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immediately following short rest periods

account for early motor skill learning. In

this study, Buch et al. report waking

hippocampo-neocortical replay during

these rest periods that is temporally

compressed by 20-fold relative to

behavior, selective for the trained skill,

and predicts the magnitude of rapid

consolidation of skill.
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SUMMARY
The introduction of rest intervals interspersed with practice strengthens wakeful consolidation of skill. The
mechanisms by which the brain binds discrete action representations into consolidated, highly temporally
resolved skill sequences during waking rest are not known. To address this question, we recorded magne-
toencephalography (MEG) during acquisition and rapid consolidation of a sequential motor skill. We report
the presence of prominent, fast waking neural replay during the same rest periods in which rapid consolida-
tion occurs. The observed replay is temporally compressed by approximately 20-fold relative to the acquired
skill, is selective for the trained sequence, and predicts themagnitude of skill consolidation. Replay represen-
tations extend beyond the hippocampus and entorhinal cortex to the contralateral sensorimotor cortex.
These results document the presence of robust hippocampo-neocortical replay supporting rapid wakeful
consolidation of skill.
INTRODUCTION

The popular idiom ‘‘practice makes perfect’’ emphasizes the

importance of intense practice in acquiring and perfecting skill

(Dayan andCohen, 2011). However, the sameamount of practice

results in significantly different skill depending on the presence or

absence of waking rest within the training schedule, a phenome-

non termed the spacing effect (Kornmeier and Sosic-Vasic,

2012). Consolidation of skill is superior when frequent rest pe-

riods are interspersed with practice blocks (distributed practice)

than when the same total amount of practice is performed over

longer continuous blocks (massed practice) (Cepeda et al.,

2006; Gerbier et al., 2015; Kornmeier and Sosic-Vasic, 2012;

Song et al., 2012; Toppino et al., 2009). Thus, the presence of

waking rest interleaved with practice is a crucial determinant of

skill memory consolidation.

Consistent with this notion, it has been proposed that ‘‘much,

if not all’’ skill learning occurs offline during rest rather than dur-

ing actual practice (Robertson, 2019). For example, perfor-

mance improvements while acquiring a new skill accumulate

almost exclusively during waking rest periods interleaved with

practice (Bönstrup et al., 2019). These micro-offline gains indi-

cate a rapid form of skill memory consolidation that develops

over a much shorter timescale than previously thought

(Bönstrup et al., 2019, 2020; Jacobacci et al., 2020), and that

is approximately 4-fold greater in magnitude than classically
This is an open access article under the CC BY-N
studied overnight consolidation requiring sleep (Bönstrup

et al., 2019).

Skill learning involves forming new memories through bind-

ing, a process that hierarchically links simple action elements

(e.g., a single piano key press) to construct representations of

complex spatiotemporal sequences (e.g., a refrain within a

classical piano concerto) (Karni, 1995; Karni et al., 1998;

Song and Cohen, 2014; Walker et al., 2003). How the brain

binds sequences of discrete action representations into

consolidated, temporally precise skills during waking rest is

not known (Gerbier et al., 2015; Jacobacci et al., 2020; Korn-

meier and Sosic-Vasic, 2012). One possible candidate mech-

anism is neural replay, the temporally compressed reactivation

of neural activity patterns representing behavioral sequences

during rest (Genzel et al., 2020). Previous work in rodents

has shown that hippocampal replay constructs representa-

tions of navigational maps through relational binding of

discrete spatial locations into trajectories (Carr et al., 2011).

Furthermore, hippocampal activity has been documented dur-

ing rest periods of early learning in humans (Albouy et al.,

2015; Jacobacci et al., 2020). Thus, it is possible that waking

replay, through offline recapitulation of prior practice (Carr

et al., 2011; Diba and Buzsáki, 2007; Foster and Wilson,

2006; Singer and Frank, 2009), promotes wakeful consolida-

tion of skill, an issue that has not been investigated in humans

or animal models (Carr et al., 2011; Ramanathan et al., 2015).
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Figure 1. Skill learning task and behavioral performance

(A) Keypress sequence motor skill task. Subjects acquired a novel motor skill over a single training session. They were instructed to repeatedly type a trained

sequence, 41324, with the left non-dominant hand as fast and as accurately as possible. Keypress 4 was performed with the left index finger, keypress 3 with the

left middle finger, keypress 2 with the left ring finger, and keypress 1 with the left little finger. Following task instructions, a 5-min MEG waking rest recording was

acquired prior to commencement of training (pre-training rest). Subjects then performed the task over 36 individual practice periods lasting 10 s each. Practice

periods were interleavedwith 10-swaking rest intervals (inter-practice rest). MEGwas acquired continuously during training (12min). A second, 5-minwaking rest

MEG recording was acquired after training concluded (post-training rest).

(B) Performance curve. Skill was measured as the correct sequence typing speed (sequences [seq]/s). Mean average performance (mean ± SEM) increased

rapidly during early learning (the set of trials within which 95% of total learning occurred, trials 1–11; vertical dashed line).

(C) Instantaneous correct sequence typing speed (group mean ± SEM shown) was used to quantify micro-online performance gains during practice (cyan) and

micro-offline gains during interleaved rest (magenta) for the early learning period.

(D) Micro-online (cyan), micro-offline (magenta), and total early learning (green) for each subject. Note that skill increases occur during intervening periods of

waking rest, and not during active practice. Thick horizontal lines and associated boxes indicate the group mean and 95% confidence interval, respectively.
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In this study, we posited a contribution of neural replay in

wakeful memory consolidation. We tested this by applying a

multivariate analytical approach to magnetoencephalography

(MEG) brain activity data acquired during skill learning to decode

spontaneous, waking replay during the periods of rest in which

sequences of simple discrete actions learned during inter-

spersed practice are bound into a consolidated skill.

RESULTS

Wakeful consolidation of skill was evaluated using a keypress

sequence task (Karni et al., 1995; Walker et al., 2003) that shows

rapid memory strengthening over a single session (Bönstrup

et al., 2019). Subjects were instructed to type the sequence
2 Cell Reports 35, 109193, June 8, 2021
41324 on a response pad as fast and accurately as possible dur-

ing each 10-s practice period. Thirty-six 10-s practice periods

(trials) were interleaved with 10-s rest periods (Figure 1). Skill

was measured as the correct sequence typing speed (se-

quences [seq]/s). Early learning, encompassing the set of trials

within which 95% of total learning occurred, was explained by

micro-offline, but notmicro-online, gains (Figure 1D). That is, skill

improvement occurred during waking rest, but not during active

practice (Figures 1C and D).

Fast replay of skill sequences is prominent during
waking rest interspersed with practice
Next, we examined parcellated, source-space MEG brain activ-

ity data for evidence of spontaneous replay of the trained



Figure 2. Replay detections

(A) Replay detection analysis pipeline. RawMEG data were pre-processed, source-localized, and parcellated into 216 brain regions using the Brainnetome Atlas

(Fan et al., 2016). Practice data segments centered on individual keypress events were used to train four one-versus-all radial basis support vector machine

keypress state decoders (i.e., one decoder per finger). We then used the trained keypress state decoders to interrogate resting-state MEG data (preceding

training, during rest periods interspersed with practice, and after the end of training) at each time point, T, for replay of keypress state sequences over a range of

durations (25–2,500 ms) corresponding to temporal compression ranges (0.4–403) previously reported (Davidson et al., 2009; Marchesotti et al., 2016; Pa-

paxanthis et al., 2002). Decoder performance evaluation (Figure S1) was used to threshold minimum detectable sequence replay probabilities. Permutation

testing against probabilities for all possible sequences (n = 1,024) at time point T was used to determine statistically significant detection of keypress sequence

replay events.

(B) Neural replay was detected during waking rest. The maximum forward trained sequence replay rate was observed for events of 50-ms duration. This was

consistentwith observed replay for the reverse trained sequence (FigureS2A). Shaded regions indicate the 95%confidence interval of the groupmean (thick lines).

(C) Waking replay rates (50-ms duration) for the forward trained sequence more than tripled during inter-practice rest (2.44 ± 0.29, mean ± SEM) relative to pre-

training rest (0.75 ± 0.21). Similar magnitude rate changes were also observed for the reverse trained sequence (Figure S2B). Replay rates then receded during

(legend continued on next page)
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Figure 3. Spatial features of detected replay

events

Principal-component analysis (PCA) was used to

characterize networks with covarying power

changes in parcellated MEG source-space during

group average replay events. Together, PC1 and

PC2 explain 86.6% of the total power-related

variance during replay. PC1, shown here, explains

67.8% of the total variance alone and is charac-

terized by a positively correlated sensorimotor-

entorhinal-hippocampal network. PC2 displays a

similar set of regions (Figure S4). Surfacemaps are

thresholded to display the highest loading parcels

(see STAR methods).
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sequence during waking rest (Figure 2). We used radial basis

support vector machine decoders to interrogate resting-state

MEGdata for individual replay events (see STARmethods for de-

tails). Practice data segments centered on individual keypress

events were used to train four one-versus-all keypress state de-

coders (i.e., one decoder per finger). We then applied these de-

coders to waking rest MEG data to detect replay events (Fig-

ure 2A) that occurred during pre-training, inter-practice, and

post-training rest periods. Since replay is known to be temporally

compressed to different degrees relative to behavior, we looked

for replay over a range of durations (25–2,500ms) corresponding

to different compression magnitudes (approximately 0.4–403)

relative to the acquired skill (the average correct sequence dura-

tion by the end of early learning was 1,037.7 ± 61.7 ms; mean ±

SEM; Figure 1B).

Neural replay of the full trained sequence was identified in all

waking rest periods examined. However, detection rates (i.e.,

the number of replay events detected per second) varied de-

pending on replay duration (i.e., compression magnitude; Fig-

ure 2B). Forward replay rates for the trained sequence (41324)

were most prominent for events lasting 50 ms and progressively

decreased for longer event durations (Figure 2B; see Figure S2A

for reverse replay of the trained sequence, 42314). Thus, the

modal neural replay representation of the skill was temporally

compressed approximately 20-fold relative to the actual

behavior. Figure 2C highlights the large difference in forward

replay rates across the different waking rest states (F2,58 =

15.26, p = 0.000018). Specifically, forward replay events during

inter-practice rest occurred approximately 3-fold more

frequently (2.44 ± 0.29 replays/s) relative to pre-training (0.75 ±
post-training rest (0.88 ± 0.21) to levels similar to pre-training. Thick horizontal line

respectively.

(D) Within individuals, waking replay of the trained sequence increased more prom

versus control: p = 0.0062, Bonferroni-corrected; reverse versus control: p = 0.009

a control sequence (33433; right). This control was selected on the basis that it w

ordinal position or transition structure with the forward (41324) and reverse (423

between these sequences (F2,53.94 = 2.431; p 0.098). Of note, this same trend was

sharing either a single common ordinal position or a single common transition w
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0.21 replays/s, p = 0.00528) or post-training rest (0.88 ± 0.21 re-

plays/s, p = 0.00089, Figure 2C), which were both comparable

(p = 0.2972). Reverse replay of the trained sequence exhibited

similar features (Figure S2B). Elevated replay rates were main-

tained across all individual inter-practice rest periods (Fig-

ure S3A). Within each of these rest periods, replay events were

likely to occur in clusters (Figures S3B and S3D) that were uni-

formly distributed across the entire 10 s (Figures S3B and

S3C). Finally, mean replay rates during early learning (initial 11 tri-

als) were significantly higher than during late learning (last 11 tri-

als; t29 = 2.66, p = 0.006, one-tailed).

We next asked whether the increase in replay rate induced by

practice was selective to the trained sequence. This question

was addressed by interrogating resting-state MEG data for

replay of an unpracticed sequence (control; 33433), which was

selected on the basis that it is the only unpracticed sequence

combination (out of 1,022 possible alternatives) that shares

no common ordinal position or transition structure with

forward and reverse replay of the practiced sequence. After

practice onset there was a greater increase for replay of

the trained sequence relative to this control (one-way

ANOVA[forward, reverse, and control]: F2,87 = 6.42; p = 0.002; forward

versus control: p = 0.0062; Bonferonni-corrected; Figures 2D

and S2C). Thus, wakeful replay is selective for, but not exclusive

to, the trained motor skill sequence.

Replay of the learned skill is represented within a
mediotemporal-sensorimotor network
We also examined the spatiotemporal features of replay event

dynamics. After averaging all 50-ms duration forward replay
s and associated boxes indicate the groupmean and 95% confidence interval,

inently (one-way ANOVA[forward, reverse, control]: F2,87 = 6.42; p = 0.002; forward

9, Bonferroni-corrected; see also Figure S2C) for the trained sequence than for

as the only one out of 1,022 possible alternate sequences sharing no common

14) trained sequence. Pre-training rest replay rates did not significantly differ

observed even after expanding these criteria to consider additional sequences

ith the practice sequence (Figure S2C).



Figure 4. Forward and reverse neural replay of the trained sequence predict rapid wakeful skill consolidation

The scatterplots depict inter-individual replay rates over all early learning inter-practice rest periods (abscissa) relative to cumulativemicro-offline gains (ordinate)

over the same time window (trials 1–11). Shaded regions indicated the 95% confidence interval.

(A) A significant correlation was observed for forward replay of the trained sequence (r = 0.451, p = 0.012). A similar finding was observed for reverse replay of the

trained sequence (r = 0.521, p = 0.003). Thus, higher rates of replay related to the trained sequence predicted greater micro-offline gains and rapid wakeful skill

consolidation in individuals.

(B) Conversely, replay during inter-practice rest of the control sequence (33433) did not display a significant correlation with rapid wakeful skill consolidation (r =

0.165, p = 0.38) during early learning.
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event epochs detected by the decoding pipeline during inter-

practice rest, we applied principal-component analysis (PCA)

to extract low-dimensional networks with co-varying source-

space power changes during fast replay. Two orthogonal

networks explained 86.6% of the total signal variance during

an average replay event. The first network (PC1 explaining

67.8% of total variance) featured sensorimotor, entorhinal,

and hippocampal regions (Figure 3). It also included the

precuneus, one of the main outputs of the hippocampus to

the neocortex (Buzsáki and Tingley, 2018; Margulies et al.,

2009), shown to be active in previous fMRI work during rest pe-

riods of early learning (Jacobacci et al., 2020). The second

network (PC2) included a similar set of regions except for the

precuneus (Figure S4). Thus, replay of the skill is represented

predominantly in sensorimotor, entorhinal, and hippocampal

regions.

Replay of the trained sequence correlates with rapid
skill consolidation
Finally, we askedwhetherwakeful consolidation in individual par-

ticipants could be predicted by the rate of replay events detected

for the trained sequence during inter-practice rest intervals. We

observed significant correlations (Figure 4) between cumulative

micro-offline gains over early learning and replay of the trained

sequence (Figure 4A; r = 0.451, p = 0.012). Alternatively, replay

of the control sequence (33433; see STAR methods) did not

correlate with behavior (Figure 4B; r = 0.165, p = 0.38). In

summary, greater replay rates related to the trained sequence

predicted greater rapid wakeful skill consolidation across

individuals.
DISCUSSION

In this study, we address the question of how the brain consoli-

dates memory during waking rest. Positing a role for neural

replay, we first document replay in medial temporal and senso-

rimotor brain regions during wakeful human memory consolida-

tion. We then demonstrate that replay is temporally compressed

by approximately 20-fold relative to the practiced behavior.

Finally, we show that forward and reverse waking replay rates in-

crease rapidly after the onset of practice, display selectivity for

the trained sequence, and predict consolidation of skill.

The presence of waking rest interspersed with practice influ-

ences successful learning. For example, skill memory is

enhanced when practice events are separated by rest rather

than massed in immediate succession, a phenomenon known

as the ‘‘spacing effect.’’ This observation, initially made by Eb-

bington in 1885 (Ebbinghaus, 2013), has been repeatedly docu-

mented across cognitive domains (Cepeda et al., 2006; Gerbier

et al., 2015; Kornmeier and Sosic-Vasic, 2012; Song et al., 2012;

Toppino et al., 2009). Waking rest also contributes to skill acqui-

sition. Early learning (a period where performance improves

exponentially) is largely accounted for by micro-offline gains

that occur between, rather than during, practice periods

(Bönstrup et al., 2019). Thus, a form of wakeful consolidation

of skill develops over much shorter timescales (i.e. seconds

and minutes) than previously thought (Bönstrup et al., 2020).

Importantly, this form of wakeful memory consolidation is

approximately 4-fold greater in magnitude than classically stud-

ied overnight consolidation, which requires sleep (Bönstrup

et al., 2019; Jacobacci et al., 2020) and is preserved even
Cell Reports 35, 109193, June 8, 2021 5
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when practice experience is reduced by half (Bönstrup et al.,

2020). In this study, we investigated how the brain binds, during

waking rest, sequences of discrete motor actions learned during

previous practice, leading to successful consolidation of skill (Liu

et al., 2019).

Waking replay, displaying robust temporal features, was de-

coded during the same rest periods in which rapid consolidation

occurs. Replay of full practiced sequences had amodal duration

of approximately 50 ms, representing a 20-fold temporal

compression of keypress sequence representations within

each replay event relative to the duration of the actual skill

behavior. This is consistent with the range of compressions pre-

viously reported in animal models as well as in humans (David-

son et al., 2009; Liu et al., 2019), and it is too fast to be explained

by mental rehearsal or motor imagery processes, which share a

veridical duration with executed behavior (in this case, 1,000 to

2,500 ms) (Marchesotti et al., 2016; Papaxanthis et al., 2002).

Immediately following the initiation of practice, replay rates dur-

ing interspersed rest periods increased more than 3-fold begin-

ning with the first one (Figure S3A). This finding is reminiscent of

the increase in waking replay rates in rodents upon introduction

into a novel maze environment (Carr et al., 2011; Fernández-

Ruiz et al., 2019).Wealso foundahigh likelihood for temporal clus-

tering, as more than half of all detected replay events were paired

with a second event within a window of <200 ms (Figure S3D).

Such replay clustering (Liu et al., 2019) has been linked tomemory

consolidation (Carr et al., 2011). Following practice, replay rates

receded to pre-training levels rather rapidly contrary to the slow

decrease reported in rodents (Karlsson and Frank, 2009), a differ-

ence that could be attributed to the explicit awareness of training

termination in humans (likely to be absent in rodents) or to the

presence of reward contingencies in rodent behavioral paradigms

(absent in this study) (Singer and Frank, 2009).

The increase in waking replay (Diba and Buzsáki, 2007) rates

for the trained sequence was larger than for the alternative un-

practiced sequences examined (Figures 2D and S2C). Replay

of sequences not yet experienced has been extensively reported

in the literature. First, studies of navigation memory in rodents

have repeatedly shown that hippocampal cell assemblies

generate plausible behavioral trajectories or sequences that

have not yet been explored (Dragoi and Tonegawa, 2011,

2013; Gupta et al., 2010). It is possible that such replay events

reflect more generalizable abstract knowledge structures (i.e.,

cognitive maps) important for flexible skill adaptation and trans-

fer (Behrens et al., 2018). The keypress sequence representa-

tions we also observed during pre-training rest after subjects

had received task instructions, but before they initiated practice

(Figures 1A and 2B), can be similarly explained. Evidence of

‘‘pre-play’’ in rodents indicates that these reactivation patterns

could be generated from intrinsic neural dynamics supporting

broad sequence representations that are subsequently tuned

through experience (Dragoi and Tonegawa, 2011; Farooq

et al., 2019). Alternatively, it is also possible that semantic knowl-

edge about the task requirements was enough to elicit replay of

keypress sequences in preparation of the impending training (Liu

et al., 2019).

Learning this skill requires binding individual discrete keypress

actions into a fast, precise spatiotemporal sequence (Wong and
6 Cell Reports 35, 109193, June 8, 2021
Krakauer, 2019). While neural representations of individual key-

presses—stereotypical, overlearned finger movements—are

highly invariant and maintained within the primary motor cortex

(Yokoi and Diedrichsen, 2019), keypress sequence skills are

spatially represented throughout a distributed frontoparietal

brain network that reorganizes with learning (Albouy et al.,

2015; Jacobacci et al., 2020; Wong and Krakauer, 2019; Yokoi

and Diedrichsen, 2019). Waking neural replay events character-

ized herein were encoded in regions that differed from those re-

ported for practice sequences (Yokoi and Diedrichsen, 2019) in

the proportion of hippocampal-entorhinal engagement. The

most parsimonious explanation for this difference is that during

the rest periods within which rapid consolidation occurred, syn-

chronization of hippocampus with engaged neocortical regions

potentiated the skill memory to a greater extent than during prac-

tice itself (Dudai, 2004; Squire and Zola-Morgan, 1991). For indi-

vidual replay events, which were detected on average between

20 and 30 times during each 10-s rest period, the hippocampus

and entorhinal cortex could engagememories encoding abstract

knowledge about the action structure of the skill sequence, while

the sensorimotor cortex may engage memories containing infor-

mation about the kinematics and dynamics of the elemental

finger movements. In this way, replay initiated by the hippocam-

pus could promote the binding of abstract knowledge about the

action structure of the skill with detailed sensory predictions

important for execution and evaluation of the skill (Alvarez and

Squire, 1994; Gonzalez Castro et al., 2011; Whittington et al.,

2020). This view is consistent with evidence of hippocampal

involvement during rest periods of early learning (Albouy et al.,

2015; Jacobacci et al., 2020). Taken together, our data indicate

that frequent, fast waking replay reinforces hippocampus and

neocortical associations learned during prior practice, a process

relevant for improving subsequent performance and wakeful

consolidation of skill. Still, while the correlation between replay

of the trained sequence and micro-offline learning is strongly

suggestive of a direct contribution to consolidation of skill

(Bönstrup et al., 2019), causality remains to be established in

either animals or humans (de Sousa et al., 2019; Eldar et al.,

2020).

We conclude that robust hippocampal and neocortical replay

predicts micro-offline learning and is a possible binding mecha-

nism supporting wakeful memory consolidation.

Limitations of the study
As with any classifier-based analysis, the ability to discriminate

between accurate detection of biological phenomena and mis-

labeling artifacts is an important challenge. While the threshold-

ing and significance testing procedures embedded within the

current replay detection pipeline aim to mitigate this issue (i.e.,

false-positive sequence replay detections), it cannot be entirely

eliminated. One limitation of our approach is that it jointly con-

siders the independent classification of keypress states at

each ordinal position in the sequence. Thus, sequences with

shared ordinal structure are more likely to be confused. For

example, since forward and reverse replay of the practiced

sequence share the same keypress states at the first, third,

and fifth ordinal positions, mislabeling of the other two positions

could conceivably result in incorrect detection of replay
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direction. The average likelihood of this type of misclassification

can be estimated by calculating the product of the respective

average ordinal probabilities for 41324 (true positive detection

of forward replay) and 42314 (false positive detection of reverse

replay) during practice or rest (Figures S1B–S1F) and comparing

them. Based on these comparisons, we estimate that approxi-

mately 1 in between 6 and 11 detected forward replay events

for the practiced sequence could have the direction incorrectly

classified (i.e., labeled as reverse). Further investigation could

help refine this approach for detecting replay in MEG data.
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Buzsáki, G., and Tingley, D. (2018). Space and time: The hippocampus as a

sequence generator. Trends Cogn. Sci. 22, 853–869.

Carr, M.F., Jadhav, S.P., and Frank, L.M. (2011). Hippocampal replay in the

awake state: A potential substrate for memory consolidation and retrieval.

Nat. Neurosci. 14, 147–153.

Censor, N., Dayan, E., and Cohen, L.G. (2014a). Cortico-subcortical neuronal

circuitry associated with reconsolidation of human procedural memories. Cor-

tex 58, 281–288.

Censor, N., Horovitz, S.G., and Cohen, L.G. (2014b). Interference with existing

memories alters offline intrinsic functional brain connectivity. Neuron 81,

69–76.

Cepeda, N.J., Pashler, H., Vul, E., Wixted, J.T., and Rohrer, D. (2006). Distrib-

uted practice in verbal recall tasks: A review and quantitative synthesis. Psy-

chol. Bull. 132, 354–380.

Davidson, T.J., Kloosterman, F., and Wilson, M.A. (2009). Hippocampal replay

of extended experience. Neuron 63, 497–507.

Dayan, E., and Cohen, L.G. (2011). Neuroplasticity subserving motor skill

learning. Neuron 72, 443–454.

de Sousa, A.F., Cowansage, K.K., Zutshi, I., Cardozo, L.M., Yoo, E.J., Leut-

geb, S., and Mayford, M. (2019). Optogenetic reactivation of memory ensem-

bles in the retrosplenial cortex induces systems consolidation. Proc. Natl.

Acad. Sci. USA 116, 8576–8581.
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Tingley, D., and Buzsáki, G. (2019). Long-duration hippocampal sharp wave

ripples improve memory. Science 364, 1082–1086.

Fischl, B. (2012). FreeSurfer. Neuroimage 62, 774–781.

Foster, D.J., and Wilson, M.A. (2006). Reverse replay of behavioural se-

quences in hippocampal place cells during the awake state. Nature 440,

680–683.

Genzel, L., Dragoi, G., Frank, L., Ganguly, K., de la Prida, L., Pfeiffer, B., and

Robertson, E. (2020). A consensus statement: defining terms for reactivation

analysis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20200001.

Gerbier, E., Toppino, T.C., and Koenig, O. (2015). Optimising retention through

multiple study opportunities over days: The benefit of an expanding schedule

of repetitions. Memory 23, 943–954.

Gonzalez Castro, L.N., Monsen, C.B., and Smith, M.A. (2011). The binding of

learning to action in motor adaptation. PLoS Comput. Biol. 7, e1002052.

Gramfort, A., Luessi, M., Larson, E., Engemann, D.A., Strohmeier, D., Brod-

beck, C., Goj, R., Jas, M., Brooks, T., Parkkonen, L., and Hämäläinen, M.
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GE Discovery MR750 3T scanner system GE Healthcare. Chicago, IL, USA https://www.gehealthcare.com/products/

magnetic-resonance-imaging/3-0t/

discovery-mr750

Siemens Skyra Siemens Healthineers. Erlangen, Germany https://www.siemens-healthineers.com/

magnetic-resonance-imaging/

3t-mri-scanner/magnetom-skyra

NIH HPC Biowulf Cluster NIH, Bethesda, MD, USA https://hpc.nih.gov/
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Ethan R Buch (ethan.

buch@nih.gov).

Materials availability
This study did not generate new materials.

Data and code availability
Data (subject to participant consent) used to generate the findings of this study will bemade freely available upon request to the Lead

Contact, Ethan R Buch (ethan.buch@nih.gov). Custom code generated during this study are available at https://github.com/

hcps-ninds/Replay.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Participants
Thirty-three naive right-handed healthy participants (16women,mean ±SEMage 26.6± 0.87) with a normal neurological examination

gave their written informed consent to participate in the project, which was approved by the Combined Neuroscience Institutional

Review Board of the National Institutes of Health (NIH). Active musicians were excluded from the study (Abraham et al., 2014).

The sample size was determined a priori via a power analysis of prior skill learning data collected in our research group using the

same task (Censor et al., 2014a, 2014b). Two participants were excluded before the start of analysis because of technical problems

with the MEG scanner during the recording sessions. One additional participant was excluded due to large movement artifacts in the

MRI scan required for source modeling.
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METHOD DETAILS

Behavior
Task

Participants performed a novel explicit motor skill sequence task where they repetitively typed a 5-item numerical sequence dis-

played on a computer screen (41324) as quickly and as accurately as possible. Keypresses were performed with the partici-

pant’s non-dominant, left hand and applied to a response pad (Cedrus LS-LINE, Cedrus Corp). Keypress 1 was performed

with the little finger, keypress 2 with the ring finger, keypress 3 with the middle finger and keypress 4 with the index finger.

The thumb was not used to respond. Individual keypress times and identities were recorded for behavioral data analysis. Par-

ticipants practiced the task for thirty-six (36), 10 s duration trials. 10 s rest periods were interleaved between trials. During prac-

tice, participants were instructed to fixate on the five-item sequence displayed for the full duration of the trial. Small asterisks

appeared above a sequence item when a keypress was recorded, providing feedback to the participant about their current loca-

tion within the sequence. After completion of a full iteration of the sequence, the asterisks were removed. The asterisk display

did not provide error feedback since they appeared for both correct and incorrect keypresses. During the 10 s interleaved rest

periods, the sequence was replaced with a string of five ‘‘X’’ symbols, which participants were instructed to fixate on. Visual

stimuli and task instructions were presented, and keypress responses recorded using a custom script running in E-Prime 2 (Psy-

chology Software Tools, Inc.).

Magnetic resonance imaging (MRI)
MRI acquisition

Structural MRI scanning was performed on a 3T MRI scanner (GE Excite HDxt and Siemens Skyra) with a standard 32-channel head

coil. T1-weighted high-resolution (1mm3 isotropic MPRAGE sequence) anatomical images were acquired for each participant.

Magnetoencephalography (MEG)
MEG acquisition

Continuous MEG was recorded at a sampling frequency of 600Hz with a CTF 275 MEG system (CTF Systems, Inc., Canada) while

participants were seated in an upright position. The system is composed of a whole head array of 275 radial 1st-order gradiometer/

SQUID channels housed in a magnetically shielded room (Vacuumschmelze, Germany). Two of the gradiometers were malfunction-

ing and were not used. A third channel was removed (MLT16-1609) after visual inspection of the data indicated the presence of high

noise levels for all recordings, resulting in 272 total channels ofMEGdata. Synthetic 3rd order gradient balancing was used to remove

background noise online. A TTL trigger sent from the task computer to the MEG data acquisition computer was used to temporally

align the behavioral and MEG data. Head position indicator (HPI) points were monitored in the scanner coordinate space using head

localization coils (HLCs) placed on the nasion, left, and right pre-auricular locations of the participant’s head. These coil positions

were also recorded in the subject’s T1-MRI coordinate space during the session using a stereotactic neuronavigation system (Brain-

Sight, Rogue Research Inc.).

QUANTIFICATION AND STATISTICAL ANALYSIS

Behavior
Skill measure calculation

Instantaneous correct sequence speed (skill measure) was quantified as the inverse of time (in seconds) required to complete a single

iteration of a correctly generated full 5-item sequence. Individual keypress responseswere labeled asmembers of correct sequences

if they occurred within a 5-item response pattern matching any possible circular shifts of the 5-item sequence displayed on the

monitor (41324). This approach allowed us to quantify a measure of skill within each practice trial at the resolution of individual key-

presses and identify all possible types of keypress response errors (i.e., – omission, replication, or substitution). Performance within

each trial was summarized as the median instantaneous correct sequence speed over the full trial.

Determination of the early learning trial cutoff

Here, early learning corresponds to the set of trials between trial 1 and a cutoff trial, T, onwhich 95%of the performance gains are first

achieved at the group level. We determined T as follows. First, we fit the trial-by-trial group average correct sequence speed data with

an exponential model of the form:

LðtÞ = C1 +C2$
�
1� e�lt

�
; (1)

where L(t) represents the group average learning state on practice trial, t,C1 andC2 control the pre-training performance and asymp-

tote (i.e., – extent of learning), and l controls the learning rate. Parameters C1 (boundary constraints = [0,5]), C2 ([0,15]) and l ([0,2])

were estimated using a constrained nonlinear least-squares method (MATLAB’s lsqcurvefit, trust-region-reflective algorithm). Next,

we accumulated L(t) (Equation 1) over all t and divided each trial’s cumulative sum by the area under the curve to obtain a trial-by-trial

cumulative percentage of learning. Finally, we set T to the first trial where 95%of the learning had been achieved (T = 11 in this study).
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Calculation of micro-online and micro-offline gains during early learning

We then assessed early learning changes at the individual trial level by quantifying performance improvements occurring during in-

dividual practice and rest periods.Micro-online learning was defined as the difference in instantaneous correct sequence speed be-

tween the beginning and end of a practice trial. Micro-offline learning was defined as the absolute difference in correct sequence

speed between the end of a practice period and the beginning of the subsequent practice period. Cumulative micro-online and mi-

cro-offline learning scores measured over the first 11 trials for each participant were used to assess their respective contribution to

total early learning (i.e., - change in performance between Trial 1 and Trial 11) (Bönstrup et al., 2019).

Magnetoencephalography (MEG)
MEG data preparation and pre-processing

Each participant’s MEG data were organized into the following samples: pre-training rest (single segment of 5min), inter-trial practice

rest (36 segments of 10 s), practice (36 segments of 10 s) and post-training rest (single segment of 5 min). All MEG samples were

band-pass filtered between 1-100Hz, notch-filtered at 60Hz and subjected to Independent Component Analysis (ICA). ICA was fit

usingMNEPython’s (Gramfort et al., 2013) implementation of FastICA (Fan et al., 2016) after pre-whitening with Principal Component

Analysis (set to retain the top 15 components). Spatial topographies and time series of all components were visually inspected and

those determined to be strongly associated with known electrocardiogram, eye movement and blinks, and head movement artifacts

were removed from the MEG sample.

MEG source reconstruction and parcellation

Source reconstruction of the MEG data was performed using the standard pipeline in MNE Python (Gramfort et al., 2014). A single

forward solution and inverse solution was calculated for eachMEG sample. A boundary element model (BEM) required for generation

of the forward solution was constructed for individual subjects from inner-skull and pial layer surfaces obtained by segmentation of

the subject’s T1-MRI volume in FreeSurfer (Fischl, 2012). Hippocampal surface labels were obtained by parcellating the participant’s

MRI according to the coordinates in the Brainnetome atlas (Fan et al., 2016) (https://atlas.brainnetome.org/). Neocortical and hippo-

campal source spaces were obtained by sampling the corresponding surfaces on a recursive octahedral grid with 4.9mm between

dipoles, and spatially aligned to theMEG sensor data with the co-registration data obtained fromBrainSight. The BEMwas then used

to generate the forward solution at each source dipole location. The Linearly Constrained Minimum-Variance (LCMV) beamformer

operator was used to compute the inverse solution from the recordedMEG sensor space data. The entire duration of eachMEG sam-

ple was used to calculate the inverse solution data covariance matrix. All inverse solutions used the same sample noise covariance

matrix, which was calculated over the first 20 s of the pre-training rest MEG sample for individual subjects.

MNI-space transformations obtained from the FreeSurfer segmentation pipeline were then used to spatially register the resulting

source reconstruction time series to the Brainnetome atlas, enabling quantitative estimation of millisecond-resolved brain activity for

212 neocortical and 4 hippocampal parcels (i.e., – 216 total parcels). Parcel activity was estimated by averaging the time series of all

source dipoles falling within a given parcel boundary. A process called mean-flipping was used to prevent within-parcel source

cancellation when averaging. That is, the sign was flipped for all sources with a sign that differed from that of the average source.

Since the sensor space data had been bandpass filtered with a cut-off frequency of 100Hz, the source data were downsampled

from 600Hz to 200Hz to increase computation speed in subsequent processing steps. All remaining analyses were performed

directly on the parcellated source-space MEG time series.

Training and evaluation of keypress decoders

Individualized keypress decoders were trained for each participant using Python’s Scikit-learn library (Pedregosa et al., 2011). The

training data of a subject’s decoder was assembled as follows.We time-averaged the parcellated source for each correct keypress in

all 36 practice MEG samples between t ±Dtms, where t is the keypress timestamp andDt is treated as a cross-validated hyperpara-

meter described in detail below. The timestamp for each keypress was obtained from behavioral data files output by E-prime. This

produced the predictor matrixX[keypresses x parcels] and the target array y[keypresses x 1] where keypresses varied between subjects (some

typed more sequences than others) and parcels = 216 as earlier described.

We used X and y to train four one-versus-all Radial-basis Support Vector Machines (Python Scikit-learn’s SVC) with a pipeline

parameterized with a feature centering/scaling policy, a time window for averaging the MEG source around a keypress (Dt), a reg-

ularization term (C) and a kernel coefficient (g). We solved for these (hyper)parameters by running 5-fold cross-validated grid-search

hyperparameter optimization three times, one for each of the following optimality criteria:

F1=AveragekeysðF1ðkeyÞÞ where F1ðkeyÞ= 2$
PrecisionðkeyÞ$RecallðkeyÞ
PrecisionðkeyÞ+RecallðkeyÞ;

BAðBalanced AccuracyÞ=
X

key = 1;2;3;4

AccuracyðkeyÞ;

WBAðWeighted Balance AccuracyÞ=
X

key =1;2;3;4

WeightðkeyÞ$AccuracyðkeyÞ;

where Weight(key) = [2/7, 2/7, 2/7, 1/7] for keys 1, 2, 3 and 4, respectively, and Accuracy(key) = percentage correct classification of

key. For the second and third optimality criteria, classification was done by picking the key that maximized the probability estimated
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by the SVCs, rather than using the decision function. The search grid used was:C = [0.1, 0.5, 1, 10, 50, 100, 1000], gamma = [0.05, 1/

(2 x keypresses), 0.1, 0.5, 1], center policy = [True (will removemedian), False (will not removemedian)], standardization policy = [True

(will divide by inter-quartile range (IQR)), False (will not divide by IQR)] and Dt = [5, 10, 25] – that is a total of 420 configurations. SVCs

were trained with a target error of 10�3 or less.

Three cross-validated grid searches were run for each participant, one for each of the three criteria: F1, BA and WBA. Grid search

under a particular criterion worked as follows. First, the training set was divided into 5 mutually exclusive stratified partitions so that

the proportions of all keypresses were preserved as in the original data (since the training sequence was 41324, each folder would

have approximately twice asmany keys = 4). Next, we used the random oversampler in Python’s Imbalanced-learn toolbox (Lemaitre

et al., 2017) (with a ‘‘not majority’’ sampling policy) to independently oversamples keypresses 1, 2 and 3 within each training partition.

Note that test partitions were never oversampled, and training partitions did not share common oversampled patterns as this would

lead to double-dipping and ultimately overfitting. Finally, we performed the same 5-fold cross-validation procedure on each of the

420 configurations in the grid. Each configuration produced 5 estimates, resulting in a total of 2100 estimates. We then selected

the decoder configuration with the best cross-validated performance (data in test partitions only, and performance under the consid-

ered optimality criterion) for each individual participant. To evaluate the decoder’s performance, we created a null performance set by

permuting the test labels (i.e., –identities of all keypresses) 1000 times and calculating the decoder’s performance after each permu-

tation, leading to a p value = (correct classifications + 1) / (1000 + 1). We also calculated the decoder’s cross-validated confusion

matrix, that is, the confusion matrix calculated over the data in the cross-validated test partitions. This confusion matrix played an

important role in our replay detection pipeline as described later.

Estimation of decoder performance on practice sequence detection

The goal of the present step was to select the best decoder for a participant based on their estimated performance on full practiced

sequences. Recall that keypress decoder training resulted in three decoder options for each participant (i.e., - F1, BA andWBA) with

associated cross-validated performances, p values and cross-validated confusionmatrices. We used the following process to select

the optimal decoder for each participant. First, we discarded any decoder with a p value > = 0.05. This step resulted in at least one

viable decoder for all participants. Next, we reshaped each participants’ predictor matrix Xpractice
[keypresses x parcels] back into the

correctly typed sequences they originated from, resulting in an associated array Xpractice
[5 x parcels x N] for each subject, where N is

the number of correctly typed sequences of 4-1-3-2-4.

We then evaluated the ability of the decoders to correctly identify each typed practice sequence from j = 1.N using the following

procedure:

1. Scored the probability, pseq½j�, of Xpractice
[:, :, j] being identified as sequence 4-1-3-2-4 as the product of the probabilities of each

of the sequence’s constituent keys, pkeyð $Þ, in the correct order. Probabilities pkeyð $Þ were obtained from the keypress SVC

decoders for each subject.

2. Repeated Step 1 for all other possible sequences (i.e., – all other 1023 5-digit combinations of 1,2,3 and 4). Combined, these

sequences form the set of null probabilities, U.

3. From U, we calculated the p value for detection of the j-th practiced sequences as p-value = 1� percentileU pseq j½ �� �
=100

and counted a detection of typed sequence j if the p value < 0.05.

Finally, we obtained the sequence detection rate of a decoder by dividing the number of detections by the total number of practiced

sequences, N. We then selected the decoder option with the top detection rate for sequences observed in the practice data. Fig-

ure S1B shows the distribution of top detection rates across participants. Figure S1C shows keypress probabilities first averaged

at each ordinal position of detected practice sequences and then averaged over subjects. Note that the expected key at each po-

sition is always the keypress with the top detection probability. All participants had at least one decoder with a non-zero detection

rate. The selected decoder was the one used to interrogate waking rest MEG data samples for replay events.

Sequence replay detection and replay rate calculation

Given a rest period MEG sample, Xrest
[T x parcels], of T time-points x parcels recorded from a given subject, we estimated the prob-

ability that a given sequence, seq = ABCDE, was replayed at a time 0% t < Twithin that sample to be the product of the probabilities

of each of the sequence’s constituent keys A, B, C, D and E ˛ [1, 2, 3, 4] being observed both in the right order and ending at time t,

that is:

pseq =ABCDE t½ �=pkey =A Xresampled t � 4; :½ �� �
$pkey =B Xresampled t � 3; :½ �� �

/pkey =E Xresampled t; :½ �� �
; (2)

Where Xresampled = resample Xrest t � 5$tscl + 1 : t; :½ �� �
is an MEG sample segment extracted from t � 5$tscl + 1 to t at all 216 parcels

and compressed down to 5 time-points. Probabilities of different replay durations were obtained by varying the timescale compres-

sion factor, tscl, where tscl˛ ½1;.;10; 15;20;30; 40;80;100�.
For example, since our time resolution is 5ms, we set tscl = 1 to look for 25ms replay durations, tscl = 2 for 50ms replay durations,

and up to as high as tscl = 100 for 2500ms durations. In terms of implementation, we obtained Xresampled using Python’s scipy resam-

ple with default arguments and num = 5. Again, probabilities pkeyð $Þ were obtained from the keypress SVC decoders selected for

each subject. Scikit-learn implements a multiclass version of Platt’s scaling technique to obtain probability distributions from clas-

sifications over more than two classes (Wu et al., 2004).
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We only assessed replay likelihood at time-points where pseq=ABCDE ½t� exceeded a threshold, qseq, set to the product of the

maximum off-diagonal detection rates (i.e., false positive rates) of the keypress decoder’s cross-validated confusion matrix. For

each time-point, t, such that pseq=ABCDE ½t� > qseq, we then tested the associated statistical significance as to ‘‘how rare’’

pseq=ABCDE ½t� would be under the null distribution of probabilities for all other 1,023 possible decodable sequences (i.e., – the U

set) resulting in a p� value = 1� percentileUðpseq½t�Þ/100. All p values were FDR-corrected (Benjamin-Hochberg) to account for mul-

tiple comparisons using an a = 0.05 with the number of tests set to the size of U. By pre-selecting which time-points to test, we miti-

gated underpowering effects of correcting formultiples comparisons. Note that the selection threshold qseq was fully determined from

practice data (cross-validated confusion matrices) and never from test data on which statistical testing was carried out, therefore

eliminating the possibility of circular analysis or double-dipping. Statistically significant replay detections were marked for all p

values[t] < 0.05. Since it was possible that overlapping Xresampled[t] could result in multiple detections of the same putative replay

event, each set of multiple detections occurring (within the same tested replay duration) was replaced with a single detection at

the median time instant of the set. Finally, we scored the replay rate of seq during the given rest period MEG sample as the number

of detections per the sample’s duration in seconds:

replayseq = counts
�
pseq t½ �<a

�
$fs

�
T ; t˛U (3)

where countsð $Þ is the number of detections of seq along the timeline of the MEG sample, and fs is the sampling rate of the MEG

sample (i.e., – fs/T is the inverse of the duration of the sample in seconds).

Replay network characterization

While use of a nonlinear kernel optimized the performance of the keypress state decoders, it precludes direct assessment of the

spatial representations of these states (and sequence dynamics) from the decoder weights. However, since the output of the replay

detection pipeline specifies the time-point at which individual replay events are initiated and what their duration is, it is possible to

gain insight into replay network dynamics by interrogating these event epochs. After averaging all 50ms forward replay (i.e., –

41324) event epochs, we performed principal component analysis (PCA) to extract low-dimensional networks displaying strong

covariation in source power during replay. We mapped the membership coefficients for cortical regions onto the FreeSurfer average

brain, and the four hippocampal subregions onto a separate surface representation. The thresholded maps display the top 10% of

PC loading coefficient magnitudes (i.e., – absolute value of signed coefficients).

Correlation of replay rates with behavior

We performed Pearson correlation analyses of the average forward and reverse trained sequence replay rates detected during the

first eleven 10 s waking rest periods with cumulative micro-offline learning over the same period. We also performed a control anal-

ysis by the assessing the correlation between replay of a single alternative sequence (33433) with cumulative micro-offline learning

over trials 1-11. This is the only alternative sequence (1 out of 1022) which does not share any common ordinal position or transition

structure with the forward and reverse of the trained sequence.
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