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Abstract

The distribution of a variable observed over a domain dépends on the un-

derlying process and also on the geographical locations at which the variable
has been measured. In this paper, we fit a model to the distribution suppos-

ing that the observations are generated by a stationary strong-mixing random
field. Indeed, after estimating the density of the considered variable, we con-

struct a test statistic in order to verify the goodness of fit of the observed spatial
data. The proposed class of tests is a generalization of the classical chi-square-
test and of the Neyman smooth test. In the framework of increasing domain
asymptotics, we analyse the large sample behaviour of the test. The limiting
distribution is a linear combination of xl r.v.s where the coefficients are the
eigenvalues of a matrix E essentially related to the spectral density of the ran-

dom field. Finally some indications about the implémentation are provided.
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1 Introduction

Usually the fit of the model to observations is tested by the classical x2 test (Rogers
(1974), Ripley (1981), Cressie (1993)) and often independence cannot be assumed.
In many fields — geology, ecology, or forestry, for example — observations are

taken at different locations, i.e. are georeferenced, and présent spatial autocorrela-
tion (Cliff and Ord (1973)). In these cases to check distributional assumptions it is
more appropriate to apply goodness of fit tests that take into account spatial depen-
dence. Those goodness of fit tests could also be used to check if a new simulation

procedure for random field has produced the desired distribution.
In this paper, we propose to generalize the classical %2 test to the case of correlated

spatial data. Our framework is based on the nonparametric density estimator by
projection, analogously to the cases of time sériés data in Ignaccolo (2004) and of
independent data in Bosq (2002) (see also Bosq’s papers referenced there). This
class of goodness of fit tests also contains the smooth test of Neyman (1937). To
take explicitly into account the spatial autocorrélation among the observed data, we

suppose that the observations are generated by a strong-mixing random field and
observed on a rectangular région In.
The paper is organized as follows. In Section 2 we set the notations used in Sec-
tion 3 to define the class of tests. In Section 4 we analyse its asymptotic behaviour

(proofs are postponed to the appendix). We conclude providing some indications
about the implémentation of the test.

2 Définitions and basic framework

LetX = (Xt,t G Zd), with d > 1, a random field defined on some probability space

(£2, *4., P) with values in a measurable space (E,B), i.e. a collection of random
variables indexed by the discrète multidimensional variable t G Zd. In the spécial
case where d^l, the random field Xt is just a discrète stochastic process.
The random field is strictly stationary (or homogeneous) if for any set A C Zd,
and for any point v G Zd the joint distribution of the random variables {Xt)t G A)
is identical to the joint distribution of (Xt:t G A + v), where A -1- v is the set A
“translated” by v, that is A + v = {sGld:s = f + v, with v G A} .
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Let us consider a strictly stationary random field X = (Xtjt G Zd), with d > 1,
defined on (Çl,A, P) with values in (E,B) and assume that we observe X on a

rectangular région In defined by /„ = [i : i G 1 < ii < n/, l = 1,..., d}. We
Write n —> oo if min/ n/ —» oo and we set n* = Yll=1 ni = \In\ the cardinality of
In, that is the total number of points where the process is observed.
To take into account the dependence between the observations we suppose that they
are generated by a strong-mixing (or weak dépendent) spatial process.

If A c Zd, let Aa be the cr-algebra generated by the Xp, p G A. If Ai, A2 C Zd, let
dist{Ai, A2) = inf {dist(pi, p2) ' Pi € Ai,p2 G A2} and

^■{Aaxi Aa2) = sllP |P(Ai n A2)iYiP(Ai)P(A2)|.

The random field X is said a-mixing (or strong mixing) if

auv(n) — sup {œ(Aa1, Aa2) ■ dist{A1} A2) > n, |Ai| < u, |A2| < v} nXX? 0,

for any integers u, v > 0 (see Doukhan (1994)).

3 Construction of the class of functional tests

We want to test the simple hypothesis Hq : “X* has distribution p” (Xi ~ p), where
p is a probability measure on (E, B) completely specified. Let V be a family of
probability measures on (E, B) dominated by p and let v be the generic element
of V. We dénoté by / the probability density of v with respect to p, f = and
we assume that / G L2(p), that is a separable Hilbert space with its scalar product
(/, g) — J fg dp. Then the density / admits a Fourier expansion and it can be
estimated by truncating this expansion, that is taking its orthogonal projection on a

subspace of L2 (p). This permits estimation of / estimating only a finite number k
of Fourier coefficients. Optimality properties of the projection density estimator are

obtained when k =,k(n), that is the dimension of the subspace where / is projected
dépends on n (see Bosq and Lecoutre (1987) for further details). Here we consider
k fixed and we do not focus on the density estimator’s properties, but on the test
statistic defined in (2). Before applying the test proposed here, as a preliminary
step, the parameter k could be chosen looking at the number of estimated coeffi-
cients that are “large enough”, as suggested in Bosq (2005, p.61). In the future, this
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data-driven truncation index could be incorporated in our test statistic.

For a fixed positive integer k let {eo, ei,..., e^} be an orthonormal System with
eo P 1, in L2{/i), which generates a subspace f§| = span{eo,ei,... ,efc}, with
dim(Ek) = k1.
The real valued function K(x, t) = yi|_n ej(x)ej(t), with (x,t) G E x E is the re-
producing kernel of Ek (see Grenander (1981), Fortet (1995), Berlinet and Thomas-

Agnan (2003)).
The density estimator of / by projection on Ek is defined as

k

fn(t) àin ei W I
iGln j=0

where âjn = ej(Xi) is the unbiased estimator of the Fourier coefficient
dj = (/, ej).
Let us consider the L2(/i)-distance dist(fn, 1) = ||/n — 11 between the estimated
density and the hypothesized density f0 = j£ = l under H0, where ||-|| dénotés the
L2(p)-norm.
Now we consider the statistic

and its L2{p)~norm ||Tn|| =

iiîi„ii2=«*

Tn - Vn*(fn - 1)

fn — 1|| obtaining

1 + ^ ^ àjnej (t) 1
j=i

B"* E jn- (2)
3=1

We want to test H0 : Xi ~ p versus Hi : Xi ~ v ± p, that is H0 : f — 1 versus

Hi : f 7^ 1 considering the densifies and also H0 : a3 — 0 Vj > 1 versus iJi :

> 1 : ftj 7^ 0 with respect to the Fourier coefficients üj. Indeed we shall limit
ourselves to consider the alternative hypothesis Hi(k) : Xi ~ v ^ p with v such
that there exists a j G 1,..., k for which ej is ^-intégrable and a,j = f ej du ^ 0.
The hypothesis H0 States that, after a0 = 1, ail Fourier coefficients are null. Instead

according to Hi there exists a Fourier coefficient (other than ao) different from zéro,

and Hi(k) States that it is among the first k coefficients after ao.

Since the test is based on the déviation of the estimated density from the hypoth-
esized density, it rejects H0 for large values of ||Tn||2. We shall prove in Section
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4 that, under H0, ||Tn||2 converges in distribution to a linear combination of r.v.’s

Uj ~ Xi where the coefficients À2 are the eigenvalues of the matrix S defined in
(4).
So it is possible to carry out a test with rejection région {||Tn||2 > tu} and asymp-
totic size a e]0,1[ with w given by P (Y^-i A2Uj > w'j = a, but the method
requires the estimation of eigenvalues and the détermination of quantiles of the ran-

dom variable Y2j=i

Particular cases. Let {A0, Ai,, Ak} be a finite partition of E withpj = /J,(Aj) >

0, j = 0,..., k. For ej(-) = (•), the System {eo, ei,..., e^} is orthonor-
mal and it generates a subspace Ek Q L2(/j,) that contains every constant func-
tion. In this case the density estimator is the histogram and one easily obtains

||Tn||2 = B,' lA^Xt^ n that is the test statistic used in the classical
Pearson’s %2 test.

Moreover, with an orthonormal System related to the Legendre polynomials the
statistic \\Tn ||2 coincides with the Neyman statistic (see also Rayner and Best (1989)).

4 Large sample behaviour

The following notations are used throughout the paper. For each j we define the
zero-mean real valued r.v.’s

Yij = £j(Xi) —JE (ej(Xi)), i E In

and we set

(n*)~1/2Snj = (n*)-1//2 ^ = VrÂ(âjn - a,j)
i&In

with n* = |/n|, noting that aj = (/, ej) — E(ejpf*)) = E(âj„).
Moreover we shall use

#éjSS4Üftiï
= y/rÂ

^Q>\ u\

y(n*)~1/2Snkj \âknj J

(n’)-1,2Sn = \fn* (An - a)
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and, for i G In,

Yi = (Yn,...,Yik)T
and the linear combination V* = £E=1 cj^ij = cTFi with c = (ci,..., c/-)T G Rfc.
Under Hi(k) we consider the quadratic form

k

n*(An - a)T(An - a) = n* X (ajn
j=i

2

that coincides with ||Tn||2 under i70 because aj = 0 for ail j.
The following theorem provides the limiting distribution of 11 Tn 11 under some con-
ditions necessary to apply the CLT theorem for random fields (Bolthausen, 1982).

Theorem 1. Consider a sequence In offinite subsets oflf that increases to if and
is such that lim^co Wy = 0, where dln is the boundary ofIn. IfMn|

L r<i~lauv(r) < oo for u + v < 4 and .Qifllfjp = o{r~d);

2. for some 5 > 0 E(|Vi|2+5) < oo and rd_1ai)i(r)5^2+^ < oo;

3. g1 > 0 where cr2 = J2iezd

then

21 BB? . y
j=1

where the r.v.’s Uj ~ A/”(0,1) are independent and À2 are the eigenvalues of the
matrix E = {oji). l=1 k with

°ji = X
V£hd

where (Jji{v) is the crossed covariance junction of the stationary bivariate spatial
process (Ytj, Ytl)te%d.

I I / I I 2 Q

Under Ho, as previously seen, ||Tn|| coincides with ||Tn|| . Hence the convergence
(3) holds:

k

j=i
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and the coefficients in the linear combination of the limiting distribution hâve par-

ticular values because Y{j = eçfyXfjt being aj = E(eJ(Ai)) = 0 under the null
hypothesis.
To study the rate of convergence, we consider the Kolmogorov distance between
distribution functions

An - sup

with \\U\\2 p Ylkj=i tfUj (since U = ^jU3ej)-

Theorem2. Ifthe mixing coefficients are exponentially decreasing, that is auv(n) =

O (e~an)for a > 0, denoting cr2 = Vsr Vf), the distance An satisfies

An = 0([l0g<7jI,f<1+{>A21<7-<{A1))
where x A y — min(x, y), while ifthe mixing coefficients are arithmetically decreas-
ing, that is auv(n) = O (n~a) for a > 0, An satisfies

An = O (o-Z)
with £ = (<5 A and b =

Independent data. In the case of iid data, the crossed covariances in the sum (4) are

null, except when v = 0; hence Oji = E (IqjIoz)- Then under the null hypothesis
the element of E* (that is E under Hq) becomes

0 for j l

1 for j = l

because o*^ = E ([e., (Xo)]2) = J e2{x) dp(x) = ||ej||2 = 1 and so E* = I*
where Ifc is the identity matrix of order k. Then for ail j one has À*2 = 1 and the
limiting distribution is as we hâve in the general case (see Bosq (2002)) where
An = O (n-1/2).

5 Implémentation

The limiting distribution for the test dépends on the eigenvalues À2 of the unknown
matrix E. So to estimate these eigenvalues we hâve to estimate the éléments oji and

TL < u (ni2 < «) (5)
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we propose to use the estimate of the cross-spectral density function (Section 5.1).
With the estimated eigenvalues we hâve a linear combination of x2 r.v.’s with 1

degree of freedom. Exact significance points for selected values of k and of the
coefficients were published by several authors. Moreover, different évaluations of
these quantités hâve been proposed, by approximation of sériés expansions or by
numerical methods. For further details see Johnson et al. (1994) and Mathai and
Provost (1992).
On the other hand, we propose here a class of tests and to run one of them we hâve
to choose an orthonormal System; for that a suggestion follows in Section 5.2.

5.1 Estimating the eigenvalues by spectral density

For the stationary bivariate spatial process (Ytj,Yti)teZd we can define the spec-
tral density functions matrix f(cj) = {fji(u))\l=1 k whose éléments are the cross

spectral density functions defined by

where u = (ui, ..., u^) G [—7r, 7r]d and (cj, v) = Ya=irePresents the stan¬
dard scalar product in d-dimensional euclidean space.

Observing that Oji == (27r)dfji(0), an estimate of aji can be obtained evaluating the
estimate of the spectral density at the origin, that is

Gji = (2i7T^dfji (0). (6)

We use a Bartlett type or Lag-window estimator constructed as follows.
Let Mi,..., Md be some positive integers and consider ail rectangular régions
Am = {£ G /„ : 1 < ui < ti < Ui < ni}, where ui, Ui satisfy Ui — ui + 1 i— Mi,
for l = 1,..., d.
By calculating the periodogram over these smaller rectangular régions and aver-

aging ail these results, we obtain a consistent (under some regularity conditions)
estimator for the spectral density function.
Then we can take as Lag-window estimator

e-i(w,w) (7)
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where dji(v) = ± E«ëz<* yt,jYt+v,i with

Ytj if t G In
0 else

and the window is defined by
+

where (a;)+ = max(:r, 0) is the positive part function.
We follow the work of Politis and Romano (1996) for a (not crossed) spectral den-

sity, and we suppose the validity of the foliowing condition A0, with M = nti m

(Ao) There are positive constants c* and c* suchthat c* < Mj/Mi < c*, c* <
rij/ni < c* M l = 1,..., d and M = o(n*)for n* —*■ oo.

Under some moment and weak dependence conditions and under the assumption
Aq it can be shown that

Bias (8)

and

Var- 0{M/n*) (9)

This is a typical behaviour for a Lag-window estimator, but however Politis and Ro-
mano (1996) propose a “bias-corrected” flat-top estimator that has the same order
of magnitude for the variance, but a smaller bias. Then, following Politis-Romano
(1996) and adapting their reasoning to crossed covariance functions and cross spec-
tral densities, we define the flat-top estimator for in (10).
Let us consider the unbiased estimator for the crossed covariance Oji (v) as

For a constant c G (0,1) and denoting mi = cMi, V/ = 1,..., d, we define the
flat-top cross spectral density estimator as

â 1 ~ c ~

fjlfac) = (10)
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where

^ ' v£Zd

kmH = (Air E Wrm(«)^(»)e_i<“’">' ' v£Zd

and the Windows are defined by

WM{v) = fl - max and Wm(v) = ( 1 - max —^ .V !<*<<* Mi J V i<l<d mi )
So we hâve constructed an estimator that is the linear combination of two Lag-
window estimators with differing bandwidths; the résultant pyramidal window has
its top ‘chopped off (see Figure 3, p. 45, in Politis and Romano (2006)), that is

wyra(») = - ^rcWm(v)-

We pose the following weak dependence conditions based on the second order mo-

ment in increasing order of strength (i.e. A3 => A2 => Ai), that can be viewed as

different smoothness conditions of the spectral density.

(Ai) There are (finite) positive constants B, c\,..., q and a positive constant

K > d such that |ct^(î;)| < B ^max;
(A2) There are (finite) positive constants K, B, ci,..., q such that
Wji(v) | < B exp |-A max/ ÈM,
(A3) There are (finite) positive constants C\,... ,Cd such that (Jjiiy) g=j 0, if
maxj ^ > 1.

The introduction of the constants ci,... ,Cd allows for the possibility that the cross

covariances vanish along different directions in Zd. Another reasonable condition
for the choice of Mi is the following: *

(Am) There are (finite) positive constants Ci,... , q such that for
i,j = l,...,d.
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Various combinations of these conditions yield different, variable, orders of the
bias of the estimator, that is, we hâve different performances of the family of lag
window estimator ce (0,1)} as summarized in the theorem below (ob-
tained following Politis and Romano (1996) results).

Theorem 3 (Politis-Romano).1.Under Aq, Ai and Am itfollows that

Bias(fji(bi\c)] =0(M1~K'd).sup
7r,7r]2.Under Aq, A2 and Am andfor Mi K (3ci lognj, l = 1,... ,d with (3 > it

follows that

sup
w€[—7T,7r]

Biaslfjifac; = Q | (log n*)a ^ =Qf 1
(n*)PK/d3.Under A3, if there are positive constants c* and c* such that c* < Wj fn^ <

c* \/j,k = 1,... ,d for n* —> oo and there exist constants Mi for l |§g
1,..., d such that Mi >mi > ci, itfollows that

sup
WG[—7T,7r]

Bias (Mmg = 0.

For further results and comments see Politis and Romano (1996).

At this point we can corne back to (6) and consider an estimator for oji as

Vjl,c = ^2 WM,m(v)djl(v)
v£Zd

that inherits the properties of fji(u-, c).
Nevertheless, the matrix Sn = (àji)1<jl<k may not be positive definite. Hence we
propose (see Ignaccolo (2004)) to correct the éléments on the diagonal with

4Ü inf cTËnc
!lc||<l

T
"1

n

where c G Rk and r is a suitable positive constant, defining the new matrix

êi- = èn + Cnïïfc-
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Considering a vector c G Mfc, with ||c|| = 1, one has cTË+c = cTÊnc + £n > 0
because when cTÊnc < 0 the définition of Çn implies — cTT,nc < C„.
Moreover, we hâve proved that Çn 0 and consequently E+ E (Prop. 4
in Ignaccolo (2004)). So, by continuity, the eigenvalues À2 of E+ converge a.s. to
À2 and we can use them for the limiting distribution.

5.2 The choice of the orthonormal System

To run a test of the proposed class we hâve to choose an orthonormal System. To
use the projection density estimator, Bosq (2005, p.75) underlines the convenience
to make an argumented choice, since choosing a System could imply to favour a

certain kind of densifies.

To link this choice to the distribution considered in H0, we suggest using the set of
orthonormal polynomials linked to it. More precisely, we refer to the Meixner class
(see Lancaster (1975) and Rayner and Best (1989) p.140), for which an orthogonal
System can be obtained from the récurrence relation Pn+i(x) = (x + nX)Pn(x) +

n{—a2 + (n — l)7)Pn_i(a:) for n = 0,1,2,... where P-i(x) = 0, P\(x) = 1 and
cr2 = Var(X) with X = Y — E(y). The constants À and 7 can be determined from
7^(0) and Ps(0) and to hâve an orthonormal System Pn(x) must be normalized by
dividing by sn = ^/e ([Pn(x)]2).
The Normal and the Gamma distributions belong to the Meixner class and, in par-

ticular, for the gaussian case {Pn(x)} is the set of Hermite polynomials. Moreover
the Poisson, the Binomial and the Négative Binomial distributions belong to this
class too.

Although the probability measure /1 is unknown, we could choose a set of orthonor-
mal polynomials linked to the hypothesis H0 (as we could do to use the projection
density estimator), that are the Meixner polynmials.
We observe that the proposed class of tests is defined for continuous variables. But
if we are interested in the models describing the positions of units in the space (like
the Poisson, the Binomial and the Négative Binomial) and it is not possible to as-

sume the independence between the observations, we suggest to apply the proposed
test choosing the polynomials linked to the hypothesized distribution according to
Meixner.



39

Acknowledgements
The authors thank Prof. Denis Bosq, Prof. Fortunato Pesarin and Prof. Michael
Stein for helpful comments on a previous version of this paper. The work of Rosaria
Ignaccolo was partially supported by MIUR Cofin 2004.

A Proofs of Section 4

Proofof Theorem 1. We consider the linear combination cTSn and with the previ-
ous notations we get

CTSn = = YscTYi
j=i j=i iein i£in j=i iein iein

With the previous assumptions, we can apply the Bolthausen CLT theorem (see
Bolthausen (1982) or Rosenblatt (2000) p.56) to the zero-mean real valued random
field Vi that is stationary and o-mixing (as we can write V{ = g(Xi) with g measur-

able and ay{n) < ax(n)). Hence we obtain

JV(0,1)
oy/n*

that is

(nT1/2<7Sn M{0,<72).
If we can write cr2 = cTEc, with E symmetric and positive definite, we can apply
the Crâmer-Wold device and we can obtain

s/tf(An-a) -U Z~Xk(0,S).

So for the quadratic forms we can hâve

n*(An - a)TI{An -a) ZTIZ

thatis ||Tn||2 tfUj observingthatZTIZ = À2 (ujff = £*=i tfxl
So it remains to check that we can write u2 = cTEc, identifying E.
From the Bolthausen CLT we hâve o1 — E(Vol^) and it holds

E(y0VÎ) = E ( [cTy„] [«fKif) = E (cTY0Yjc) = cTE {Y0YT) c = cTY^c
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denoting Do* = E (YqYJ). Then the generic element of E is ,rùâ = d E (YojYu).
By stationarity of y* it follows Cov(y0,yv) = Cov(Yt,Yt+v) and for each ele-
ment E (Y0jYvi) = E (YtjYt+vj) so we dénoté

(?ji(v) SüüE (YtjYt+v,i)

the crossed covariance of the stationary bivariate spatial process (Ytj,Yti)tizd. More-
over the following equality holds

So we can Write Oji — Ylvezd aji(v) and we hâve

a'j= ]C= ai^~v) h a^(u) - GJh
v£Zd VÇ.WA useZ^

so that E is symmetric.
□

Proofof Theorem 2. In what follows we use notations and results derived earlier in
the proof of Theorem 1. With respect to the rate of convergence we apply Theorems
2 and 3 in Guyon and Richardson (1984) (see also Doukhan (1994) p. 49) to the
random field Vi and, posing Na ~ J\f{0, a2), we observe that

sup |P ((n*)-1/2cTSn < t) — P (Na < t)

= sup

- sup
veR

=,A„

(n*P„-a||2<^E)
2

with the position u — llcll
as defined in (5). □
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