task was not designed to assess the existence
of such a silent period, and we cannot rule out the possibility that
it may simply reflect a limitation of MEG to record decodable
information during low-level activity. The content-specific activ-
ity following this silent period was more stable in the time gener-
alization analysis than the initial dynamic visual encoding,
suggesting that this content-specific activity operates as an attrac-
tor state (Wills et al., 2005; Kamiński et al., 2017).

Source analysis showed that the memory content is main-
tained in a distributed network involving posterior brain regions
that include sensory visual areas (Fig. 3). Functional MRI studies
using MVPA have shown that the memory content can be de-
coded from a wide range of brain regions, including occipital
(Harrison and Tong, 2009; Serences et al., 2009), parietal (Chris-
tophel et al., 2012), temporal (Han et al., 2013), and frontal (Ester
et al., 2015) areas. The brain regions maintaining the memory
content are likely feature specific (e.g., orientation in early visual
areas; motion in extrastriate cortex, including area MT�; or sin-
gle tones in auditory cortex (Riggall and Postle, 2012; Emrich et
al., 2013; Kumar et al., 2016). It has also been shown that the level
of abstractness influences the spatial localization of the memory
content, with low-level sensory features being encoded in sensory
areas and more abstract representations in anterior frontal re-
gions (Lee et al., 2013; Christophel et al., 2017). Thus, it has been
proposed that the neural networks maintaining the information
in working memory may be the same as the ones involved in the
encoding of this information (D’Esposito and Postle, 2015).
However, our results show that the neural representations of the
same content during perception and memory differ, as demon-
strated by the lack of generalization across conditions (Fig. 7).
This result extends similar observations made in the context of
exogenous reactivation of memory content by a high-contrast or
task-irrelevant stimulus (Wolff et al., 2015) and suggests that
working memory content can be read out and transformed by
executive areas as part of a transient recalling mechanism. Differ-
entiated representations of memory and visual perception may
result in more stable and resistant-to-interference memory con-
tent than if they were sharing the same neural substrate (Mak-
ovski et al., 2008).

It has recently been shown that small eye movements could
contain information about the memory content, especially line
orientation (Mostert et al., 2018). To test this possibility, we tried
to decode the memory content from the horizontal and vertical
coordinates of the recorded eye. This analysis showed that the eye
position contained no information about the memory content,
either spatial frequency or orientation (Fig. 8).

Altogether, our results indicate that after a “silent period” and
following sustained top– down influences, a transformed version

of the working memory content is reactivated in higher-level
sensory brain areas to guide a working memory decision.

Persistent and dynamic nature of working memory
Our results suggest that previously described persistent and dy-
namic patterns of neural activity may reflect two different work-
ing memory subprocesses. First, a stable, persistent activity
involving the ventrolateral prefrontal cortex associated with the
selection rule that selects and drives the reactivation of a specific
sensory content (Fig. 4). Second, the sensory content is tran-
siently reactivated 
500 ms after presentation of the cue (Fig. 6)
in a more stable representation than visual encoding, which is
consistent with the dynamic population coding identified in pri-
mate studies (Meyers et al., 2008; Stokes, 2015) and activity-
dependent network attractors (Kamiński et al., 2017).

To summarize, our study identified spatiotemporal neural dy-
namics of the selection and maintenance of a working memory
content as it is manipulated. Evidence is presented in favor of a
role for the ventrolateral prefrontal cortex in the selection rather
than the maintenance of working memory content through a
stable and frequency-specific neural representation. The working
memory content was transformed from the initial visual encod-
ing into a different and transiently reactivated memory represen-
tation in a posterior brain network. These findings suggest that
our brain transiently probes memory content, possibly stored in
activity–silent mechanisms, to manipulate this representation for
future action. Additionally, they may help to reconcile different
views on the persistent and dynamic features of spatiotemporal
neural representations of working memory.
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