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Abstract

The Efficient Determination Criterion (EDC) generalizes the AIC and BIC criteria
and provides a class of consistent estimators for the order of a Markov chain. Several
authors have addressed the question of choosing between AIC or BIC estimates. The
first tends to overestimate the order and the second, though consistent, may lead to
underestimation. All these estimators are based on penalized maximum log-likelihood
functions. In this work, we study the choice of the optimal penalty term and show
that corresponds to neither AIC nor BIC estimators.
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1 Introduction

Let X} = (X3, -+, X;) be a sample from a multiple Markov chain X = {X,}.5; of
unknown order r. Assume that X takes value on a finite state space E and that the
transition probabilities are given by

p(a'r-PIIGTII) = P(Xn+l &5 ”-r+l|-x-':|,lfr+1 = url.) (11)
where af = afaj,, = (a1,-+* ,a,) € E".

The approximation of Kullback-Leibler information measure by Neyman-Pearson statis-
tics along with the asymptotic y>-distribution of the maximum log-likelihood ratio form
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the basis to derive the Akaike’s information criterion (AIC, Akaike (1974)),
ALC(K) = ~2log L(k) +29(K), 2(K) = |BI(|B] - 1). (12)

Where |E| denotes the cardinality of the set £,

" gt y
Z V A+1|X ( 1L||Xn )’ {13)

k+l

log L(0) = Z N(a|XT log -

a

a]X

and
n—k+1

V(@ XP) = ) 1K =ar, o Xjper = )

J=1

that is, the number of occurrences of a¥ in X7 If k = 0 we take N(:|X}) = n. The sums
are taken over positive terms N(at™!|XT) > 0, or else, we convention 0/0 or 0-00 as 0. The
function (k) in the penalty term is just the number of degrees of freedom if all transition
probabilities are strictly positive. In the framework of nested model selection r is estimated
by

7, = argmin AIC(k)

0<k<K

where K is an upper bound for 7, assumed to be finite.

The BIC estimator is an alternative to the AIC, proposed by Tong (1975) and Schwarz
(1978), who showed its consistency,

BIC(k) = —2log L(k) + (k) logn, 0<k < K. (1.4)

Katz (1981) pointed out the inconsistency of AIC estimates. Other authors have addressed
the consistency problem for BIC, see, for example, Finesso et al. (1996). More recently,
Csiszar and Shields (2000) established the strong consistency for BIC, which strengthens
earlier results by removing the assumption that sets up an a priori bound on the order.

Zhao et al. (2001) proposed the EDC criterion that is strongly consistent and from
which we can derive the AIC and the BIC criteria by appropriately choosing the penalty
function,

EDC(k) = —2log L(k) + y(k)cn. (1.5)

It is shown that 7, = arg min EDC(k) is strongly consistent if ¢, > () satisfies
0<k<K

Cn

- 00 and = - 0. (1.6)
log logn n




Our Corollary 2 shows that strong consistency for EDC can be obtained under weaker
conditions and without assumption of K < 0o. An interesting problem is the best choice for
the penalty term ~y(k)c,. In fact, Csiszdr and Shields (2000) posed the problem relative to
BIC : “it remains open whether smaller penalty terms suffice for consistency in the ahsence
of a prior bound on the order”. In section 3, we justify why AIC tends to overstimate r
and indicates how BIC may lead to possible underestimation. Corollary 1 shows that the
best choice is given by

EDC,p(k) = —2log L(k) + 2|E[¥*! log log n.

2 Auxiliary Results

First, observe that for & > r the transition probabilities for the first order Markov chain
. k k ¢
Y(” = {8/15 )}n‘glr }/r{ ) T (Xna sy Xn-Hc—l)v Satley

plableh) = Ry Sty B =
— P(XTI-HC = Gg+] ‘X':;H’kfl - ai:)
= plaks]al) = plagsilaf_41). (2.1)

We will assume that Y is an ergodic Markov chain, that is, there exists an equilibrium
(stationary) distribution (-) satistying

lim [PV = )| - n(a)| = 0, Vaj€ E,

n—o0o

where v is any initial distribution. Denoting aa]™" = (a, a1, ,a,_;) we have
m(a) = Y m(B)p(arf)) = > w(aai™)p(ar|aai ™).
bY a

Using the notation

7(a) = m(a)p(aria|a}) . .. plarlaf=)), k>r (2.2)
we obtain

w(a¥) = Zﬁ(aaﬁ"l)p(ak\aijl). (2.3)

a

Which shows that 7(-) defined by (2.2) is a stationary distribution for ¥'*).

Proposition 1. Assume that the derived Markov chain Y is ergodic then for k > r
the process Y¥) is ergodic with stationary distribution given by (2.2). Moreover, if g is a
hounded function then there exist o, > 0 and 0 < p < 1 such that,

IE{g(YDIF} - B{a(Y D} < agf, (2.4)

it



where
fj:U(XlaX%"' sz)' (25)

The proof of ergodicity is immediate and (2.4) is just Proposition 3.1 from Roussas and
loannides (1987). Next, we state a version of the Law of Iterated Logarithm from Meyn
and Tweedie (1993, theorems 17.0.1 and 17.2.2), adapted for our needs.

Lemma 1. Let {Z,} be an ergodic Markov chain with finite state £ and stationary
distribution 7. Leg g be any function on E and Su(g) = >_7_, g(Z;). Then, for

0! = B (2} +2Y E{o(2)9(Z))) (2.6)
1=2
we have almost surely
anIolc \/Lﬁ[sn(g) == EW{SH(Q)H =y v U: =0,

and for 2 > 0

Sa(g) = Ex{Snl9)} Sn(9) — Ex{Sa(9)}

lim inf = =—1 and limsup =1,

nooo 4 /202nloglogn n=s00 202nloglogn

(E; : expectation with initial distribution m; a.s. : almost surely).

Lemma 2. If Y1) ig ergodic then for £ > r and ai"“ € E*! we have a.s.

lim sup [N(af+11X{!) — N(a¥|X7)p(aks1|af)]?

nloglogn = 2r(at*!)(1 - plaxs|at)). (2.7)

Proof. Define
k k 8 k : .
g (V) = 17 = o) — 1Y} = a)plags|ab)

and

1
o

Salg= il

=N

<.
Il

== N

ay ™ XT) = N(af] X])plarnlag) + o(8n).

The term o(d,) stands for

s

n

I

Ay = o(dy) if

-+ oo for any &, = oo. (2.8)

=

n
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Since B, {g( (ki) )} = 0 we have
Salg) = Ex{Sul9)} = N(a1'|XT) = N(ay|XT)p(ars]ar) + ofdn).
Also, since 7 is the stationary distribution we have by (2.2)
En{g* (")} = n(af™)(1 - plasalaf))
and for F; defined by (2.5) we have for j > 1
E{(Y* = b)) Fiupaa} = B{UY = ah)1(Xjuk = apa)| Fiana}
= 1% = ab)p(arsaaf).

Since Y](Hi) is JFjtx—1-measurable we have
E{g((* (V)| Fipen} =
= gV BIYHY) = af | Fier} - 1Y = ab)plaxalah)] = 0.

Let o, = EA@ (Y)Y = 7(a*™)[1 = plagss|ab)]. Applying Lemma 1 we have (2.7)
for a > 0. |

3 Optimal Penalty Term

For k > r the log-likelihood function satisfies

log L(k) = Y N(af™|X})log plaxs[af)

nil\'H

Y N(at™XT) log plaxsfaf_4)
k+1

Gy

log L(r) + o(dn) (3.1)

Il

where o(d,,) is defined by (2.8). Similarly, for 0 < k < 7 we can write
\( r+l1 Yn)

logﬁ(k) - ZI\( ok N Ori1-k )

r+1
Kk

X1 log + 0(6,). (3.2)

:+l k1<
For k > r define

Bt = {af sinfay) >10F andign(k)= Z (1 - plars1]ar)) (3.3)

k41 - ph+1
a; €EY
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and for 0 < k < r let

509 = X wlaplar o og { )|

= qarsila)_y i)

where g(a,1]al,,) = Z m(a5t") and

r
ah

P+ (o)

glarm|aiili ) = —, 0<k<r.
1 k41 Eué_ zurH 2+])
Lemma 3. Assume that Y is ergodic.
(i) If & > r then
. log L(k) — log L(k
log L(k) — log L(k) > o(d,) and hmsupw =v4(k) as.

T loglogn

(ii) If 0 < k < r then (k) >0, d(k) > d(k+1) and

. logL(r) —log L(k)
lify ==

n—o0 n

=§(k) as.
Proof. (a) For k > 0 we have
log L(k + 1) — log L(k) > 0(8,).
From (1.3) and Jensen'’s inequality,

( A+2ixu V -HkXT)

log L(k+1) —log L(k) = ;’\"(a.""+2|X“)lo{ :
Z C T IN@YIXY) N(egIXT)
k42| yn
: N(a3™|XT)
> —ZN +1|X l(g{z i+l|X” } 4 0(dn)
k+1 At 2

ay

(b) From (3.1) we can write for k > r

log L(k) — log L(k) = — Y _ N(af*'|X7)log(1 + z (™))

(!};+I

where 4 " )
N{ai| X{)plars|ay) — N(ay"™ |XT)
NPT

Sl

}+

(3.5)

o(6,)
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Using Large Numbers for Markov chains (see, for example, Dacunha-Castelle and Duflo
(1986)) we have
N(af|XT)p(ars1]af) os
N(ay*'|X7)

Now, we use the inequality

221 and z,(a}™) 0.

el
20

]
—2 —log(lit-z) < 2+

k+1

1 1 )
where § > 1 and ——— < 2 < ——. Since for all aft' € E¥! and n large we have

B+1 F-1

>
~T

(af*") small,

Y N(af XDzt = ofdn)

k+1
oy

and we can write as § — o

log L(k) — log L Zw il en Pl e

Afl

((LJH |Xu) i

Since - - % 7(a¥™) we have from Lemma 2,
_ logL(k) — log L(k :
imaup = B 5 (1 plapafa) = e (8. as

k+1 - phtl
a; €EEY

(c) Let 0 < k <. Since r is the true order we cannot have p(a,41(a]) = g(ar1|a]_y,;)
for all a;™' € E™!. From (3.4) we have

qlarmlal_piq)
8(k) = =) w(a}) ) plarslaf) log{ﬁ}
”l e T+ 1

and from Jensen'’s inequality

5(k) > = w(ai)log{ ) _ glarlal_y,)} =0.

al’ Ar i1

From (3.2) we have

: : 0Ty N(ai|X7) Na5qlXT)
log L(k) — log L(r) = Z N(a7H|X] )log{;’\’(cz{ll|)i'{*) 3 N _:hX}) }+ 0(0n).

r+1
"1
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By the Law of Large Numbers,

N{ﬂ‘:f}t-}-l WXT) a.s Zag_k ’n—(a’;‘l) { ‘ 5 )
7 T T T = q\Gr+1 0’1'—R‘
N(ar—kﬂ ‘Xll) Zarﬂ Zag_k W(EZH) J =

and since F is finite we have

(k) —log L
lim log L(k) — log L(r)

n—00 n

= —0(k) as.

Using (3.7) and writing

log L(k + 1) — log L(r) _ log L(k +1) — log L(k) e log L(k) — log L(r)

n n n

we conclude that d(k) > d(k +1). O

Theorem 1. Assume that £ contains at least two elements and that for all a]™' € E"*!
we have p(a,+1]aj) > 0. Moreover, assume that ¢, satisfies

t 2 2|E| ; e
f dml — =0 .
llnnlg:l loglogn ~ |E| -1 2 liilip n y o
Then,
EDC(k) — ED
lim sup w =l asn T (3.9)
e loglogn
and the limsup is increasing on k. Also,
EDC(k) — EDC .
lim M =00k NS A (F=ah (3.10)
n—0o0 n 5

and the limit is decreasing on k.

Proof. (a) Since all entries of the transition probabilities are strictly positive we have
Y ergodic.

(b) Let k > r. From (3.3) we have
74 (K) = 1K) = |BME| - 1) > 0.
From (1.5) and (3.1) we can write

EDC(r +1) - EDC(r) = —2[log L(r+1) = log L(r + 1)] + 2[log L(r) — log L(r)]
+ 2(r)(|E| = Ve, + o(6y).
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If ¢, satisfies (3.8) we have from Lemma 3

log L(r +1) = log L(r +1)

0 < liminf <2¥(r+1) as.

n—00 loglogn
R EDC(r + 1) — EDC
lim sup (et D (r) > 29(r) a.s.
n—00 log log'ﬂ

Similarly, for k > r 4+ 1 we have

) EDC(k + 1) — EDC(k)
lim sup Baloen

> 2v(k) as.
Thus, the monotonicity and (3.9) follows.
(c) Let 0 < k < r. Since % - 0 we have from (3.10)

. EDC(k) — EDC(r)

n—oo T

with d(k) > d(k+ 1) > 0. O

=20(k) as.

Note that for the AIC estimate we have ¢, = 2 and

liminf w

< -2(k <0, k> .
1n i e < =29(k)+29(r) <0, k>r (3.11)

So that AIC is not consistent and overestimation of the true order could occur.

As for the BIC estimate we have ¢, = logn and the contribution of the penalty term is

larger than necessary. Let k < r, then, if n is not large enough we could have
((r) = (k) logn > (~2log L(k) + 2log L(r))
and since (y(k) — v(r))logn < 0 this may lead to possible underestimation. To avoid
preponderancy of the penalty term one needs to take ¢, smaller than logn but sufficiently
large to guarantee the consistency of the estimator. Our Theorem 1 indicates that ¢, can
2|E|

|E] -1

be taken of the form ¢, = aloglogn, where the constant o satisfies o > . In this

case, for k < r we have
EDC(k) — EDC(r) > BIC(k) — BIC(r). (3.12)
It remains to determine the optimal choice of a. Note that, for ¢, = aloglogn we have

lim inf L b 10 = —2y(r+1)+21

it log L(r) — log L(r)
n—00 IOg lOg n

loglogn
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Since 2(log L(r) — log L(r)) has asymptotic 2 distribution (cf. Billingsley (1961)) we

log L(r) — log L(r
necessarily have lim inf w < 7(r). Now, to assure
n—00 loglogn

=(r+ 1) +a(y(r+1)) - (r)) 20

2| £ 2 E|

we need a > B—1 This leads to the optimal choice ¢, = \E\_l loglogn and the EDC
takes a particularly simple form
EDC (k) = —2log L(k) + 2| E[*" loglog n. (3.13)

Corollary 1. Under conditions of Theorem 1, with ¢, = aloglogn for some a > 0,
the optimal penalty term is given by 2|E[**!loglogn and the optimal estimator is given
by (3.13).

Our Theorem 1 also shows that the consistency of EDC eriterion without the finite
boundness assumption for the true order and under weaker conditions than (1.6).

Corollary 2. If Y") is ergodic and (3.8) holds then the BIC and EDC estimates are
consistent. Moreover, (3.9) and (3.10) hold with ~,(r) in place of v(r).
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