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Abstract  22 

Adsorption modeling via statistical physicstheoryallows to understand the adsorption 23 

mechanism of heavy metal ions.Therefore, this paper reports the analysis of the mechanism of 24 

copperion (Cu2+) adsorption on four activated carbons using statistical physics models. These 25 



models contain parameters that were utilized to provide new insights into the possible 26 

adsorption mechanism at the molecular scale. In particular, a monolayer adsorption model was 27 

the best alternative to correlate the Cu2+adsorption dataat 25 – 55 °C and pH 5.5. Furthermore, 28 

the application of this model for copper adsorption data analysisshowed that the removal of this 29 

heavy metal ion was a multi-cationic process. This theoretical finding indicated that Cu2+ ions 30 

interacted via one functional group of activated carbon surface during adsorption. In this 31 

direction, the adsorption energy was calculated thus showing that Cu2+removalwas endothermic 32 

and associated with physical interaction forces.Furthermore, theseactivated carbons showed 33 

saturationadsorption capacities from 54.6 to 87.0 mg/g for Cu2+ removal, and their 34 

performances outperformedother adsorbents available in the literature. Overall, these results 35 

providenewinsights of the adsorption mechanism of this water pollutantusing activated carbons.  36 

 37 
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 39 

1. Introduction  40 

 41 

Copper is a transition metal, electrically and thermally conductive, but it is also consideredas 42 

an environmental pollutant(Kayalvizhi et al. 2022). Natural disasters (e.g., volcanicphenomena) 43 

and anthropogenic activities (e.g., metal industries, tanning factories, and automobile 44 

industries) contribute to the pollution caused by copper.This metal is toxic even at relatively 45 

low concentrations, and, consequently, the highest permissible concentration level of copper 46 

ions(Cu2+) in marine waterhas been established as4.8 μg/L. In comparison, the maximum Cu2+ 47 

concentration for drinking water is 1300 μg/L,as reported by the WHO and EPA(Katiyar et al. 48 

2021; Kayalvizhi et al. 2022). Chronic exposure to this metal can affect vital organs such as the 49 



intestines, stomach, and liver. It can also generate diverse symptoms such as liver disease, 50 

gallbladder, and metabolic disturbances(Dou et al. 2019; Sun et al. 2022). 51 

Consequently, the drinking water resources and effluents polluted with Cu2+ must be 52 

treated to reduce their concentration thus avoiding environmental impacts and to protect human 53 

health. Various procedures have been reported to remove Cu2+ ions from liquid phase. They 54 

includeion exchange, precipitation, electrolysis, reverse osmosis, flocculation, biochemical 55 

methods, and membrane-based filtration (Godiya et al. 2019; Nyström et al. 2020; Anbazhagan 56 

et al. 2021; Lemes and Tarley 2021). However, these removal methods have disadvantages such 57 

as unfavorable cost-effectiveness tradeoffsor the generation of toxic sediments and wastes(e.g., 58 

sludge)(Rukayat et al. 2021). In contrast, the adsorption process is a competitive technique 59 

compared to other methods due to its ease of handling, low cost, and removal efficacy even at 60 

low concentrations of heavy metal ions (Vocciante et al. 2014; Pan et al. 2019; Khan et al. 61 

2021).Activated carbon is the most employed adsorbent in this processbecause it effectively 62 

removesinorganic and organic pollutants from wastewaters and industrial effluents.This 63 

adsorbent outperforms other materials reported for water treatment in terms of itsproduction 64 

cost and the availability of a wide spectrum of preparation routes that is already exploited and 65 

commercialized at large industrial scale. The adsorption performance of activated carbon is 66 

governed by its pore structure and surface chemistry. The modification of activated carbon is 67 

aimed to optimize these properties (Bell et al. 2011), and this adsorbent can be obtained from 68 

different feedstock and preparation conditions, thus affecting its adsorption properties.Surface 69 

functionalization of activated carbons can be performed with several chemicals to tailor their 70 

performance for the removal of target pollutants.  71 

Under this context, citric wastes can be an option to produce activated carbons since 72 

they are generated in large amounts by industries of juices and jams. During the production 73 

process of juices and jams, around 50-60% of the entire citric fruit is discarded. These wastes 74 



cannot be released into the environment since they generate CH4. On the other hand, they are 75 

rich in lignin, cellulose, hemicellulose, and pectin, thus being an attractive feedstock for 76 

pyrolysis and their conversion into activated carbon (Lam et al. 2016, 2018). 77 

The modeling of adsorption data of heavy metals and other water pollutants is important 78 

for water treatment design. Therefore, it is possible to apply classical models (e.g., Langmuir) 79 

to theoretically study the adsorption data. Unfortunately, this and other tradditional modelsare 80 

not useful to understand the adsorption mechanims due to the limitations in their hypotheses. 81 

For instance, Langmuir modelconsiders that each functional group can accept one ion for all 82 

adsorption systems. This assumption is an obstacle to provide proper interpretations of more 83 

complex adsorption mechanisms. The application of reliable models to analyze and explain the 84 

adsorption of heavy metal ions on activated carbon surfaces is paramount to develop effective 85 

and low-cost water treatment methods. 86 

In this research,two homogeneous and heterogeneous models based on statistical 87 

physics theory were implemented to explain the adsorption mechanism of Cu2+on a set of 88 

activated carbons obtained from different citric wastes namelyorange (OP), tangerine (MP), 89 

lemon (RLP) and lime (SLP). These models allowed to analyze the adsorption mechanismat 90 

the microscopic scale. New insightson steric and energetic parameters that governed the 91 

removal of this relevant water pollutant were developed for all tested activated carbons.  92 

 93 

2. Description of experimental isotherms and statistical physics models  94 

 95 

2.1. Preparation of AC and quantification of Cu2+ adsorption isotherms  96 

 97 

Cu2+ adsorption isotherms were quantified with four activated carbons prepared from citrus 98 

waste(Dotto et al. 2011; Perondi et al. 2017).For the adsorbent preparation, 100 g of each citrus 99 



waste werelocated in a stainless reactor of 127 x 8.5 cm. The reactor was heated at 5 ºC/min 100 

until 900 °C and remained at this temperature for 15 min. Then, the system was cooled until 101 

ambient temperature. All these steps were performed with N2 flowof 0.2 L/min. Subsequently, 102 

the N2 flow was replaced by CO2 flow (2 kg/h for 15 min). Finally, the adsorbent samples were 103 

removed from the reactor, washed and used in adsorption experiments. These adsorbents were 104 

labelled as AC CO2-orange-OP, AC CO2-tangerine-OP,AC CO2-lemon-RLP and AC CO2-105 

Lime-SLP. 106 
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Figure 1: Experimental isotherms of the adsorption of Cu2+ions on different activated carbons 109 

at 25-55 °C and pH 5.5. 110 

 111 

Typical batch equilibrium experiments were performed to obtain the Cu2+ adsorption 112 

isotherms. Aqueous solutions (50 mL) with different initial Cu2+ concentrations up to 150 mg/L 113 

were prepared from copper sulfate and the solution pH was adjusted to 5.5. Next, these solutions 114 

were placed in Erlenmeyer flaskslocated in a thermostated shaker. Adsorption isotherms were 115 

quantified at 25, 35, 45 and55 °C using an activated carbon dosage of 0.5 g/L under constant 116 

stirring of 200 rpm for 5 h. The solid-liquid separation was performed by centrifugation and 117 

Cu2+ concentration in the liquid was quantified by flame atomic absorption 118 

spectroscopy.Then,the equilibrium adsorption capacities were calculated via a mass balance for 119 

a stirred tank using the initial and final Cu2+ concentrations used in the experiments and the 120 

corresponding adsorbent dosage. Figure 1 shows the experimental isotherms of 121 

Cu2+adsorptionon the four activated carbons analyzed in this paper. 122 

Solution temperature positively affected all adsorbed quantities of Cu2+ions on these 123 

activated carbons, thus suggesting an endothermic removal process. All experimental isotherms 124 

followed the monotonic trend of adsorbed Cu2+ quantities as a function of equilibrium 125 

concentration until the saturation region was reached. This adsorbent saturation was caused by 126 

forming a layer of Cu2+ions adsorbed on the surfaces of tested activated carbons. In this 127 

regard,homogeneous and heterogeneous monolayer models developed from statistical physics 128 

theory were implemented to analyze Cu2+ adsorption isotherms at the microscopic scale. The 129 

next two scenarios were tested in this modeling study: 130 

Scenario1:A homogeneous monolayer model (HMM) was considered where only one type of 131 

functional groupparticipated in the adsorption of Cu2+ ions on tested adsorbents. It was assumed 132 

that only one adsorption energy was involved in the metal ion removal, which represented the 133 



interaction ofCu2+ ion–activated carbon surface. The adsorbed quantity calculated with this 134 

model is given by (Sellaoui et al. 2018; Dhaouadi et al. 2020c, b, a): 135 

 136 

n

e

m
e

C

C

nS
Q












2/11

(1)

 

137 

 138 

Scenario 2: A heterogeneous monolayer model (IMM) was also applied. Two functional 139 

groups participated in the adsorption of Cu2+ ions with two different adsorption energies: Cu2+ 140 

ion – adsorption site 1 and Cu2+ion– adsorption site 2. In this model, the adsorbed quantity as a 141 

function of the equilibrium concentration isdefined as (Dhaouadi et al. 2020b, a, 2021): 142 
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144 

 145 

For these models, n and ni(i=1, 2) are the numbers of Cu2+ ions adsorbedper functional group(s), 146 

Sm and Smiare the densities of these surface functionalities, C1/2and Ci(i=1, 2) are the 147 

concentrations at half-saturation, respectively. 148 

Characterization results showed that these activated carbons contained different 149 

functional groups that can contribute to the adsorption of Cu2+ions. Therefore, these adsorption 150 

models were consistent with the surface chemistry of these activated carbons.Note that 151 

thesemodels were developed by applying a grand canonical ensemble of statistical physics with 152 

the aim of obtaining a better analysis of the adsorption mechanism of this pollutant. Overall, 153 

these models assumed that the adsorption of Cu2+ions was a monolayer process, but with the 154 

contribution of one (homogeneous monolayer model) and two (heterogeneous monolayer 155 



model) functional groups in the removal of this cation(Dhaouadi et al. 2020b, 2021).In 156 

summary, these models can describe the role of these functional groups on the adsorption of 157 

this metallic ion andcan also characterize the nature of their interactions (i.e., multi-interaction 158 

or multi-ionic process).  159 

 160 

 161 

 162 

 163 

 164 

 165 

 166 

 167 

 168 

 169 

Table 1: Results of the Cu2+adsorption isothermcorrelation with a homogeneous monolayer 170 

model. 171 

 172 

 173 

T(°C) R2 n Sm (mg/g) C1/2(mg/L) Qs (mg/g) 

AC CO2- Orange–OP 

25 0.992 1.13 48.35 0.38 54.63 

35 0.994 1.46 42.61 0.31 62.21 

45 0.989 1.70 37.88 0.19 64.39 

55 0.977 1.82 37.49 0.07 68.23 

AC CO2- Tangerine–MP 



25 0.999 1.07 53.20 0.35 56.92 

35 0.995 1.24 51.80 0.32 64.23 

45 0.989 1.83 37.65 0.27 68.89 

55 0.990 4.20 16.71 0.14 70.18 

AC CO2- Lemon-RLP 

25 0.998 0.63 115.75 0.39 72.92 

35 0.987 2.88 26.85 0.25 77.32 

45 0.984 2.90 28.55 0.22 82.79 

55 0.994 4.55 19.32 0.18 87.90 

    AC CO2-Lime-SLP 

25 0.984 1.15 49.55 0.44 56.98 

35 0.993 1.56 40.03 0.31 62.44 

45 0.988 3.04 20.96 0.238 63.71 

55 0.988 3.16 21.42 0.232 67.68 

 174 

These models were employed to fit all Cu2+ ion adsorption isotherms, and their 175 

parameters were determinedvia a multivariable nonlinear regression with the Levenberg-176 

Marquardt method. Determination coefficients(R2) and the trends of steric and energetic 177 

parametersindicated that the HMM model was the most suitable for analyzing the Cu2+ removal 178 

at the microscopic scale. Table 1 provides the results of Cu2+ adsorption data fitting for the 179 

HMM model and their corresponding steric and energetic parameters fortested experimental 180 

conditions. In addition, the fitting of Cu2+adsorption isotherms by the HMM model is illustrated 181 

in the appendix. 182 

 183 

3. Results and discussion  184 



 185 

3.1. Evaluation of the number of Cu2+ ions adsorbed per functional group and their adsorption 186 

site densities 187 

 188 

The impact of temperature on the number of adsorbed Cu2+ ions per functional group and their 189 

corresponding adsorption site densities for these activated carbons is represented in Figure 2. 190 

Allparameters nwerehigher than unity except for AC CO2-Lemon-RLP adsorbent at 25 191 

°C. This result indicated that the adsorption of this heavy metalwas multi-cationic for these 192 

activated carbons, where the functional groups could adsorb several cations 193 

simultaneously(Dhaouadi et al. 2020b, a). Indeed, the exceptional case (i.e., n=0.63) showed 194 

that Cu2+ ions could be adsorbed on the surface of AC CO2- Lemon-RLP via a combined 195 

interaction where one and two functional groups can participate in the removal with two 196 

different proportions(Dhaouadi et al. 2021). Thermally speaking, the temperature increasedthe 197 

number of Cu2+ ions adsorbed per functional group from 1.13 to 1.82, 1.07 to 4.20, 0.63 to 4.59, 198 

and 1.15 to 3.16 for the adsorbents AC CO2-Orange-OP, AC CO2-Tangerine-MP, AC CO2-199 

Lemon-RLP and AC CO2-Lime-SLP, respectively. Overall, these results indicated that the 200 

temperature played a relevant role to adsorb theCu2+ions.  201 
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 202 

Figure 2:Impact of temperature on the parameters n and Sm for theCu2+adsorption at pH 5.5 203 

using different activated carbons. 204 

 205 

Figure 2 indicated that the density of functional groups of these activated carbons 206 

reduced as a function of temperature. Moreover, this tendency was inversely proportional to the 207 

number of Cu2+ ions adsorbed per functional group. Thus, theincrement of the parameter n as a 208 

function of temperature suggested a reduction of the occupied functional groups and, 209 

consequently, a decrement of the adsorption density and vice versa. 210 

 211 

3.2. Performance evaluation of different activated carbons for Cu2+ adsorption 212 

 213 

The performance of tested adsorbents was complemented via the calculation of adsorption 214 

capacities at saturation using the next expression:   215 

ms nSQ  (3) 216 

The impact of thermal agitation on the adsorbed quantity at saturation Qs for the different 217 

adsorbents is given in Figure 3. 218 
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 219 

Figure 3: The adsorbed quantity of Cu2+ionsat saturation as a function of temperature for 220 

different activated carbons at pH 5.5. 221 

 222 

Figure 3 indicated that the adsorbed quantity at saturation for the four activated carbons 223 

increased with the solution temperature. This result confirmed that the solution temperature 224 

enhanced the mass transfer phenomena and the diffusion of Cu2+ ions inside the porous structure 225 

of these adsorbents. Thus, the increment of this quantitywas associated with the number of 226 

adsorbed ions per functional group and the adsorption energy. Comparatively, the AC CO2- 227 

Lemon-RLP adsorbent showed the highest Cu2+removal and was the most effective for this 228 

purpose. Furthermore, characterization results reported in (Dotto et al. 2011) indicated that 229 

theacidic functionalities of theseactivated carbonswere responsible forCu2+ removal.In 230 

particular, FTIR analysis of activated carbon samples before and after Cu2+ adsorption indicated 231 

that the main acidic functional groups were OH and COOH. The absorption bands relative to 232 

these groups presented significant shifts after Cu2+ adsorption thussuggesting that OH and 233 

COOH were involved in the interactions with Cu2+ ions, and confirming the statistical physics 234 

calculations. 235 



For illustration, Table 2 shows the Cu2+ adsorption capacities for different activated 236 

carbons reported in the literature.It was clear that these activated carbons can be an alternative 237 

to remove the Cu2+ ions from wastewatersand to contribute to the reduction of solid waste 238 

generation. They can also outperform other adsorbents reported in the literature. For instance, 239 

the Cu2+adsorption capacities of 1-iron-modified flaxseed waste, sodium dodecyl sulfate 240 

modified iron pillared montmorillonite, and activated carbons functionalized with magnetic 241 

iron oxide nanoparticles were 7.64, 20.6, and 41.6 mg/g(Li and Wu 2010; Gu et al. 2019; 242 

Cerrahoğlu Kaçakgil and Çetintaş 2021).  243 

 244 

Table 2. Cu2+adsorption capacities of activated carbons obtained from different 245 

feedstock(Mariana et al. 2021). 246 

 Preparation conditions  

Feedstock Temperature, °C Time, min Adsorption capacity, 

mg/g 

Cauliflower leaves 600 120 75.99 

Gingko leaf 800 90 310.0 

Pinewood sawdust 700 120 419.1 

 247 

 248 

3.3. Cu2+ adsorption energy 249 

 250 

Adsorption energy for the interaction Cu2+ ion-activated carbon surface was determined from 251 

the concentration values at half-saturation and the following equation (Dhaouadi et al. 2021): 252 

 253 
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254 



 255 

whereR=8.314 J/molK is the ideal gas constant, and Cs is the copper solubility.Theadsorption 256 

energy for the interaction of acidic functional groups ofthese activated carbonsand Cu2+ ions is 257 

depicted in Figure 4. 258 
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 259 

Figure 4:CalculatedCu2+ adsorption energies for testedactivated carbons.  260 

 261 

All interaction energy values were lower than 40 kJ/mol, thus suggesting that this 262 

adsorption process was associated with physical forces. As stated, the acidic functional groups 263 

(e.g., OH and COOH) of these activated carbons were involved in the Cu2+ adsorption. 264 

Furthermore, this adsorption energy increased with solution temperature for all activated 265 

carbons.  266 

 267 

4. Conclusions 268 

 269 

A reliable modeling of adsorption data and the corresponding analysis of adsorption 270 

mechanism are paramount for the design of water treatment processeseffective to remove heavy 271 



metals with activated carbons. Therefore, this study reports the statistical physics-based 272 

interpretation of Cu2+ adsorption using four activated carbons obtained from citrus wastes, 273 

which are low-cost feedstock to prepare new adsorbents.Steric and energetic parameters were 274 

calculated for the adsorption of this heavy metal using a monolayer adsorption model. Results 275 

showed that the Cu2+ adsorption was multi-cationic via one functional group (i.e., acidic surface 276 

functionalities). In addition, Cu2+ adsorption was endothermic and associated with physical 277 

interaction forces. At saturation, Cu2+ adsorption capacities ranged from 54.6 to 87.9 mg/g for 278 

these activated carbons. Finally, this advanced modeling provided interesting interpretations of 279 

the adsorption mechanism of this relevant water pollutant with low-cost activated carbons.  280 
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 410 

Appendix 411 

The fitting data results of the experimental isotherms of Cu2+ions are given below: 412 
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