
HAL Id: hal-03633210
https://hal.science/hal-03633210v1

Submitted on 6 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal Penalty Term for EDC Markov Chain Order
Estimator

Chang C. Y. Dorea

To cite this version:
Chang C. Y. Dorea. Optimal Penalty Term for EDC Markov Chain Order Estimator. Annales de
l’ISUP, 2008, LII (3), pp.15-25. �hal-03633210�

https://hal.science/hal-03633210v1
https://hal.archives-ouvertes.fr


15

Pub. Inst. Stat. Univ. Paris

LU, fasc. 3, 2008,15 à 25

Optimal Penalty Term for EDC Markov
Chain Order Estimator

Chang C.Y. Dorea1
Universidade de Brasilia

Abstract

The Efficient Détermination Criterion (EDC) generalizes the AIC and BIC criteria
and provides a class of consistent estimators for the order of a Markov chain. Several
authors hâve addressed the question of choosing between AIC or BIC estimâtes. The
first tends to overestimate the order and the second, though consistent, may lead to
underestimation. Ail these estimators are based on penalized maximum log-likelihood
functions. In this work, we study the choice of the optimal penalty term and show
that corresponds to neither AIC nor BIC estimators.
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1 Introduction

Let X™ — (X\, • • • , Xn) be a sample from a multiple Markov chain X = {Yn}-n>i of
unknown order r. Assume that X takes value on a finite State space E and that the
transition probabilities are given by

p(Or+l|aï) = P(Xn+1 = Üppgl-bÿB« (1.1)
where à[ = o!{ark+l = (ai, • • • , ar) G Er.

The approximation of Kullback-Leibler information measure by Neyman-Pearson statis-
tics along with the asymptotic ^-distribution of the maximum log-likelihood ratio form
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the basis to dérivé the Akaike’s information criterion (AIC, Akaike (1974)),

AIC(fc) = -2logL(k) + 27(fc), 7(jfe) = \E\k(\E\ - 1). (1.2)

Where \E\ dénotés the cardinality of the set E,

iog ‘m = ^iv(an^) iog tu)
ai

logî(O) I ^JVHXDlog^™
a

and
n—k+1

AT(af|Jsrr)= Y, Wj = <*!.•••, Vi+n = at)
3=1

that is, the number of occurrences of a\ in A”. If k — 0 we take N(-|A”) = n. The sums
are taken over positive terms N(ak+11A”) > 0, or else, we convention 0/0 or 0 • oo as 0. The
function 7(fc) in the penalty term is just the number of degrees of freedom if ail transition
probabilities are strictly positive. In the framework of nested model sélection r is estimated
by

rn = argmin AIC(A;)
0<k<K

where K is an upper bound for r, assumed to be finite.

The BIC estimator is an alternative to the AIC, proposed by Tong (1975) and Schwarz
(1978), who showed its consistency,

BIC(fc) = — 21ogL(A;) + 7(fc)logn, 0<k<K. (1.4)

Katz (1981) pointed out the inconsistency of AIC estimâtes. Other authors havë addressed
the consistency problem for BIC, see, for example, Finesso et al. (1996). More recently,
Csiszâr and Shields (2000) established the strong consistency for BIC, which strengthens
earlier results by removing the assumption that sets up an a priori bound on the order.

Zhao et al. (2001) proposed the EDC criterion that is strongly consistent and from
which we can dérivé the AIC and the BIC criteria by appropriately choosing the penalty
function,

EDC (k) '= -2 log L{k) + 7{k)cn. (1.5)
It is shown that rn = argmin EDC(/c) is strongly consistent if cn > 0 satisfi.es

0 <k<K

oo and —

n
0.

log log n
(1.6)
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Our Corollary 2 shows that strong consistency for EDC can be obtained under weaker
conditions and without assumption of K < oo. An interesting problem is the best choice for
the penalty term 7(k)cn. In fact, Csiszâr and Shields (2000) posed the problem relative to
BIC : “it remains open whether smaller penalty terms suffice for consistency in the absence
of a prior bound on the order”. In section 3, we justify why AIC tends to overstimate r
and indicates how BIC may lead to possible underestimation. Corollary 1 shows that the
best choice is given by

EDCopt{k) = -21og L(k) + 2\E\k+1 loglogn.

2 Auxiliary Results

First, observe that for k > r the transition probabilities for the first order Markov chain
ym = {yW}^ yM = (X„,...,X^i), satisfy

î>(«‘+1|4) =

= p(afe+i|a{) = p{ak+1\akk_r+1). (2.1)
We will assume that Yis an ergodic Markov chain, that is, there exists an equilibrium

(stationary) distribution 7r(-) satisfying

lim |Pv{YV = aï)| - tt«)| = 0, V a\ G Er,
71—>00

where v is any initial distribution. Denoting aa[~ = (a, ai, • • • , ar_i) we hâve

=^n(bi)p(ar\b[) =-^2niaai p
a

Using the notation

7t(4) = 7r(aï)p(ar+iK). ..p{ak\akk_l), k> r (2.2)

we obtain
tt (aj) = ^ 7r(aaj'A)p{ak\akkzl)- (2.3)

Which shows that %(•) defined by (2.2) is a stationary distribution for Y^K

Proposition 1. Assume that the derived Markov chain Yy is ergodic then for k > r
the process Y^ is ergodic with stationary distribution given by (2.2). Moreover, if g is a
bounded function then there exist ag > 0 and 0 < p < 1 such that,

(2.4)
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where

Fj = <j{Xi,X2,--- ,Xj). (2.5)
The proof of ergodicity is immédiate and (2.4) is just Proposition 3.1 from Roussas and

Ioannides (1987). Next, we State a version of the Law of Iterated Logarithm from Meyn
and Tweedie (1993, theorems 17.0.1 and 17.2.2), adapted for our needs.

Lemma 1. Let {ZnJ be an ergodic Markov chain with finite State E and stationary
distribution n. Leg g be any function on E and Sn(g) = YTj=1Then, for

n

a] = B,{92(Z,)} + 2^ E„{g(ZiWj)} (2.6)
3=2

we hâve almost surely

lim --[Sn{g) ~ E^Snig)}] = 0 , if crj = 0,

and for a2 > 0

liminf^Mz^i^M = _i md |in1s„p^)-g4^Ml = i
n-*oo yj2a2n\og\ogn n->oo -v/2cr|n log logrj

(En : expectation with initial distribution 7r; a.s. : almost surely).

Lemma 2. If is ergodic then for k > r and ak+1 e Ek+1 we hâve a.s.

,. Bi^nl Wêê \hmsup 1Mai )(1 “PK+i'K))-
n log log n

Proof. Define

llH = |§B = a,+1) - l(lÿ*> = a‘)p(a^|(iî)
and

n—k

sm =
3=1

= W(a‘+1|^)-JV(a‘|Xnp(al+i|4) + 0(5„).

The term o(<5n) stands for

(2.7)

An = o(bn) if yàr,
oo for any 5n 00. (2.8)
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Since En{g(Yjk+^)} = 0 we hâve

S„(g) - E,{Sn{g)} = Ar(a‘+1|X") -BApAiM + o{S„)-
Also, since 7r is the stationary distribution we hâve by (2.2)

£.{<ï2(>f+1))} = >r(aî+1)(l -î>(at+iK))
and for JF\ defined by (2.5) we hâve for j > 1

E{l(Ff+1, = 4+I)|^+t-i} = £{l(^w = o{)l(X3+t = aHi)|^+t-i}
= l(^(fc) = af)p(afc+i|a{).

Since Y^1' is jr:(+fc_1-measurable we hâve

E{»(y1“+1))s(^t+1))i^+fc-.} =

= 9(ifH)p{l(ïf+1)) = «î+1|^+i-i} - l(5f’ = af)pK+i|oî)l = 0.
Let al = En{g2(y}k+1))} = 7r(af+1)[l - p(afc+i|a{)]. Applying Lemma 1 we hâve (2 7\

for a\ > 0. q

3 Optimal Penalty Term

For k > r the log-likelihood function satisfies

log m = ^Af(aî+1|x;)l0gp(at+1|a{)
a*+1

= £W(aî+1|Xr)logp(at+1|aLr+1)
aï+1

= log L(r) + o(5n)
where o(ôn) is defined by (2.8). Similarly, for 0 < k < r we can write

log L(k) = £ N(a\+1 |XJ) log + o(6n).
Tn iVlar+l-felAl J
al

For k > r define

El+1 = {af+1: 7r(aJ+1) > 0} and 7+(fc) = ^ (1-p(afe+i|a{))

(3.1)

(3.2)

(3.3)
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and for 0 < k < r let

6{k) = Y TT{a[)p{ar+1 K) log | \ } (3-4)7^ {q{ar+i\ar-k+V )
■ ai

where q(ar+i\arr+1) = y^7r(a2+1) an(^
°2

Y\nr-k 7r(an+1)
ç(ar+i|<_fe+i) = ——® -pK, 0 <k<r.

2^arfk 2^ar+i )

Lemma 3. Assume that is ergodic.

(i) If k > r then

log L(k) - log L(k) > o(5n) and limsup °^- ^ — -=7+(k) a.s. (3.5)
n-00 log log Tl

(ii) If 0 < k < r then 5(k) > 0, ô(k) > ô(k + 1) and

]im logîW-logLW H 9
n—» 00 n

Proof. (a) For k > 0 we hâve

log L(k +1) - log L(k) > o(5n). (3.7)
From (1.3) and Jensen’s inequality,

log L(k +1) — log L(k)

>

E Ar«2|X1")log{ jv(ag+»|xp
iV(aî+1 \X?) N(al+2\X?y n)

-^^(aî+'raiogf^
aj+1 ak+2

o(5n).

(b) From (3.1) we can write for k > r

log î(fc) - log L(k) = - £ Wfaî+'IX^logfl
ak+1

I , W, y lV(4|XrMat+1|g;)-lV(a*+1|X!‘)ni 1 j «fl
where
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Using Large Numbers for Markov chains (see, for example, Dacunha-Castelle and Duflo
(1986)) we hâve

ÊÉÊÈËMtÉMi ® f k+u a.s. î
Ntà»\Xî) ■* 1 “d *(a> ) ^ °-

Now, we use the inequality

<-\og{l + z)<-z + ^^z2,
where j3 > 1 and -

^ < 2 < -—-. Since for ail ûj+1 g i?fc+1 and n large we hâve
zn{a\+l) small,

^iV(at+,|X1»K(aî+1) = o(<5n)

and we can write as fi —> oo

logî(fc) - logi(fc) = J £ JV(4+‘|JSs:r)^(aî+1) + <,(4,).

JV(a‘+1|XD sg w , , r „Smce ———1— > it{al ) we hâve irom Lemma 2,

lim sup
log L(k) - log L(k)

loglogn X C1 H P(«fc+i|«î))=7+(fc)- a-s-
if+16E++1

(c) Let 0 < k < r. Since r is the true order we cannot hâve p(ar+i\arl) — q(ar+i\arT_k+l)
for ail a\+1 G Er+1. Prom (3.4) we hâve

W = ” X X p^r+1 log{
ç(or-jl|(2,r—fc+1 )

Or+l
p{ar+1\à[)

and from Jensen’s inequality

wk > -X^^^X^+^-fc+i)}=°-
®r+l

From (3.2) we hâve

log L(k) - log L(r) = Y^Niai+1
a[+1

GHN{a[+1 |Xf) MM } + o(Ôn).
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By the Law of Large Numbers,

A'K-biW) <■.* Eo;-^W+1)
— q(ar+i\ar_k+1)

and since E is finite we hâve

jd hgL{k)--^LV. = -f(t) a.s.
n—>oo Tl

Using (3.7) and writing

log L(k + 1) — log L(r) log L(k + 1) - log L{k) log L(k) - log L(r)
n n n

we conclude that 6(k) > 5(k + 1). □

Theorem il Assume that E contains at least two éléments and that for ail |§f1j e Er+1
we hâve p(ar+i\à[) > 0. Moreover, assume that cn satisfies

Then,

liminf-—^and limsup — = 0.
n->00 log log n \E\ - 1 n—>oo Tl

limsup EDCy) i EDC(r) > 27(r) a.s., k > r
log log n

and the lim sup is increasing on k. Also,

(3.8)

(3.9)

EDC(fc) - EDC(r) k ,
lim — 2ô(k) a.s., 0 < k < r (3.10)

and the limit is decreasing on k.

Proof. (a) Since ail entries of the transition probabilities are strictly positive we hâve
pÉ ergodic.

(b) Let k > r. From (3.3) we hâve

7+m=7m=i£i‘(i£i-i)>o.
From (1.5) and (3.1) we can Write

EDC(r + 1) - EDC(r) = -2[log L(r + 1) - log L(r + 1)] + 2[logL{r) - log L(r)]
+ 27(r)(|E| - 1)^ + 0^).
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If Cn satisfies (3.8) we hâve ffom Lemma 3

and

0 § liminf log^ + l)-l°g^ + D b 2 (r + 1} Bn-K» loglog n

I EDC(r + 1) -EDC(r) I , jjlim sup ^—f- — > 27(r) a.s.log log n

Similarly, for k > r + 1 we hâve

A EDC(k + 1) - EDC(fc)lim sup —f- —
n—»oo log log n

Thus, the monotonicity and (3.9) follows.

> 2j(k) a.s.

c) Let 0 < k < r. Since jfgj^ 0 we hâve from (3.10)
n

HmEDC(t)-EDC(r) =
n—>00 fl

with 5(k) > S(k + 1) > 0.

Note that for the AIC estimate we hâve Cn = 2 and

AlC(Jfc) - AIC(rlim inf ■

n->00 log log n
< —27(fc) + 27(r) < 0 , k> r.

□

(3.11)

So that AIC is not consistent and overestimation of the true order could occur.

As for the BIC estimate we hâve Cn — log n and the contribution of the penalty term is
larger than necessary. Let k < r, then, if n is not large enough we could hâve

(7(r) ~ 7(fc))logn > (-2 log L{k) + 2 log L(r))
and since (7(k) — 7(7-)) log n < 0 this may lead to possible underestimation. To avoid
preponderancy of the penalty term one needs to take Cn smaller than log n but sufficiently
large to guarantee the consistency of the estimator. Our Theorem 1 indicates that Cn can

be taken of the form Cn = a log log n, where the constant a satisfies a >
2\E\

\E\ -1
. In this

case, for k < r we hâve

EDC (fc) - EDC(r) > BIC (k) - BIC(r). (3.12)
It remains to détermine the optimal choice of a. Note that, for Cn = a: log log n we hâve

lim inf
n—>00

EDC(r + 1) - EDC(r)
loglog n

—2y(r + 1) + 2 lim inf

a(7(r + 1) - 7(r)).

logL(r) - logL(r)
log log n
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Since 2(log L(r) — logL(r)) has asymptotic y2 distribution (cf. Billingsley (1961)) we
log L(r) - log L[rnecessaxily hâve lim inf ■ , . < 7(r). Now, to assure

log log n

-27(r + 1) + a(7(r + 1)) - 7(7-)) > 0

2\E\ 2\E\
we need a. > -rz=r.—r. This leads to the optimal choice Cn — -——— log log n and the EDCil fi
takes a particularly simple form

mm1

EDCopt(k) = -2\ogL(k) + 2\E\k+1 log log n. (3.13)

Corollary 1. Under conditions of Theorem 1, with Cn = a log log n for some a > 0,
the optimal penalty term is given by 2|£y+1 log log n and the optimal estimator is given
by (3.13).

Our Theorem 1 also shows that the consistency of EDC criterion without the finite
boundness assumption for the true order and under weaker conditions than (1.6).

Corollary 2. If yM is ergodic and (3.8) holds then the BIC and EDC estimâtes are
consistent. Moreover, (3.9) and (3.10) hold with 7+(r) in place of 7(r).
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