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We present an experimental realization of a biased optical periodic potential in the low friction limit. The
noise-induced bistability between locked (torsional) and running (spinning) states in the rotational motion
of a nanodumbbell is driven by an elliptically polarized light beam tilting the angular potential. By varying
the gas pressure around the point of maximum intermittency, the rotational effective diffusion coefficient
increases by more than 3 orders of magnitude over free-space diffusion. These experimental results are in
agreement with a simple two-state model that is derived from the Langevin equation through using
timescale separation. Our work provides a new experimental platform to study the weak thermal noise limit
for diffusion in this system.
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Thermal diffusion in a tilted periodic (also named
washboard) potential constitutes an archetypal model of
transport phenomena in nonequilibrium statistical physics
[1,2]. It describes a diverse range of systems, including
Josephson junctions [3], molecular motors [4], synchroni-
zation phenomena [5], and diffusion on crystal surfaces [6],
to name only a few.
Brownian particles moving in the tilted potential at

nonzero temperature exhibit two distinct well-characterized
limiting behaviors: locked and running states. The first
emerges when the potential wells are deeper than the
thermal energy scale, the diffusing particle remains in a
local minimum. In the latter, a sufficient tilt of the potential,
lowering its energy barrier, allows the particle to flow down
the potential wells. Depending on the system parameters
(friction, temperature, and tilt), both solutions may coexist,
and stochastic transitions between locked and running
states may occur. It has been shown, both experimentally
[4,7,8] and theoretically [9,10], that in this two-state
coexistence regime, the effective diffusion coefficient
can be enhanced by several orders of magnitude relative
to the free diffusion coefficient. However, this has only
been experimentally observed in the overdamped regime
which is by now a fully understood stochastic process [2].
To our knowledge, an experimental study of giant

diffusion in the strongly inertial (underdamped) regime
is still missing. The theoretical problem is also more
demanding in the underdamped and weak noise limits
because the usual expansion of the matrix continued
fraction [2] fails to converge well [11]. On these grounds,
this nonlinear stochastic system in the low-noise and low-
damping limits is still attractive [11].
We propose a simple experimental setup based on the

optical trapping of a nanodumbbell in a moderate vacuum.
A special feature of our experiment is that the friction
coefficient, being linearly proportional to the gas pressure

P, can be tuned over several orders of magnitude.
Therefore, for a nearly constant temperature, Brownian
motion can move from the overdamped to the underdamped
regime. This makes the optical trapping setup a suitable
platform to study stochastic dynamics in the low-friction
regime [12–14].
The main focus of this Letter is the analysis of the

rotational diffusivity in the bistability region for an under-
damped stochastic mechanical nanorotor traveling in a
tilted periodic potential. We provide experimental confir-
mation of a giant diffusivity by tracking the rotational
motion of a single silica nanodimer. Because of the
experimentally achieved timescale separation, we show
that the effective diffusion is well described by a two-state
model for this nearly one-dimensional rotational motion.
The experimental setup consists of a vacuum optical

tweezer trapping a dielectric silica dumbbell made of two
nanospheres of nominal radius 68� 7 nm [15,16]. The
continuous wave trapping laser beam (wavelength, λ ¼
1064 nm and power, 180 mW) passes through an objective
lens with a 0.8 numerical aperture, the polarization’s
ellipticity of which can be changed by a quarter-wave
plate. A detailed description of the experimental setup,
calibration, and processing procedures is given in the
Supplemental Material [17] including Refs. [18–32]. The
shape and the size of the dimer are assessed under linear
polarization, and correspond to an aspect ratio L=D ¼ 1.8,
with two spheres of radius Rp ¼ 65.7 nm, where D ¼ 2Rp

and L is the major axis length of the dimer. Our detection
system is able to simultaneously record the particle’s center
of mass motion and its angular displacement.
The nanodimer experiences both a trapping force and a

torque, both of which are induced by elliptically polarized
light. In particular, when such an asymmetric Rayleigh
scatterer lies in the transverse ðx̂; ŷÞ plane, corresponding to
θ ¼ π=2, the torque reads
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M ¼ MC −ML sinð2φÞ; ð1Þ

where φ is the angle between the dimer main axis and the
lab’s horizontal x̂ axis. Its time evolution is related to the
dimer rotation around the ẑ optical axis. MC and ML are
respectively the circular and linear contributions of the
optical torque which depend on the dimer polarizability
tensor and the laser beam polarization [17].
In a linearly polarized optical tweezer, whereMC ¼ 0, the

long axis of the dimer (i.e., in the direction of greatest
polarizability) will tend to align with the laser beam
polarization. This is because the polarizability of the dimer
along its long axis is greater than the polarizability
perpendicular to it. As a result, the dimer acts as a torsion
balancewith a linear restoring torque,−2MLφ. The libration
pulsation ΩL is well approximated in the low friction limit
(Γφ ≪ ΩL) by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ML=Iz

p
, where I⊥ is themoment of inertia.

In contrast, for a circularly polarized trap, where
ML ¼ 0, the asymmetric particle undergoes a constant
torque, whatever its orientation φ. As a result of the
continuous transfer of angular momentum, the particle will
spin about the ẑ axis at constant frequency, as given by
ΩR ¼ MC=I⊥Γφ, where Γφ is the rotation or torsional
vibration damping rate about the ẑ optical axis (see
Ref. [17] for its determination). Note that the rotation
frequency can exceed GHz, which allows us to study
material stresses due to centrifugal forces [33,34], measure
ultraweak torques [35,36], and examine quantum features
of rotation [37,38].
Figure 1(a) illustrates the potential landscape and ori-

entational dynamics for different polarization states.
Considering the general case, for elliptical polarization,
the potential has a washboard shape: UðφÞ ¼ MLsin2ðφÞ−
MCφ, and one can observe running and locked states.
Below, we only consider elliptical polarization which is
held constant at ϕλ=4 ¼ 25°, the angle of the quarter-
wave plate.
The dynamics of an asymmetric Brownian particle

trapped under elliptically polarized light is six dimensional
with translational and rotational degrees of freedom coupled
to each other. This generally leads to a highly nonlinear
problem [36,39,40]. However, in the following, we show
that the giant diffusion phenomenon is well described by
one-dimensional rotational dynamics. Comparison between
the experiment and numerical simulations is made quanti-
tative provided that an additional term is added to the usual
extinction optical torque (∝ ℜ½p × Einj�, with p the dipole
moment andEinj the incident electric field). This extra term,
called scattering torque (∝ ℑ½p × p��), is due to the inter-
ference of the fields scattered by the particle [17,41]. This φ
angle dynamics reproducing the stochastic jumps between
torsion and continuous rotation states is described by the
Langevin equation

I⊥φ̈ ¼ −I⊥Γφ _φþM þMth; ð2Þ

where Γφ is the rotational damping rate and Mth ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTI⊥Γφ

p
ζðtÞ is the thermal torque with ζðtÞ a

Gaussian noise of zero mean value. M is given by Eq. (1).
Figure 1(b) shows the position and orientation power

spectral densities as a function of pressure, along with the
numerical Langevin simulations (solid red curves). For
consistency, we also show the frequencies associated with
translational motions in the X, Y, and Z directions that are
independent of gas pressure. The observed nondegeneracy
of the transverse frequencies X, Y is expected for a
noncircularly polarized laser beam. In the high friction
limit, the torsional dynamics dominate the dimer orienta-
tion motion and their resonance frequencies remain con-
stant in relation to pressure. Conversely, the rotational

FIG. 1. (a) Illustration of the energy landscape for the rotation
of the Brownian dimer around the optical axis for three different
tilts. When the polarization is linear (blue dotted line), the
potential is not tilted and the orientation of the dimer remains
in the locked state. Conversely, for a circular polarization (solid
blue line) the potential wells disappear. For elliptical polarization
(dashed line), the rotational motion can change from a running
state (spinning) to a locked state (torsional) and vice versa.
(b) Surface plot in log-log scales of the angular vibration and
translational power spectral densities as a function of the gas
pressure for a beam ellipticity of ϕλ=4 ¼ 25° and an optical power
of 180 mW. The solid and dashed curves (red) represent the local
maxima of the PSD computed by Langevin simulations of
Eq. (2). The three grey horizontal curves at 0.41 mbar, 0.51 mbar,
and 0.61 mbar outline the two-state coexistence region where the
middle line denotes the maximum of intermittency.
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dynamics is dominant in the low friction regime, i.e., at low
pressure, and its angular frequency, ΩR, rises as the inverse
of the gas damping.
The red solid curves in Fig. 1(b) show a good agreement

between the experiment and one-dimensional simulations of
Eq. (2). One can also clearly see that the bistability region is
quantitatively well described by the model. The two locked
states observed in the spectral densities are also found in the
numerical simulations, and correspond to the fundamental
peak and its overtone. Although not within the scope of this
Letter, we do not preclude contributions with other angles
leading to coupling with extra motional degrees of freedom.
The experimental determination of the dimer size and shape
by the calibration procedure [17] is used for calculating the
moments of inertia and polarizabilities. The latter are further
supported numerically using COMSOL MULTIPHYSICS. We
find that I⊥ ¼ 2 × 10−32 kgm2, MC and ML are, respec-
tively, of the order of 2 × 10−22 Nm and 6 × 10−20 Nm, in
good agreement with both experimental and numerical
results.
As mentioned above, in the calculation of optical torques

the contribution of scattering is included in addition to the
usual extinction contribution [41]. Since the polarization of
the trapping beam is not linear, this scattering torque is
crucial to reproduce quantitatively the experimental results,
particularly when the dimer spins. In many previous works,
the scattering torque was ignored because the rotational
Langevin equation was only qualitatively discussed. It is
worth noting that if the scattering torque is not taken into
account, the particle’s rotation speed is overestimated by
typically an order of magnitude for the actual dimer [17]
and much more for a spheroid (data not shown). Some
quantitative deviations between theory and experiment
appear at low pressure but without greatly affecting the
giant diffusion effect.
We now consider the quantitative study of this stochastic

nonequilibrium phenomenon. Figure 2 shows the time
traces of the angular velocity _φ obtained by short time
Fourier transforms in the bistability region. In the locked
state, the mean angular velocity is h _φiL ≡ 0. While the
mean rotational speed, h _φiR, in the running state increases
continuously with the pressure drop. The most noticeable
feature of the time traces is the two-state noise-induced
transitions, where the maximum of intermittency occurs in
the middle of the bistability region at about P ≈ 0.56 mbar
[Fig. 1(b)].
We use the time traces of angular velocities to determine

the mean occupation times in the locked and running states.
Figure 3(a) shows the distributions Pðτ=hτiÞ of the mean
occupation times, recorded for different gas pressures.
These distributions decrease exponentially as expected
for a Kramers-like problem. Deeper insight into two-state
coexistence can be gained if we plot the pressure depend-
ence of the average occupancy times in the locked and
running states, as shown in Fig. 3(b), both for experimental

and numerical data. It can be evidenced that when Γφ ≪
ΩL (as in this case), the transition rate rL out of a locked
state (regardless of the final state, locked or running) is
independent of the friction coefficient, i.e., of the pressure.
This is in agreement with our observations [see Fig. 3(b)
red squares and solid line]. Besides, this value is well
approximated by the well-known Arrhenius law, 1=τL ¼
rL ∼ΩL expð−Eb=kBTÞ, Eb being the barrier height given
by the potential difference between a minimum and the
lower neighboring maximum [42]. This offers insight into
how a temperature change affects the stability of the torque
state. A different behavior is observed for transitions from a
running to a locked state for low damping and finite
temperatures. This behavior is explained by the fact that
the rate rR is such that 1=τR ¼ rR ∼ Γφ ∝ P [43]. Note that
some differences occurring at low pressure can be observed

FIG. 2. Time traces of the dimer angular velocity _φ obtained by
short-time Fourier transform for the three pressures that are
shown as gray horizontal curves in Fig. 1(b).

FIG. 3. (a) Probability distribution function of the occupation
time from the locked to running states PðτLÞ, red symbols, and
the running to locked states PðτRÞ, blue symbols, for various
pressures where the bistability is observed. Exponential behav-
iors suggest that stochastic transitions between locked and
running states are thermally activated, following an Arrhenius-
type law. (b) Pressure dependence of the mean occupation times
in the locked and running states [symbols: experiment, solid line:
Langevin simulations, Eq. (2)].
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between the one-dimensional model and the experiment [as
seen in Fig. 3(b)]. They are not due to a time windowing
effect, but could arise from the coupling between other
rotational degrees of freedom, as seen below 0.45 mbar
with the appearance of an additional resonance in the
spectral densities [Fig. 1(b)].
In the rest of this Letter, we focus on the measurement of

the effective rotational diffusion coefficient, which is
defined by the Kubo relation

Deff ¼
Z

∞

0

dt0h½ _φðt0Þ − h _φi�½ _φð0Þ − h _φi�i:

This coefficient satisfies the usual Einstein relation
limt→∞hφ2ðtÞi − hφðtÞi2 ¼ 2Defft, where Deff can in prin-
ciple be enhanced by orders of magnitude over the free
coefficient diffusion D0 at the crossover from locked to
running states. Interestingly, outside the region of bist-
ability, the power spectral density of _φ allows for a
measurement of both D0 ¼ kBT=ΓφI⊥ and its related
timescale 1=Γφ. Surprisingly, we can derive a simple
two-state stochastic noise model to fit our experimental
results in the bistability region (see details in Sec. V.B of the
Supplemental Material [17]). Since the parameter range we
consider allows large timescale separations (1=ΩR ≪
1=Γφ ≪ τL; τR), the spectral density of the rotation speed
in the region of bistability reads

S _φ _φðωÞ ¼
D0

1þ ω2

Γ2
φ

þ Deff

1þ ω2

Γ2
T

ð3Þ

where ΓT ¼ rR þ rL, is the total escape rate, corresponding
to the longest timescale of the system. From the timetraces
of the angular velocity _φ (Fig. 2), we compute the power
spectral densities of the rotation velocity (defined as the
Fourier transform of the rotational velocity autocorrelation
function) in the coexistence regime, as shown in Fig. 4(a).
Using then Eq. (3), we can determine the effective diffusion
Deff relative to D0, that is displayed in Fig. 4(b) as a
function of pressure. Note that Γφ and ΓT are also
measured, allowing us to corroborate the values of the
nanodimer size and its aspect ratio. To go further into the
two-state model, we use the transition rates rR and rL
deduced from Fig. 3 to calculate Deff . In our parameter
regime, the two-state model gives an expression that bears
much similarities with those developed in [11,44–46]

Deff ¼ h _φi2R
rLrR

ðrL þ rRÞ3
; ð4Þ

where h _φiR is the average angular velocity taken only over
the running states of the whole temporal trace. Comparison
of the filled and open circles in Fig. 4(b) indicates that when
Eq. (4) is used with the results obtained from occupancy
times, good agreement is obtained with the diffusion

estimate by spectral densities by using Eq. (3). The
occupancy rate in the locked state defined as N− ¼
hτLi=ðhτLi þ hτRiÞ is represented by red squares in
Fig. 4(b). We observe that the giant increase in the effective
diffusion coefficient is roughly maximal at a pressure where
the states are evenly distributed.
In conclusion, we have observed in a very small pressure

range a giant increase of the diffusion coefficient in the
underdamped and weak noise limit. Carefully calculating
the optical torque, a reasonable quantitative agreement has
been obtained using a one-dimensional Langevin model.
This supports evidence that even though the real system

FIG. 4. (a) Measured power spectral densities of the dimer
angular velocity (dots) and double Lorentzian fit [Eq. (3), solid
curves] at the boundaries of the bistable region (P ¼ 0.653 mbar
in blue, P ¼ 0.408 mbar in black), and at the pressure around
which the maximum of giant diffusion exists (P ¼ 0.560 mbar in
red). The dashed line represents the free-space diffusion coef-
ficient D0 at P ¼ 0.653 mbar, the double arrow displays the
excess of diffusion Deff=D0, while both the total escape rate ΓT
and the rotational damping rate Γφ are marked by vertical arrows.
(b) On the left axis. Pressure dependence of the effective diffusion
coefficient Deff in units of D0 estimated by two methods: (i) data
from Fig. 4(a) are fitted by using Eq. (3), blue open circles, while
(ii) transition rates obtained from Fig. 3 are used to calculate Deff
from Eq. (4), green filled circles. The black solid line results from
the Langevin simulations [Eq. (2)]. On the right axis. Proportion
of the mean occupancy in the locked state (red squares: experi-
ment and black dashed line: Langevin simulations).

PHYSICAL REVIEW LETTERS 129, 023602 (2022)

023602-4



dynamics has six dimensions, it can be reduced to a one-
dimensional system within at least some parameter
regimes. Cooling the translational (and possibly rotational)
degrees of freedom would mitigate the rotranslational
coupling [15,16], enabling ideally over a wide parameter
regime to reach the true one-dimensional Brownian nano-
rotor as described in Eq. (2). Thus, an optically levitated
stator rotator constitutes an outstanding platform to study
the issue of jump length distributions [47] and where its
dynamics can be controlled down to the quantum ground
state [48–50].
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Giant diffusion of nanomechanical rotors in a tilted washboard potential

PACS numbers:

We describe in detail the experimental setup and how we synthesize the silica nano-dumbbells. We also present
the configuration to follow in real time their orientation and the position of their center of mass. In particular, we
explain the link between the orientation of the particle and the measured signal. Next, we present the data processing
to obtain the angular velocity of the dumbell and how we extract its effective diffusivity. We discuss how to evaluate
the size and shape of the dimer using the translational degrees of freedom.

A theoretical part presents some results on the dynamics. First, we calculate the torque for an anisotropic Rayleigh
particle, taking into account not only the extinction torque, but also the recoil (or scattering) contribution [1], in
order to obtain a good quantitative agreement with the experiments. Finally, we derive the analytical expression
for the low frequency behavior observed in the power spectral density (PSD) of the rotational speed. From the
Langevin’s equation, we get a general expression of the rotational effective diffusion coefficient, and explain why, with
our parameters, the latter is identical to the effective diffusion coefficient given by a two-state telegraph noise model
[2–4].

I. EXPERIMENTAL SETUP

A simplified scheme of the experimental setup is shown in Fig. 1. An axisymmetric particle (i.e., a dumbbell
composed of two silica nanospheres of diameter 140 ± 14 nm, ρ = 2200 kg.m−3 and refractive index n = 1.45) is
trapped in an elliptically polarized laser beam at a wavelength of λ = 1064 nm. To do so, the linear polarization at
the laser source output is oriented along the x axis by a half waveplate (HWP) plate. The polarization ellipticity is
then set by a quater waveplate (QWP), whose angle between the fast axis and x axis in the laboratory frame is φλ/4.

FIG. 1: Simplified top view scheme of the experimental apparatus. The 1064 nm laser light is focused in the vacuum chamber
through a high numerical aperture microcscope objective (N.A.= 0.8) and is then divided into two parts: one is sent on the
detection system to measure the motion of the particle, the other part is analysed by a polarizer before to reach a balanced
photodiode allowing a measurement of the orientation of the particle.

The laser source is an ultra stable and low noise continuous wave laser (AzurLight System) providing up to 7 W of
optical power at a wavelength of λ = 1064 nm. Its relative intensity noise is of −150 dBc/Hz in the frequency range
of interest (10 kHz to 100 MHz). The polarization stability (< 0.1%) and the pointing fluctuations (< 0.5 µrad for
several hours) are minimized by using a polarizer with a high polarization extinction ratio and including the whole
experiment in a box to prevent air fluctuations on the optical path.
The trapping beam is focused in the vacuum chamber by a high numerical aperture objective (Nikon IR Plan-APO :
0.8, W.D : 1mm) and recollected by an aspheric lens of numerical aperture 0.8. The transmitted beam from the trap
is splitted in two: one half goes on the center of mass (COM) displacement detection setup, the other half goes on
the setup for the detection of the particule orientation.
The COM detection is made by tracking in real time the extinction cross section of the nanoparticle, given by the



2

spatial integration of the interference pattern between the scattered field and the incident trapping field. For this
part, we have used the same setup as in previous work, see [7], and figure 2.

FIG. 2: Detailed top view of the scheme of the COM setup (BS, beam splitter, CM, D-cut mirror and PD, balanced photodiode).

The particle’s center of mass displacement and its major axis orientation are recorded simultaneously at sampling
rates varying between 10 MS/s to 200 MS/s, what permits to acquire temporal traces from 5 s to 100 s. The change
of the gas pressure in the vacuum chamber modifies the damping of the particle’s motion.

The nanoparticles (Microparticles GMBH) are loaded inside the vacuum chamber at atmospheric pressure by using
a nebulizer (Omron Micro-Air), filled with a suspension of ethanol containing nanospheres. Nanodumbbells are formed
by a proper dilution so that in average two nanospheres are contained in a single droplet. Once a particle is trapped,
we evacuate the vacuum chamber from other diffusing nanoparticles.

II. MEASURED QUANTITIES OF THE ROTATIONAL DEGREES OF FREEDOM

A. Measurement of the dimer orientation and anisotropic polarizability

The light field arriving before the balanced photodiode is described as being the superposition of the field scattered
by the particle and the reference field (Fig. 1). A simple analysis makes it possible to relate the differential intensity
measured by the detectors to the orientation of the nanoparticle. The trapping beam is defined by

Einj(r) = E0(r)eiη(r)

 cos(φλ/4)
i sin(φλ/4)

0

 , (1)

where E0(r) and η(r) are the Gaussian beam amplitude and phase [9, 10], δ = 2φλ/4 is the beam ellipticity.

The orientation of the dimer is given by its director axis n̂ = [cosϕ sin θ; sinϕ sin θ; cos θ], expressed in the laboratory
frame (ex, ey, ez), with usual polar and azimuthal angles.
The polarizability matrix, α, is diagonal in the dimer’s eigenframe, and has two components α⊥, twice degenerated,
and α‖. Their value can be estimated analytically [11–13] or computed numerically. This analysis leads to the real
and imaginary parts of the polarizability: α′⊥,‖ and α′′⊥,‖, respectively. In the laboratory frame, the polarisability

matrix and the vectorial electric dipole moment for any orientation is given by

α = α⊥I + (α‖ − α⊥)n̂n̂, (2)

p = αEinj, (3)

where I is the identity matrix and n̂n̂ the dyadic product.
The forward scattered field, Es, in a direction rL towards the collecting lens, depends on the dipole moment of the

particle, see Eq. (3) in which one uses the far-field Green tensor [5, Eq. (8.52) and Eq. (8.61)]). By evaluating the
modulated intensity received by the photodiode on each polarization channel (along x or along y) as Einjx,y

.E?sx,y
+

E?injx,y
.Esx,y

, and integrating on rL, we can write the differential intensity that is measured.
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Assuming the dimer is in the (x,y) plane, i.e. θ = π/2, and the half-waveplate is adjusted so that the signal
averaged over positions of the dimer is perfectly balanced, we obtain a simple expression for the differential voltage
r(t), proportional to the intensity difference :

r(t) ∝ E2
0

2

(
(α‖
′′ − α⊥′′) sin(δ) cos [2ϕ(t)] + (α‖

′ − α⊥′) sin [2ϕ(t)]
)
. (4)

In practice, the measured signal is a nonlinear function of the dimer orientation. To understand the link between
the signal spectrum and the characteristic frequencies of the problem, it is interesting to consider a limiting case. In
the absence of noise, let us take the following ansatz for the temporal evolution of the orientation of the particle

• ϕ(t) = ΩRt, when the particle spins,

• ϕ(t) = ϕeq + ϕ0 cos(ΩLt), when the particle is in the torsional state around an equilibrium position ϕeq.

Therefore, in the rotational state, the signal would peak at the frequency 2ΩR, while, for the torsional state, the
expansion of sin[2ϕ(t)] and cos[2ϕ(t)] would give a signal frequency at ΩL, followed by their harmonics.

In the presence of thermal noise, we observe both experimentally and numerically the presence of the peak of
rotation in the spectral density at 2ΩR, and several peaks associated with the torsional state (both fundamental and
harmonics, see fig. 1 of the main text). However, it is difficult to say if the experimental peaks are really harmonics
of the 1D problem, or come from the hybridization of the ϕ motion with the other angles, or even from the coupling
with the degrees of freedom in translation.

III. TREATMENT PROCEDURES FOR LOCAL ANGULAR FREQUENCY EVALUATION AND
TRANSIT TIME EXTRACTION

In this section, we present our data processing to evaluate the instantaneous angular vibration of the trapped
nanodumbbell and how we extract the transit times to calculate the effective diffusion constant.

FIG. 3: a) Measured signal r(t) corresponding to the angular motion ϕ(t) for a gas pressure P = 0.56 mbar, when the particle
is in the locked (torsional) state (red curve) or in the running (spinning) state (blue curve). b) Measured Power Spectral
Densities obtained from the temporal trace presented in a).

Changes in the polarization of the transmitted beam are related to changes in the instantaneous orientation of
the trapped particle, which are recorded by a well-balanced photodiode. This signal is formed by time traces of 5
to 100 seconds. We divide them into subtraces whose length varies between 50 µs to 1 ms in order to evaluate the
instantaneous angular velocity. For each subsample, we then calculate the one-sided power spectral density, which
reads as

Srr(ω) =

∫ ∞
0

dt
〈

[r(t)− 〈r(t)〉] [r(0)− 〈r(0)〉]
〉
eiωt (5)
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Figure 3 shows the measured signals (left panels) and their corresponding spectra (right panels), when the particle
is in the locked or rotating state, both at a pressure of 0.560 mbar. Each PSD was calculated for a time window of
100 µs. This permits to reconstruct the time trace of angular frequency.

IV. DAMPING IN TRANSLATION AND ROTATION AND CHARACTERIZATION OF THE SIZE
AND SHAPE OF THE PARTICLE

FIG. 4: a) Measured Power Spectral Density of the translation and torsional motion of the trapped nanodumbbell at a
pressure of P = 1.53 mbar averaged over a time period of 20 s. b) Time trace of the particle motion in translation along
the x axis from which is extracted the slowly varying envelope (red curves). c) Energy autocorrelation for various pressures
ranging from 0.1 to 0.634 mbar. The dashed lines represent a fit by an exponential decay. d) Translational damping rates of
the nanodimer along the direction of its main axis ( ⊥, in blue) and perpendicular to it ( ‖, in red), as a function of the gas
pressure. Symbols are measured values, solid lines are fitted from Eq. (8). The constant difference between the damping rates
proves that the trapped object is an asymmetric particle and that, in the long-time averages, the friction of the translation
degrees is not affected by the type of angular motion (torsional or rotational regime).

A. Determination of translational damping and particle geometry

The shape and size of the particle are determined under linear polarization of the trapping beam using different
standard [6] and nonlinear [7] calibration techniques.

Figure 4 shows the experimental results on the translational degrees of freedom. In the high pressure regime, we
extract the widths Γi of the PSDs by fitting the Lorenztian lineshape on the three axis, see figure 4(a). At low
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pressures, nonlinearities smear the narrow Lorentzian shape of the PSDs [7]. To circumvent this issue, we extract
both the time-varying local frequency and position from the slowly varying envelope of the position signals along an
axis [Fig. 4(b)]. This allows a measurement of the time-resolved energy of the mechanical oscillator. Then, from the
correlation function in energy [Fig. 4(c)] decreasing exponentially, we infer the characteristic time which corresponds
to the inverse of damping rate. This amounts to consider

Ei(t) =
mΩ2

i (t)x
2
i (t)

2
, (6)

the time-resolved energy, whose correlations decreases exponentially as

〈Ei(0)Ei(τ)〉 ∝ e−Γiτ .

Fitting the results of figure 4(c), we obtain Γi.

In practice, the main axis of the nanodimer is oriented in the direction of the linear polarization (in the low
temperature limit), lying in the (x̂,ŷ) plane. This permits to infer Γ‖ and Γ⊥, the damping rates corresponding to
the dimer motion in the eigenframe, along its main axis, and perpendicular to it. Figure 4(d) shows their values as
a function of pressure. Given the dimer geometrical cross sections, we logically recover that Γ⊥ > Γ‖. From these
results, we can deduce the particle size and shape.

We first evaluate the parallel and perpendicular hydrodynamic drag coefficients in the continuous regime, γ⊥,‖ =
mΓ⊥,‖, where m is the mass of the dumbbell, with the help of the Kirkwood-Reisemann theory [14, 15], and write

µ⊥,‖ =
γ⊥,‖

γS
, (7)

where, µ⊥,‖ are the coefficient of the mobility tensor, and γS = 6πηRp, where η is the fluid viscosity in the continuous
limit (at room pressure) and Rp the radius of one sphere of the dumbbell. Note that we consider the two spheres to
be identical.

Then, to evaluate the sphere radius and the dimer’s aspect ratio L/D, L being the total length in ‖ direction, and
D = 2Rp, the diameter of a sphere, we consider the behaviour of both perpendicular and parallel damping rates as
a function of the pressure P . For a single sphere, the damping rate can be expressed in terms of Kundsen number
Kn = λmfp/Rp, where we introduce the mean free path of air molecules λmfp = λ0Patm/P , with λ0 = 68 nm. For an
aggregate of N spheres (here, N = 2), different effective Knudsen numbers Kna,‖ = 1.23Kn (resp., Kna,⊥ = 1.39Kn)
is used along the parallel (resp. perpendicular) directions [16]. Finally, the damping rates are obtained as a function
of the gas pressure

Γ⊥,‖(P ) = C−1
a (Kna)γ⊥,‖/m, (8)

where we have used a slip correction factor corresponding to the modified Millikan’s formula [17]

Ca(Kna) = 1 +Kna

[
A+B exp

(
− C

Kna

)]
, (9)

with A = 1.234, B = 0.404 and C = 0.876 the coefficients that Millikan has obtained for a single sphere in the rarefied
gas regime. Asymptotically, considering a dimer such that L/D = 2, one recovers for the damping rates ratio the
values 1.13 in the continuous regime (Kna → 0) and 1.26 in the rarefied regime (Kna = 100) [19].

B. Determination of the rotational damping rate

Using the instantaneous rotation frequency (obtained by short-time Fourier transform methods), we calculate the
spectral density of the rotational frequency and fit it using Eq. (19) that has been obtained from the Ornstein-
Ulhenbeck theory, see Sec. (V B). This procedure allows to deduce the rotational damping rate Γϕ at any pressure.
Figure 5 shows such an example at 0.225 mbar with a rotational damping rate of Γϕ/2π = 143 Hz.

To confirm the estimated size of the beads and the aspect ratio obtained from the damping rates on the translational
degrees of freedom, we plot the measured rotational damping rate as a function of the gas pressure. From the estimated
size of the beads and the aspect ratio L/D obtained from the translational damping rate, we take from ref. [19] the
rotational damping rate normalized by the rotational damping rate of the unit sphere (Γϕ,Sphere = 8πηR3

p/ISphere).



6

FIG. 5: a) Temporal trace of the rotation frequency at 0.225 mbar. b) PSD of the rotation pulsation for the same experimental
parameter as a). The extraction of the cut-off frequency allows a measurement of the rotational damping rate of the particle.

FIG. 6: Evolution of the rotational damping rate Γϕ as a function of the gas pressure. The dotted line represents the theoretical
damping rate on the rotational degrees of freedom.

In the case of an aggregate of N spheres, the rotational damping rate can be expressed via a correction slip factor
and the rotational damping rate of a single sphere as

Γϕ,Dumbbell = CnΓϕ,Sphere. (10)

From [19, figure 4], we extract the rotational drag torque in units of the rotational drag torque of the elementary
sphere for an aspect ratio L/D of a given particle using the fitted formula

Cn = 3.62− 6.97
L

D
+ 4.37

(
L

D

)2

. (11)

Figure 6 shows the measured damping rates for the rotation and the good agreement with the theoretical formulas
given by Eqs. (10) and (11) for an aspect ratio L/D = 1.8 and with radii of 65.7 nm.
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V. DYNAMICS OF THE DIMER ORIENTATION

A. Expression of the optical torque and equation of the rotational motion for an axisymmetric anisotropic
dielectric particle

The torque due to the field-dipole interaction is [1]

−→
M =

[
1

2
Re (p×Einj

∗)

]
+

[
k3

12πε0
Im (p× p∗)

]
, (12)

where we take into account both the extinction and scattering contribution to the total torque – respectively corre-
sponding to first and second term in brackets, Eq. (12).

In the particular case where the dimer is perpendicular to the beam axis, θ = π/2 , and
−→
M = Mez. The optical

torque is then given by

M = MC −ML sin(2ϕ), (13)

MC =
|E0(r)|2

2

[
α

′′

‖ + α
′′

⊥

2
− k3

6πε0

(
α

′′

‖α
′′

⊥ + α
′

‖α
′

⊥

)]
sin δ, (14)

ML =
|E0(r)|2

2

[
α

′

‖ − α
′

⊥

2
+

k3

6πε0

(
α

′′

‖α
′

⊥ − α
′

‖α
′′

⊥

)]
cos δ. (15)

In Eq. (13), the first term, MC , does not depend on the dimer orientation, and has a maximum value for circularly
polarized light. It describes the torque transfer via absorption and the finite-size effect of the scatterer. Note that
MC is strictly zero for a non-absorbing spherical Rayleigh particle, as extinction and scattering contributions cancel
out [1]. It is however sligthly non zero for, e.g., a non-absorbing nanodimer, or slightly ellipsoidal nanoparticle.

The second term, −ML sin(2ϕ), is of maximum amplitude for linearly polarized light, and is also related to the
geometric asymmetry of the dimer. Within the limit of small angles, it is reduced to a restoring torque, around the
equilibrium position defined by M(ϕeq) = 0.

While the scattering torque is generally negligible for lossy Rayleigh particles that have large α
′′
, it must absolutely

be taken into account here, as it induces a drop of roughly an order of magnitude for MC . This makes it possible to
obtain a numerical value of the rotation frequency at low pressure in agreement with the experiment (see figure 1(b)
in the main text).

We have computed numerically the complex polarizabilities α‖ and α⊥ for the dimer of the experiment, with a Finite
Element Method (FEM), Comsol Multiphysics. To tackle the convergence problems of FEM, we have first solved the
Maxwell equations for a dimer made of non-overlaping spheres, for which one can use a very acurate method, based
on the decomposition of electric fields on spherical harmonics. The results we obtained are in very good agreement
with FEM simulations, when we use improved meshes and boundary conditions for the FEM. We typically obtain a
1 % mismatch between both methods, on the electric dipole moment p ≡

∫
Dimer

ε0(εr − 1)EdV .
We then used this FEM for a dimer with the same size and aspect ratio as those measured, see Sec.(IV), made of
overlaping spheres. p has been computed, and the polarizabilities α⊥,‖ were infered from Eq. (3). Then, MC and ML

are computed from Eq. (14, 15).
Note that we allowed slight changes in the dimer geometry (departing not more than 5% from the measured values

of D and L/D), so as to obtain a value of MC that gives the best agreement with experimental results, (fig. 1(b) in
the main text). The torque MC is indeed evaluated as the difference of two terms that have a close value, see inside

the brackets of Eq. (14), and is therefore very sensitive to numerical inacuracies on α
′′

‖, ⊥.

Our approach, using Eq. (14), considerably improves the numerical evaluation of the frequency of rotation in the
regime of low pressures.

Finally, the equation of motion for the degree of freedom in rotation around the optical axis is described by a
Langevin equation

I⊥ϕ̈ = −ΓϕI⊥ϕ̇+M(ϕ) + ξ(t), (16)
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where M(ϕ) = MC −ML sin(2ϕ). I⊥ represents the inertia moment around the optical z axis, Γϕ is the rotational
damping and ξ(t) is a centered Gaussian noise, such as 〈ξ(t1)ξ(t2)〉 = 2ΓϕI⊥kBT δ(t2 − t1).
We used the Sivak algorithm [23] to compute the time traces.

FIG. 7: Calculated Power Spectral Densities for both quantities ϕ̇, panel (a) and r(t), panel (b), at the maximum of superdif-
fusion peak, under elliptical polarisation ( φλ/4 = 25◦). Relatively good agreement with experimental results (see panel (a)
and Fig. 4(a) of the main text) is obtained. The characteristic frequencies ΓT and Γϕ are shown by arrows on panel (b). The
inset, on panel (b) displays the fundamental and harmonics of the torque signal (the three low frequency peaks) as well as the
spin peak (the highest frequency bump).

B. Low-frequency behaviour of the PSD : a superdiffusion

The goal is to calculate the correlation function of the rotaional speed in the bistable regime, to then obtain the
power spectral density of the rotational speed and the effective diffusion coefficient of the rotation. We start with [2]:

S(t) =
〈

[ϕ̇(t)− 〈ϕ̇(t)〉] [ϕ̇(0)− 〈ϕ̇(0)〉]
〉

(17)

Consider first that ML = 0, i.e. the trapping beam is circularly polarized. Then, one observes from Eq. (16) that
ϕ(t)− MC

I⊥Γϕ
t is an Orstein-Ulhenbeck (O.U.) process. In such case, as ϕ̇ is simply shifted by a constant, we find the

relation known for the O.U. process:〈
[ϕ̇(t1)− 〈ϕ̇(t1)〉] [ϕ̇(t2)− 〈ϕ̇(t2)〉]

〉
=
kBT

I⊥
e−Γϕ|t2−t1| (18)

Using Eq. (5), we obtain

Sϕ̇,ϕ̇(ω) =
1

2

∫ ∞
−∞

S(t)eiωtdt =
kBT

I⊥

Γϕ
ω2 + Γ2

ϕ

(19)

Eq. (19) has been used to fit the experimental data of figure 5, obtained in the spin state.

At zero frequency, we obtain the diffusion coefficient for angular frequency in a spin state, which is identical to the
free space diffusion

Do =
kBT

ΓϕI⊥
. (20)

We now consider the general case for a washboard potential.
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Starting from the equation of motion, and integrating between 0 and t. One obtains

ϕ̇(t) = ϕ̇(0) e−Γϕt +

∫ t

0

1

I⊥
M[ϕ(u)] e−Γϕ(t−u)du +

∫ t

0

ξ(u)

I⊥
e−Γϕ(t−u)du. (21)

As ML 6= 0, extra time dependant contributions have to be considered to calculate S(t). For a given time t, we
consider all the times 0 < t1 < t2 < · · · < tN < t that correspond to a change of state (from spin to torque or from

torque to spin). Integrals of the following type will now contribute to
〈
ϕ̇(t)ϕ̇(0)

〉
:

〈
ϕ̇(0)

∫ ti+1

ti

1

I⊥
M [ϕ(u)] e−Γϕ(t−u)du

〉
, (22)

in which the state of ϕ(u) is purely torquing or purely spinning. For large times, ϕ(u) and ϕ̇(0) are uncorrelated,

and upon averaging, 〈M [ϕ(u)]〉 appears in the contribution to
〈
ϕ̇(t)ϕ̇(0)

〉
. But, when the particule torques,

〈M [ϕ(u)]〉 = 0. Finally, the torque states do not contribute to
〈
ϕ̇(t)ϕ̇(0)

〉
.

Let’s now consider only the intervals [ti..ti+1] where the particle continuously rotates. Their contribution to〈
ϕ̇(t)ϕ̇(0)

〉
, can be rewritten as

〈
ϕ̇(t)ϕ̇(0)

〉
=
∑
i

ISi =
∑
i

〈
ϕ̇(0)

〉〈∫ ti+1−ti

0

1

I⊥
M [ϕ(ti + v)] eΓϕve−Γϕ(t−ti)dv

〉
, (23)

where the random variable ti+1− ti has an exponential law of mean time τR, independantly of the starting time ti.
Taking the average on ti+1 − ti, one obtains

ISi
=
〈
ϕ̇(0)

〉∫ ∞
0

e−τ/τR

τR
dτ

∫ τ

0

1

I⊥

〈
M(ϕ(ti + v))

〉
eΓϕve−Γϕ(t−ti)dv (24)

Further computation based on the timescale separation between damping and rotation : 1/Γϕ and 1/ΩRot shows
that averaging on the possible values of ϕ(ti) cancels the modulated term in M :

〈
M(ϕ(ti + v))

〉
= MC

We notice that the spin contributions at the different ti will have the same value, except for the coefficient
exp(−Γϕ(t − ti)). Then, the only non-negligible contribution is the last one, between tN and t, when the dynamics
ends in spin state. If the particle would end in torque state, the contribution to time correlation function would not
be the one from the last state (between tN and t) but the former one, between tN−1 and tN , whose contribution
is weighted by an exp(−ΓϕτL) coefficient, and then negligible, in our problem where 1/Γϕ << τL. This point was
discussed in ref. [4], where no damping was considered, and can now be generalized to a washboard dynamics,
Eq. (16), due to the timescale separtation between 1/Γϕ and τL.

To go on, let us denote PN the probability to end in spin state, knowing one starts in spin state. Considering only
this main contribution : 〈

ϕ̇(t)ϕ̇(0)
〉

= PN

〈
ϕ̇(0)

〉〈∫ t−tN

0

MC

I⊥
eΓϕve−Γϕ(t−tN)dv

〉
. (25)

In the long time limit, t− tN has a uniform law between 0 and τR. We obtain immediately, as τR >> 1/Γϕ :〈
ϕ̇(t)ϕ̇(0)

〉
= PN

〈
ϕ̇(0)

〉 MC

ΓϕI⊥
. (26)

Therefore, the only non negligible contributions to
〈
ϕ̇(t)ϕ̇(0)

〉
occur when the particule starts in spin state and

ends in spin state.
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The probability to end in spin state, knowing that we start in spin state (so as to have
〈
ϕ̇(0)

〉
6= 0) is the probability

to make an even number of transitions. Borrowing from [4, Eq. (6)], it reads

PN =
1

τR + τL

[
τLe−t/T + τR

]
(27)

where 1/T = 1/τR + 1/τL, and considering that S(t) = S(−t), one obtains :〈
ϕ̇(t)ϕ̇(0)

〉
=

kbT

I⊥
e−Γϕ|t| +

MC

ΓϕI⊥

〈
ϕ̇(0)

〉 1

τR + τL

[
τLe−|t|/T + τR

]
(28)

By ergodicity : 〈
ϕ̇(0)

〉
=

τR
τR + τL

〈ϕ̇〉
R
,

where 〈ϕ̇〉R is the spinning frequency averaged only on spining events of the temporal trace, at the pressure
considered. This frequency can be measured experimentally. Besides, the coefficient MC

ΓϕI⊥
can be evaluated using the

mobility µ in the spining state [22] :

〈ϕ̇〉
R

= Γϕµ
MC

ΓϕI⊥

So that the PSD is :

Sϕ̇,ϕ̇(ω) = Do
1

1 +
(
ω

Γϕ

)2 +Deff
1

1 +
(
ω

ΓT

)2 (29)

with

Deff =
[
Γϕµ

] ( MC

ΓϕI⊥

)2 rR rL
(rR + rL)3

, (30)

where rR = 1/τR (resp. rL = 1/τL).

The formula Eq. (29) has been used to fit the experimental data in the main text.

Computing the values in the spining state (e.g. at 0.3 mbar), in Risken notation [22], we obtain

Θ/d ≡ 4kbT/(2ML) = 0.12

Fo/
√
d ≡ 2MC

I⊥Γϕ

√
I⊥

2ML
= 7.5

Thus, we notice from [22, Fig. (11.30)], that the mobility in the spin state part of the temporal trace is Γϕµ ∼ 1.

Consequently, with our experimental parameters, we recover the expression given by the “two-state” theory toy
model [2, 3]. The coefficient MC

ΓϕI⊥
is evaluated from the experimental data, as the slope of 〈ϕ̇〉

R
versus 1/Γϕ, in the

low pressure spin state.

At first sight, the fact that the washboard giant diffusion, on a particle that undergoes forcing, damping and non-
linear oscillations can be described by a toy model with 2 static states (and no dynamics) may seems surprising.
Starting from the equation of motion, we have shown that this is due to the strong time scale separation between
rotation (1/ΩRot), damping (1/Γϕ), and lifetime of the 2 states, τR, τL. It could be interesting, in further works, to
study the deviations to the 2-state model, when the timescale separation blurs out.

[1] M. Nieto-Vesperinas, Phys. Rev. A 92, 043843 (2015).



11

[2] Benjamin Lindner and Igor M. Sokolov, Phys. Rev. E 93, 042106 (2016)
[3] C. Van der Broeck, Physica A. 168, 677 (1990)
[4] S. Machlup, J. Appl. Phys. 25, 341 (1954).
[5] L. Novotny, B. Hecht, “Principles of Nano-optics”, 2nd edition, Cambridge (2012).
[6] E. Hebestreit, M. Frimmer, R. Reimann, C. Dellago, F. Ricci, L. Novotny, Rev. of Sci. Inst. 89, 033111 (2018).
[7] Y. Amarouchene, M. Mangeat, B. V. Montes, L. Ondic, T. Guérin, D. S. Dean, and Y. Louyer, Phys. Rev. Lett. 122,
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[12] H. Rudolph, J. Scäfer, B. A. Stickler, K. Hornberger, Phys. Rev. A. 103, 043514 (2021).
[13] S. Albaladejo, R. Gomez-Medina, L. S. Froufe-Perez, H. Marinchio, R. Carminati, J. F. Torrado, G. Armelles, A. Garcia

Martın, J. J. Saenz, Opt. Express 18 3556-3567 (2010).
[14] J. G. Kirkwood and J. Riseman, J. Chem. Phys. 16, 565 (1948).
[15] B. Carrasco and J. Garcıa de la Torre, J. Chem. Phys. 111, 4817 (1999).
[16] B. Dahneke, J. Aerosol Sci. 1, 179 (1982).
[17] R. Millikan, Phys. Rev. 21, 217 (1923).
[18] J. Gieseler, L. Novotny and R. Quidant, Nature Physics 9, 806 (2013); M. Yoneda and K. Aikawa, J. Phys. B: At.Mol.

Phys. 50, 245501 (2017).
[19] J. Ahn, Z. Xu, J. Bang, Y. H. Deng, T. M. Hoang, Q. Han, R. M. Ma, and T. Li, Phys. Rev. Lett. 121, 033603 (2018).
[20] J. Corson, G. W. Mulholland, and M. R. Zachariah, Phys. Rev. E 96, 013110 (2017)
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