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DYNAMICS OF SKEW-PRODUCTS TANGENT TO THE IDENTITY

MATTHIEU ASTORG AND LUKA BOC THALER

Abstract. We study the local dynamics of generic skew-products tangent to the
identity, i.e. maps of the form P (z, w) = (p(z), q(z, w)) with dP0 = Id. More precisely,
we focus on maps with non-degenerate second di�erential at the origin; such maps have
local normal form P (z, w) = (z − z2 +O(z3), w+w2 + bz2 +O(‖(z, w)‖3)). We prove
the existence of parabolic domains, and prove that inside these parabolic domains the
orbits converge non-tangentially if and only if b ∈ ( 1

4
,+∞). Furthermore, we prove

the existence of a type of parabolic implosion, in which the renormalization limits are
di�erent from previously known cases. This has a number of consequences: under a
diophantine condition on coe�cients of P , we prove the existence of wandering domains
with rank 1 limit maps. We also give explicit examples of quadratic skew-products with
countably many grand orbits of wandering domains, and we give an explicit example
of a skew-product map with a Fatou component exhibiting historic behaviour. Finally,
we construct various topological invariants, which allow us to answer a question of
Abate.

1. Introduction

Skew-products are holomorphic self-maps of C2 of the form

P (z, w) = (p(z), q(z, w)).

An important feature of these maps is that they preserve the set of vertical lines in C2.
This means that we can view the restriction of Pn to a line {z}×C as the composition of
n entire functions on C, which allows techniques from one-dimensional complex dynamics
to be applied. The dynamics of skew-products is therefore in some ways reminiscent of
the dynamics of one-variable maps; however, in recent years, several important results
have shown that these maps have rich and interesting dynamics, see [20, 25, 26, 31]. For
example, in [7], it was shown that there exists polynomial skew-products, i.e. P is a
polynomial map, with wandering Fatou components, a dynamical phenomenon that is
known not to occur for polynomial maps in one complex dimension. The proof of the
main result in that paper involves the adaptation of parabolic implosion to the skew-
product setting (see also [8, 10, 6] for further results on parabolic implosion in several
complex variables). Polynomial skew-products were also used in [13] and [29] to construct
robust bifurcations, i.e. open sets contained in the bifurcation locus of the family of
endomorphisms of P2 of given algebraic degree d ≥ 2.

Given a germ of a holomorphic self-map P of C2 that �xes the origin, we say that P
is tangent to the identity if it is of the form P = Id + Pk(z, w) + O(‖(z, w)‖k+1), where
k ≥ 2 and Pk : C2 → C2 is a non-trivial homogeneous polynomial map of degree k. The
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study of local dynamics of germs tangent to the identity has received signi�cant attention
over the last decades. For general germs of (C2, 0) tangent to the identity, a complete
description of the dynamics on a full neighborhood of the origin is for now far out of
reach. Much e�ort has been instead devoted to investigating the existence of invariant
manifolds or invariant formal curves on which the dynamics converges to the origin (see
e.g. [17, 1], and more recently [22, 21]).

In this paper we investigate the local dynamics of skew-products P which are tangent
to the identity and have a non-degenerate second order di�erential at the origin. Up to
conjugacy by a linear automorphism of C2, such maps have the form

P : (z, w) 7→
(
z − z2 +O(z3), w + w2 + bz2 +O(‖(z, w)‖3)

)
,

and after a second conjugacy by an automorphism of C2 of the form

(z, w) 7→ (z, eAzw +Bz2),

we may �nally assume that P is of the form P (z, w) = (p(z), q(z, w)) with

(1.1)

{
p(z) := z − z2 + az3 +O(z4)
q(z, w) := w + w2 + bz2 + b0,3w

3 + b3,0z
3 +O(‖(z, w)‖4)

where a, b, b0,3, b3,0 ∈ C.
Throughout this paper, we will be using the notation qz(w) := q(z, w) (in particular,

q0 = q(0, ·)).

A study of the local dynamics of skew-products in the case b = 0 in (1.1) has been
undertaken in [31], where a full description of the dynamics on a neighborhood of a
parabolic �xed point at the origin was achieved. However, most of the di�culty and
richness of the dynamics (including the phenomenon of parabolic implosion and the
existence of wandering domains) comes precisely from this term bz2.

In fact, although maps of the form (1.1) are generic among polynomial skew-products
which are tangent to the identity (after analytic conjugacy), we will see that they have
considerably complicated local dynamics. We see the investigation of those maps (1.1)
and the results of this paper as a �rst step (generic case) towards the systematic analysis
of the local dynamics of all polynomial skew-products which are tangent to the identity.

1.1. Parabolic domains and parabolic implosion.

De�nition 1.1. Let P be a holomorphic self-map of C2 with a parabolic �xed point at the
origin. A parabolic domain of P is a maximal connected domain U ⊂ C2 such that the
origin is contained in the boundary of U and the iterates Pn|U converges locally uniformly

on U to the origin.

We begin by discussing the existence of parabolic domains for maps of the form (1.1),
which depends only on b:

Theorem 1.2. Let P be a map of the form (1.1). Then

(1) If b ∈ (1
4 ,+∞), the map P has at least two invariant parabolic domains, in which

orbits converge non-tangentially to the origin.
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(2) If b ∈ C\(1
4 ,+∞), the map P has an invariant parabolic domain, in which

each point is attracted to the origin along trajectories tangent to one of its non-
degenerate characteristic directions.

The main novelty here lies in the �rst statement of this theorem, while the second
statement can be deduced from results of Hakim and Vivas. Invariant parabolic domains
in which points converge non-tangentially to the origin are also sometimes called spiral
domains (see the beginning of Section 2 for a precise de�nition). Such domains were �rst
constructed by Rivi in her thesis [27, Proposition 4.4.4]. In [28], Rong gave su�cient
conditions for the existence of spiral domains for some class of maps tangent to the
identity (see [28, Theorem 1.4]). However, his result does not apply to maps of the form
(1.1).

From now on we will assume that b > 1
4 , and we introduce the following notations:

(1.2) c :=

√
4b− 1

2
, α0 := eπ/c, β0 := (b0,3 − a)(α0 − 1).

Observe that since b > 1
4 , we have c > 0 and α0 > 1.

In what follows we will see that in the case b > 1
4 and β0 ∈ R, there is parabolic

implosion, which has many interesting dynamical consequences.

De�nition 1.3. Let P be of the form (1.1), and α, σ ∈ C. Its generalized Lavaurs map
of phase σ and parameter α is de�ned as

(1.3) L(α, σ; z, w) := (φoq0)−1
(
αφιq0(w) + (1− α)φιp(z) + σ

)
,

where φιp is the incoming Fatou coordinate of p and φ
ι/o
q0 are the incoming and outgoing

Fatou coordinates of q0 respectively.

The de�nitions and basic properties of Fatou coordinates are recalled in Subsection 3.1;
for some more background on Fatou coordinates, Lavaurs maps and horn maps, see e.g.
the Appendix of [7]. The generalized Lavaurs map is de�ned for (z, w) ∈ Bp×Bq0 , where
Bp and Bq0 are basins of a parabolic �xed point at the origin for p and q0 respectively.
If α = 1, then the map w 7→ L(α, σ; z, w) does not depend on z and coincides with the
classical Lavaurs map of phase σ of the one-variable polynomial q0. Moreover, generalized
Lavaurs maps satisfy the following functional relation:

(1.4) L(α, σ; p(z), q0(w)) = q0 ◦ L(α, σ; z, w) = L(α, σ + 1; z, w)

for all (z, w) ∈ Bp × Bq0 .

De�nition 1.4. Given real numbers α > 1 and β ∈ R we say that a strictly increasing
sequence of positive integers (nk)k≥0 is (α, β)-admissible if and only if its phase sequence
(σk)k≥0, de�ned by σk := nk+1 − αnk − β lnnk, is bounded. In the case where β = 0, we
will simply call such a sequence α-admissible.

Observe that for any α > 1 and β ∈ R, there always exists (α, β)-admissible sequences:
it su�ces to de�ne inductively nk+1 := bαnk + β lnnkc and take n0 ∈ N large enough,
where b·c denotes the �oor function. However, describing the phase sequence is in general
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a di�cult problem; for instance, even in the particular case of the 3
2 -admissible sequences

nk+1 = b3
2nkc, the phase sequence is not fully understood (see [12]). An interesting

question is the existence of (α, β)-admissible sequences with converging phase sequence,
which will be discussed in detail below.

The following is the main technical result of this paper.

Main Theorem. Let P be a map of the form (1.1). Let α0, β0 be as in (1.2), and
assume that b > 1

4 and β0 ∈ R. Let (nk)k≥0 be an (α0, β0)-admissible sequence and let
(σk)k≥0 denote its phase sequence. Then

Pnk+1−nk(pnk(z), w) = (0,L(α0,Γ + σk; z, w)) + o(1) ( as k → +∞)

with uniform convergence on compacts in Bp×Bq0 and where Γ is a constant depending
only on a, b, b0,3, b3,0 (see (4.1) for its explicit expression).

See Remark 4.13 for a discussion of the case where b > 1
4 and β0 /∈ R. This technical

Lavaurs-type theorem has a number of consequences about the local dynamics of the
maps P , which we will now state.

1.2. Existence of wandering domains and Pisot numbers. The Fatou set is the
largest open set in C2 on which the family of iterates (Pn)n∈N is normal. A Fatou compo-
nent Ω is a connected component of the Fatou set, and it is called wandering if for every
(k,m) ∈ N× N∗, we have P k+m(Ω) ∩ P k(Ω) = ∅. A non-wandering Fatou component is
a pre-periodic Fatou component. The �rst examples of polynomial maps with wandering
Fatou components were introduced in [7] by Bu�, Dujardin, Peters, Raissy and the �rst
author (see also [6]); other examples were constructed by Berger and Biebler in [9], by
completely di�erent methods, for Hénon maps and polynomial endomorphisms of P2.
In the opposite direction, Ji gave in [18] and [19] su�cient conditions to guarantee the
absence of wandering domains near an attracting invariant �ber for a skew-product map.

The examples from [7] are polynomial skew-products of the form

(z, w) 7→
(
p(z), q(w) +

π2

4
z

)
with p(z) = z − z2 + O(z3) and q(w) = w + w2 + O(w3), and are not tangent to the
identity at the origin. One can simplify the investigation of these maps by passing to
a �nite branched cover y2 = z. This brings these maps to a form that is tangent to
the identity, but with degenerate second order di�erential at the origin. In particular,
these maps are not of the form (1.1) considered in the present paper, which explain the
di�erence in dynamical features.

De�nition 1.5. We de�ne the rank of a Fatou component Ω as the maximal rank of
dhx, where x ∈ Ω and h ranges over all Fatou limit functions of (Pn)n≥0 on Ω.

Note that for endomorphism of C2, any wandering domain either has rank 0 (all Fatou
limits are constant) or rank 1. So far, the only known examples of wandering domains
in C2 have rank 0 (that is, the examples constructed in [7], [6] and [9]). In other words,
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Theorem 1.6 below gives the �rst examples of rank 1 wandering domains in complex
dimension 2.

Theorem 1.6. Let P be a map of the form (1.1), and assume that there exists an
(α0, β0)-admissible sequence with converging phase sequence. Then P has a wandering
domain of rank 1.

We are therefore led to the question: for which values of α and β does such a sequence
exist? Before stating an answer, recall the de�nition of Pisot numbers:

De�nition 1.7. A real algebraic integer α > 1 is called a Pisot number if all of its Galois
conjugates are in the open unit disk in C (in particular, integers ≥ 2 are Pisot numbers).

The next de�nition might not be standard terminology, but it will be convenient for
our purposes:

De�nition 1.8. We say that α > 1 has the Pisot property if there exist a real number ζ
such that ‖ζαk‖ → 0, where ‖ · ‖ denotes the distance to the nearest integer.

We recall here two classical results from number theory that justify the terminology
of "Pisot property":

(Pisot): Let α > 1 be an algebraic number and ζ be a non-zero real number such that
‖ζαk‖ → 0. Then, α is a Pisot number and ζ lies in the �eld Q(α).

(Viiayaraghavan): There are only countably many pairs (ζ, α) of real numbers such
that ζ 6= 0, α > 1, and the sequence ({ζαk})k≥0 has only �nitely many limit points.
Moreover if (ζ, α) is such a pair where α is an algebraic number, then α is a Pisot
number and ζ lies in the �eld Q(α). Here {·} denotes the fractional part of the number.

In particular, an algebraic number has the Pisot property if and only if it is a Pisot
number. Moreover, it is a long-standing conjecture known as the Pisot-Viiayaraghavan
problem that Pisot numbers are the only real numbers with the Pisot property.

De�nition 1.9. We say that a sequence (σk)k≥0 converges to a cycle of period ` if the
subsequence (σk`+j)k≥0 converges for every 0 ≤ j < `.

We can now state an almost sharp diophantine condition on α and β for the existence
of an (α, β)-admissible sequence with converging phase:

Theorem 1.10. Let α > 1 and β ∈ R. Then
(1) There exists an α-admissible sequence with phase sequence converging to a cycle

if and only if α has the Pisot property. Moreover, in that case there exists an
α-admissible sequence with phase sequence converging to 0.

(2) (a) If there exists an (α, β)-admissible sequence with phase sequence converging
to a periodic cycle, then α has the Pisot property.

(b) Conversely, if α has the Pisot property and β = α−1
lnα

k1
k2
, where k1 and k2 are

coprime integers with k2 ≥ 1, then there exists an (α, β)-admissible sequence
whose phase sequence converges to a cycle of period k2.
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(a) α0 = 2 (b) α0 = 1+
√
5

2 (non-integer Pisot number)

Figure 1. Vertical slices z = constant of quadratic skew-products (1.5)
for two di�erent values of α0. In red, wandering domains; in blue, the
two parabolic basins; in shades of grey, the basin of in�nity. Observe that
�gure (A) is q0-invariant while �gure (B) is not.

Note that if the Pisot-Viijayaraghavan conjecture is true, then there exists an α-
admissible sequence with converging phase sequence if and only if α is a Pisot number.

It is natural to ask whether the condition of Theorem 1.6 is necessary or not. In the case
that there are no (α, β)-admissible sequences whose phase sequence converge to a periodic
cycle, it means that any wandering Fatou component whose orbit remains in Bp × Bq0
would have to remain bounded under a sequence of non-autonomous compositions of
generalized Lavaurs maps with non-periodic sequences of phases. Proving rigorously
whether such a thing is possible or not is likely to be very di�cult, but it seems reasonable
to expect that for generic values α it is not the case.

If we now specialize to the case of degree 2, Theorems 1.6 and 1.10 imply that for any
Pisot number α0 > 1, the map

(1.5) (z, w) 7→
(
z − z2, w + w2 +

(
1

4
+

π2

(lnα0)2

)
z2

)
has a wandering domain of rank 1 (see Figure 1). Those are the �rst completely explicit
examples of polynomial maps with wandering domains, as well as the �rst examples in
degree 2 and the �rst examples of wandering domains with rank 1.

Recall that two Fatou components Ω1 and Ω2 are in the same grand orbit (of Fatou
components) for P if there exists n1, n2 ∈ N such that Pn1(Ω1) = Pn2(Ω2). One may
ask whether for polynomial endomorphisms of P2 there exists a bound on the number of
grand orbits of wandering domains that would depend only on the degree. The following
theorem gives a negative answer:
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Theorem 1.11. Let P be of the form (1.5) and let α0 > 1 be an integer. Then P has
countably many distinct grand orbits of rank 1 wandering domains.

Note that contrary to something like the classical Newhouse phenomenon, we do not
use perturbative arguments in the proof of Theorem 1.11, and the maps considered are
completely explicit. In fact, more precisely, we construct an injective map from the
set of hyperbolic components in a speci�c family of modi�ed horn maps into the set of
grand orbits of wandering Fatou components of P , see Theorem 6.6 and the beginning
of Section 6.

1.3. Topological invariants and horn maps. We will now investigate a few conse-
quences of the Main Theorem on the topological classi�cation of skew-products tangent
to the identity.

Recall that in dimension one, the topological classi�cation of germs tangent to the
identity is just given by the parabolic multiplicity, that is, the order of vanishing of
f − Id at the origin. However, the analytic classi�cation of germs tangent to the iden-
tity is extremely complicated: by a result proved independantly by Écalle and Voronin
([32], [14]) the so-called horn maps (also called Écalle-Voronin invariant) are complete
invariants. These horn maps are themselves two holomorphic germs �xing 0 and ∞
respectively; see e.g. the Appendix in [7] for more details.

To our knowledge, no complete topological classi�cation is available for germs tangent
to the identity in C2. Our results imply that such a classi�cation must in fact also be
complicated even in the seemingly simple class of skew-products; in fact, it resembles the
analytic classi�cation for one-dimensional parabolic germs.

De�nition 1.12. Let us de�ne the lifted horn map of P of phase σ by

(1.6) H̃σ(Z,W ) := (Z,α0 · φιq0 ◦ (φoq0)−1(W ) + (1− α0)Z + σ) = (Z, H̃Z,σ(W ))

The map H̃σ satis�es the functional relation H̃σ(Z + 1,W + 1) = H̃σ(Z,W ) + (1, 1), so
it descends to a map Hσ de�ned on C2/Z(1, 1), which we call the horn map of phase σ
of P .

Remark 1.13. Observe that we have the following semi-conjugation:

(1.7) (φoq0)−1 ◦ (H̃Z,σ(W )) = L(α0, σ; z, (φo)−1(W ))

where Z = φιp(z).

The following is the main result of this subsection:

Theorem 1.14. Assume that two maps P1 and P2 of the form (1.1) are topologically
conjugated on a neighborhood of the origin, and let H i

σ denote their respective horn maps.
Then there exists σ1, σ2 ∈ C such that H1

σ1 and H2
σ2 are also topologically conjugated on

C2/Z.

The following Proposition will be needed in order to prove Theorem 1.14, but it also
has an intrinsic interest:

Proposition 1.15. The real numbers α0 and β0 from (1.2) are topological invariants
(and therefore so is b).
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Finally, using Theorem 1.14, we can obtain:

Corollary 1.16. If P1 and P2 are topologically conjugated near (0, 0), then the number
of critical points of qi in Bqi is the same. In particular, there is no k ∈ N such that the
local topological conjugacy class of maps of the form (1.1) depend only the k-jet of P at
the origin.

In [2] Abate raised the question whether maps of the form

(3α,β,1) : f(z, w) = (z+αz2+(1−α)zw,w+βw2+(1−β)zw), with α+β 6= 1 and α, β 6= 0

are topologically conjugated to each other. Using Proposition 1.15 we can now answer
this question negatively. Indeed, observe that for α = 1 and β 6= 0 this map is conjugate,
via a linear automorphism, to a map

(z, w) 7→
(
z − z2, w + w2 +

1− β2

4
z2

)
which is of the form (1.1).

1.4. Fatou components with historic behaviour. In [9], Berger and Biebler con-
struct wandering Fatou components Ω for some maps f (which are Hénon maps or
endomorphisms of P2) that have historic behaviour, meaning that for any x ∈ Ω, the
sequence of empirical measures

en(x) :=
1

n

n∑
k=1

δfk(x)

does not converge.
To our knowledge, these are the only known examples so far of Fatou components

for endomorphisms of Pk or for Hénon maps with historic behaviour. Note that in
the case of the wandering Fatou components constructed in [7] and [6], the sequences
(en)n∈N converge to the dirac mass centered at the parabolic �xed point at the origin.
In dimension 1, it follows easily from the Fatou-Sullivan classi�cation that no Fatou
components of a rational map on P1 can have historic behaviour; and for moderately
dissipative Hénon maps, it follows from the classi�cation of Lyubich and Peters [23] that
periodic Fatou components cannot have historic behaviour.

Using the Main Theorem of this paper, we give here new, explicit examples of polyno-
mial skew-products that extend to endomorphisms of P2 which have a Fatou component
with historic behaviour:

Corollary 1.17. Let P (z, w) = (p(z), q(z, w)) be a polynomial skew-product satisfying
the following properties:

(1) p(z) = z − z2 +O(z3)
(2) P has two di�erent �xed points tangent to the identity of the form (0, w1) and

(0, w2), which both satisfy the conditions that αi ∈ N∗ and βi = 0, with the same
notations as in the Main Theorem and in appropriate local coordinates.

Then P has a Fatou component Ω with historic behaviour. More precisely, for any
(z, w) ∈ Ω, the sequences (en(z, w))n∈N accumulates on

µ1 :=
α1α2 − α2

α1α2 − 1
δ(0,w1) +

α2 − 1

α1α2 − 1
δ(0,w2)
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and on

µ2 :=
α1 − 1

α1α2 − 1
δ(0,w1) +

α1α2 − α1

α1α2 − 1
δ(0,w2).

More explicitly, these conditions are given by:

(1) p(z) = z − z2 +O(z3)
(2) P has two di�erent �xed points tangent to the identity of the form (0, w1) and

(0, w2), with q′′0(wi) = 2

(3) d3

dz3 |z=0
p(z) = d3

dw3 |w=wi
q0(w)

(4) If bi := 1
2
∂2

∂z2 (z,w)=(0,wi)
q(z, w), then bi > 1

4 , and αi := e
2π√
4bi−1 ∈ N∗.

Example 1.18. With
p(z) := z − z2 + z3 + z7

and q(z, w) := q0(w) + a(z) with

q0 := w + w2 + w3 − 35

3
w4 +

39

2
w5 − 13w6 +

19

6
w7

and

a(z) :=

(
1

4
+

π2

(ln 2)2

)
z2(1− z)2,

the map P satis�es the conditions above, with w1 = 0 and w2 = 1, αi = 2 and βi = 0.

Although we believe that the Fatou component constructed in Corollary 1.17 is wan-
dering, we were not able to prove so. Note however that if it is not the case, then this
would be the �rst example of an invariant (for some iterate of P ) non-recurrent Fatou
component whose limit sets depend on the limit map, which would give an a�rmative
answer to [23, Question 30] for the case X = C2 and X = P2.

Structure of the paper. In Section 2, we recall classical properties of parabolic curves
and prove Theorem 1.2. In Section 3, we introduce some notations, recall some basic
facts concerning Fatou coordinates, and introduce approximate Fatou coordinates. We
also prove some important estimates on the error function A which measures how close
the dynamics is to a translation in these approximate Fatou coordinates. The Main
Theorem is proved in Section 4. Finally, Sections 5, 6, 7, 8 and 9 are devoted to the
proofs of Corollary 1.6, Theorem 1.11, Theorem 1.10, Theorem 1.14 and Corollary 1.17
respectively.

Acknowledgements. We thank Marco Mancini for invaluable help in writing the code
used to produce Figure 3, and Arnaud Chéritat for helpful discussions.

2. Parabolic domains

Let P be a holomorphic germ �xing the origin which is tangent to the identity of order
k ≥ 2, i.e. a map with a homogeneous expansion P = Id +Pk +Pk+1 + . . . where Pk 6≡ 0.
We say that v ∈ C2 is a characteristic direction for P if there exists a λ ∈ C so that
Pk(v) = λv. If λ 6= 0 then v is said to be non-degenerate otherwise, it is degenerate. The
director of a characteristic direction v is an eigenvalue of a linear operator

d(Pk)[v] − Id : T[v]P1 → T[v]P1.
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A parabolic curve for P is an injective holomorphic map ϕ : ∆ → C2, satisfying the
following properties:

(1) ∆ is simply connected domain in C with 0 ∈ ∂∆
(2) ϕ is continuous at the origin and ϕ(0) = (0, 0),
(3) ϕ(∆) is invariant under P and Pn|ϕ(∆) → (0, 0) uniformly on compact subsets.

We say that a parabolic curve is tangent to [v] ∈ P1 if [ϕ(ξ)] → [v] as ξ → 0 in ∆.
This implies that for any point given point z in the parabolic curve the orbit (Pn(z))
converges to the origin tangentially to v, i.e. [Pn(z)] → [v] in P1. We now recall the
following classical result due to Hakim [16, 17]:

Theorem 2.1. Let P : C2 → C2 be a holomorphic germ �xing the origin which is tangent
to the identity of order k ≥ 2. Then for any non-degenerate characteristic direction v
there exist (at least) k − 1 parabolic curves for P tangent to [v]. Moreover if the real
part of the director of a non-degenerate characteristic direction v is strictly positive, then
there exists an invariant parabolic domain in which every point is attracted to the origin
along a trajectory tangent to v.

From now on let P be a map of the form (1.1) and observe that its characteristic
directions are given by the equations{

−z2 = λz
w2 + bz2 = λw

Then, aside from the trivial parabolic curve z = 0 with non-degenerate characteristic
direction (0, 1) , there are two parabolic curves z 7→ (z, ζ±(z)) which are tangent to the
non-degenerate characteristic directions (1, c±), where c± are the roots of

(2.1) u2 + u+ b = 0.

We break Theorem 1.2 into the following two propositions.

Proposition 2.2. If b ∈ C− (1
4 ,∞), then the map P has an invariant parabolic domain,

in which each point is attracted to the origin along trajectories tangent to one of its
non-degenerate characteristic directions.

Proof. We have two cases:

Case 1: Let b ∈ C − [1
4 ,∞). A straightforward computation shows that directors

of P in the directions (0, 1) and (1, c±) are −1
2 and −1− 2c± respectively. Since c± are

the solutions of the equation (2.1) it follows that c± = −1
2 ±

x
2 , where x is the solution

of x2 = 1 − 4b, hence Re(−1 − 2c±) = ∓Re(x). Observe that for b ∈ C − [1
4 ,∞) we

have Re(x) 6= 0, hence exactly one of the directions (1, c±) has a director with a strictly
positive real part. By Theorem 2.1 we know that if the real part of the director of a
non-degenerate characteristic direction v is strictly positive, then there is an invariant
parabolic domain in which each point is attracted to the origin along trajectories tangent
to v

Case 2: Let b = 1
4 . First, observe that as b→

1
4 , the characteristic directions (1, c±)

are getting closer to each other, and in the limit they merge to a single characteristic
direction v = (1,−1

2). In the terminology of Abate-Tovena [3], v is an irregular charac-
teristic direction, hence by the result of Vivas [30, Theorem 1.1] there exists an invariant
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parabolic domain, in which each point is attracted to the origin along trajectories tangent
to v.

�

Proposition 2.3. If b > 1
4 , then the map P always has at least two invariant parabolic

domains, where points converge non-tangentially to the origin.

Proof. Let z 7→ (z, ζ±(z)) be a parabolic curve tangent to a non-degenerate characteristic
direction (1, c±). Since it is invariant under P , it has to satisfy the equality qz(ζ±(z)) =
ζ±(p(z)). A direct computation then gives us ζ±(z) := c±z + O(z2). For z close to the
origin, we can de�ne a change of coordinates ψ±(z) = (z, w + ζ±(z)) which conjugates
our map P to a map of the form

(2.2) (z, w) 7→ (z − z2 +O(z3), w + w2 + 2c±zw +O(zw2, z2w,w3)),

where c± = −1
2 ± i

x
2 is the solution of the equation u2 + u+ b = 0 and x > 0. Note that

(1, 0) is now a non-degenerate characteristic direction of this map. For the rest of the
proof let us focus only on the case of c+; in the case of c−, one can follow computations
verbatim with an appropriate change of sign.

By making a blow-up w = uz of the map (2.2), we obtain

(2.3) P̃ (z, u) = (z − z2 +O(z3), u(1 + ixz) + zu2 +O(z2u)).

whereO(z2u) is holomorphic on some neighbourhood of the origin. Let us de�ne D(r, r) =
{z ∈ C : |z − r| < r} and Dr := {(z, u) | |u| < r, z ∈ D(r, r)} and assume that r is
su�ciently small so that p(D(r, r)) ⊂ D(r, r).

Lemma 2.4. There exists a sequence of real numbers 0 < rj < r such that for any

(z0, u0) ∈ D :=
⋃
j≥1{(z, u) | |u| < rj , z ∈ D(r, r j

j+1)} we have P̃n(z0, u0) ∈ Dr for all

n ≥ 0. Moreover, the sequence P̃n(z0, u0) is bounded away from the origin.

Proof of Lemma 2.4. First observe that for su�ciently small r > 0, there exists a holo-
morphic function h(z) such that

P̃ (z, u) = (p(z), q̃(z, u)) = (z − z2 +O(z3), ueixz+z
2h(z) + zu2 +O(z2u2)).

Let j ∈ N∗ and z0 ∈ Kj := D(r, r j
j+1). Note that we have Re(pn(z0)) = 1

n + O
(

lnn
n2

)
and Im(pn(z0)) = O

(
lnn
n2

)
, with uniform bounds depending only on Kj for all n ≥ 1 (see

Section 3). Using this, we de�ne

fn(u) := proj2(P (pn−1(z0), u)) = ue
ix
n

+Θn(z0) +
u2

n
+O

(
u2 lnn

n2

)
where Θn = O

(
lnn
n2

)
depends only on z0 and is uniformly bounded onKj and the constant

in O
(
u2 lnn
n2

)
is uniform on Kj × D(0, r).

We need to prove that there exists an 0 < rj < r such that for every u0 ∈ D(0, rj) and
every z0 ∈ Kj we have (zn, un) := P̃n(z0, u0) ∈ Dr for all n ≥ 1. In particular we need
to prove that |un| < r for all n ≥ 1.
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Observe that un = (fn ◦ . . . ◦ f1)(u0) for all n ≥ 1 and let U := τ(u) = − 1
u . For n ≥ 1

we de�ne

gn(U) := (τ ◦ fn ◦ τ−1)(U) = Ue−
ix
n
−Θn +

1

n
+O

(
lnn

n2
,

lnn

Un2

)
.

It su�ces to prove that there exists 0 < rj < r such that for all (z0, U0) where z0 ∈ Kj

and |U0| > 1
rj

we have |gn ◦ . . . ◦ g1(U0)| > 1
r for all n ≥ 1.

Observe that since x is real, there exists C̃j > 0 such that

C̃−1
j <

∣∣∣e−∑n−1
k=1

ix
k

+Θk
∣∣∣ < C̃j

on Kj for all n ≥ 1. By making a non-autonomous change of coordinates

ψn(U) = e−
∑n−1
k=1

ix
k

+ΘkU,

we obtain

Gn(U) = ψ−1
n+1 ◦ gn ◦ ψn(U)

= U +
1

n
e
∑n
k=1

ix
k

+Θk +O

(
lnn

n2
,

lnn

Un2

)
= U +

1

n
eix lnn+ixγ+h(z0) +O

(
lnn

n2
,

lnn

Un2

)
where h :=

∑∞
k=1 Θk is a holomorphic function of z0. Here, we have used the fact that∑n

k=1
1
k = γ + lnn+ O( 1

n) and that
∑n

k=1 Θk(z1) = h(z0) + O
(

lnn
n

)
, where the bounds

are uniform on Kj .
Since x 6= 0 is real, it follows from Abel's summation formula that there exists a

constant C > 0 such that ∣∣∣∣∣
n∑
k=1

1

k
eix ln k

∣∣∣∣∣ =

∣∣∣∣∣
n∑
k=1

k−(1−ix)

∣∣∣∣∣ < C

for all n ≥ 1. This implies that Gn ◦ . . . ◦ G1(U) = U + O(1) for all n ≥ 1, where the
constant in O(1) depends only on Kj .

Next observe that gn ◦ . . . ◦ g1(U) = ψn+1 ◦Gn ◦ . . . ◦G1(U), hence there exists Aj > 0
such that for all |U0| > 1

r and all z0 ∈ Kj we have

C̃−1
j |U0| −Aj < |gn ◦ . . . ◦ g1(U0)| < C̃j |U0|+Aj

for all n ≥ 1.
From here it immediately follows that there exists an 0 < rj < r such that for every

|U0| > 1
rj

we have |gn ◦ . . . ◦ g1(U0)| > 1
r for all n ≥ 1. Moreover for every |U0| > 1

rj
the

sequence gn ◦ . . . ◦ g1(U0) is bounded away from in�nity.
Therefore we have proven that for any (z0, u0) ∈ Kj ×D(0, rj), we have (zn, un) ∈ Dr

for all n ≥ 0, where the sequence (un)n≥0 is bounded away from the origin. This concludes
the proof of Lemma 2.4. �
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Let us resume with the proof of Proposition 2.3. Let Ω := {(z, zu) | (z, u) ∈ D}: it is
a connected open set whose boundary contains the origin and such that P (Ω) ∩ Ω 6= ∅.
From the Lemma above, it immediately follows that the iterates Pn|Ω converge to the
origin locally uniformly on Ω, which is therefore contained in some invariant parabolic
domain. It remains to prove that orbits of points converge non-tangentially to the origin
in that parabolic domain. Indeed, let (z0, w0) ∈ Ω and (zn, wn) = Pn(z0, w0) and observe
that since zn 6= 0, for all n ∈ N we have [zn : wn] = [1 : wn

zn
] = [1 : un]. From the proof

of Lemma 2.4 we can see that every limit map of the iterates (P̃n) on D is of the
form (z, u) 7→ (0, η(z, u)), where η is a non-constant holomorphic function and ∂η

∂u 6≡ 0.
Therefore, there is no vector v ∈ C2 such that the sequence [Pn(z, w)] would converge to
[v] in P1 for all (z, w) ∈ Ω.

�

3. Fatou coordinates and properties of the error function

3.1. Fatou coordinates. Consider a holomorphic function f(z) = z+a2z
2+a3z

3+O(z4)
where a2 6= 0. For r > 0 small enough we de�ne incoming and outgoing petals

Pιf = {|a2z + r| < r} and Pof = {|a2z − r| < r}.

The incoming petal Pιf is forward invariant, and all orbits in Pιf converge to 0. Moreover,
any orbit which converges to 0 but never lands at 0 must eventually be contained in Pιf .
Therefore we can de�ne the parabolic basin as

Bf =
⋃
f−n(Pιf ).

The outgoing petal Pof is backwards invariant, with backwards orbits converging to 0.
On Pιf and Pof one can de�ne incoming and outgoing Fatou coordinates φιf : Pιf → C

and φof : Pof → C, solving the functional equations

φιf ◦ f(z) = φιf (z) + 1 and φof ◦ f(z) = φof (z) + 1,

where φιf (Pιf ) contains a right half plane and φof (Pof ) contains a left half plane. By the
�rst functional equation the incoming Fatou coordinates can be uniquely extended to the
attracting basin Bf . On the other hand, the inverse of φof , denoted by (φof )−1, can be
extended to the entire complex plane, still satisfying the functional equation

f ◦ (φof )−1(Z) = (φof )−1(Z + 1).

This entire function is then called an outgoing Fatou parametrization. We note that both
incoming and outgoing Fatou coordinates are (on the corresponding petals) of the form

φιf (z) = − 1

a2z
− b log

(
− 1

a2z

)
+ o(1)

and

φof (z) = − 1

a2z
+ b log

(
1

a2z

)
+ o(1)

where b := 1− a3
a22
.
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Finally note that for every z0 ∈ Bf we have

zk := fk(z0) = (φιf )−1(φιf (z0) + k)

= − 1

a2

(
k + b ln k + φιf (z0) +O

(
ln k

k

))−1

= − 1

a2

(
1

k
− b ln k

k2
−
φιf (z0)

k2

)
+O

(
ln2 k

k3

)
,

hence Re(a2zk) = − 1
k +O

(
ln k
k2

)
and Im(a2zk) = O

(
ln k
k2

)
.

3.2. The error functions. Here, we introduce and study properties for one of the main
objects to appear in our arguments: the functions Ã(z, w), A(z, w) and A0(z).

Let P be a skew-product of the form (1.1), and recall that v = (1, c±) are two non-
degenerate characteristic directions of P , where c± := −1

2 ± ic. From Hakim's explicit
construction [16], we know that there are two parabolic curves z 7→ (z, ζ±(z)) associated
to these directions, which are both graphs over a small petal Pιp. Since parabolic curves
are invariant under P , it follows that the functions ζ±(z) satisfy the following functional
equation:

qz(ζ
±(z)) = ζ±(p(z)).

From here we can easily compute the �rst few terms of their (formal) power series ex-
pansion:

ζ±(z) := c±z +

(
c±Θ +

a3 + (b− 1)b0,3
2

)
z2 +O(z3),

where Θ := b0,3 +
a3−b0,3+b3,0

2b

De�nition 3.1. Let

ψz(w) :=
1

2ic
log

(
ζ+(z)− w
w − ζ−(z)

)
where log is the principal branch of logarithm and let

ψι/oz (w) := ψz(w)± π

2c
.

Note that with this choice of branch, ψz is de�ned on C\Lz, where Lz is the real line
through ζ+(z) and ζ−(z) minus the segment [ζ−(z), ζ+(z)]. In particular, ψιz and ψ

o
z are

both de�ned in a disk centered at w = 1
2(ζ+(z) + ζ−(z)) whose radius is of order z.

De�nition 3.2. Let

(1) A(z, w) := ψ
ι/o
p(z) ◦ qz(w)− ψι/oz (w)− z

(2) A0(w) := − 1
q0(w) + 1

w − 1

Note that the formula for A(z, w) does not depend on whether the ingoing or outgoing
coordinate ψz is used, and is therefore well de�ned.

Proposition 3.3. We have that:

(1) A0(w) = (b0,3 − 1)w +O(w2) is analytic near zero.
(2) There exists r > 0 such that for all z 6= 0 in a neighborhood of zero, A(z, ·) is

analytic on the disk D(0, r).
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Proof. The item (1) is an easy computation. For (2), observe that

A(z, w) =
1

2ic
log

(
qz(w)− ζ+(p(z))

qz(w)− ζ−(p(z))

)
− 1

2ic
log

(
w − ζ+(z)

w − ζ−(z)

)
− z

=
1

2ic
log

(
qz(w)− ζ+(p(z))

w − ζ+(z)
:
qz(w)− ζ−(p(z))

w − ζ−(z)

)
− z

=
1

2ic
log

(
qz(w)− qz(ζ+(z))

w − ζ+(z)
:
qz(w)− qz(ζ−(z))

w − ζ−(z)

)
− z.

It follows that A(z, w) has removable singularities at w = ζ±(z) unless these are critical
points. But up to taking r > 0 small enough, D(0, r) contains no critical point of q0.

�

Proposition 3.4. We have

A(z, w) = zA0(w) +

(
Θ +

1

2
− b0,3

)
z2 +O(z3, z2w)

where the constants in the O are uniform for (z, w) ∈ C2 near (0, 0) (with z ∈ Pιp).

Proof. Let w ∈ K be a compact in C∗. By a straightforward computation we obtain

1

2ic
log

(
w − ζ+(z)

w − ζ−(z)

)
=

1

2ic

(
ζ−(z)− ζ+(z)

w
− (ζ+(z))2 − (ζ−(z))2

2w2

)
+O(z3)

= − z
w
− Θz2

w
+

z2

2w2
+O(z3).

Using this we can now show that

ψ
ι/o
p(z) ◦ qz(w) = − p(z)

qz(w)
− Θ(p(z))2

qz(w)
+

(p(z))2

2(qz(w))2
+O(z3)

= −z − z
2

q0(w)
− Θz2

q0(w)
+

z2

2(q0(w))2
+O(z3).

This implies that

A(z, w) = zA0(w) + Θz2

(
1

w
− 1

q0(w)

)
+
z2

2

(
1

(q0(w))2
− 1

w2
+

2

q0(w)

)
+O(z3)

= zA0(w) + Θz2 +
z2

2
(1− 2b0,3) +O(z3, z2w)

= zA0(w) +

(
Θ +

1

2
− b0,3

)
z2 +O(z3, z2w).

Here, we used the fact that A(z, w) is analytic, hence all terms of w with the negative
power are cancelled.

Note that the constant in the O(z3, z2w) a priori depends on K ⊂ C∗. Let φz(w) :=
A(z,w)−zA0(w)

z2
and note that by Proposition 3.3 it is holomorphic on D(0, r). We have

proved that for all compact K ⊂ C∗, for all w ∈ K, and for all small z 6= 0 with
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Re(z) > 0, we have |φz(w)| ≤ CK . By taking K = {|w| = r
2} we therefore obtain the

same estimate |φz(w)| ≤ CK for all |w| ≤ r
2 because of the maximum modulus principle.

This gives the desired uniformity.
�

De�nition 3.5. As in [7], let ν ∈ (1
2 ,

2
3) and

(1) rz := |z|1−ν
(2) Rz := {W ∈ C : rz10 < Re(W ) < π

c −
rz
10 and − 1

2 < Im(W ) < 1
2}

De�nition 3.6. Let χz(W ) = W + (b0,3 − 1)R(z,W ), where

(3.1) R(z,W ) := czeWFc(W )

and Fc is the primitive on R0 of W 7→ e−W cot(cW ) vanishing at π
2c .

A straightforward computation shows that R(z,W ) is a solution of the linear PDE

(3.2) − z ∂R
∂z

+
∂R

∂W
= cz cot(cW ).

Lemma 3.7. We have

(ψι/oz )−1(W ) = −cz cot(cW )− z

2
+O(z2 cot(cW ), z2)

Proof. We have:

(3.3) (ψι/oz )−1(W ) =
ζ+(z)− ζ−(z)e2icW

1− e2icW

and using the fact that ζ±(z) := (−1
2 ± ic)z +

(
a+(b−1)b0,3−Θ

2 ± icΘ
)
z2 +O(z3), we �nd

(3.4) (ψι/oz )−1(W ) = −cz cot(cW )− z

2
+O(z2 cot(cW ), z2).

�

Lemma 3.8. Assume that ψιz(w) ∈ Rz, and let W := ψιz(w), W1 := ψιp(z) ◦ qz(w) and

z1 := p(z). Then

(3.5)
∣∣R(z1,W1)−R(z,W )− cz2 cot(cW )

∣∣ = O
(
|z|2+δ

)
for some δ > 0.

Proof. Let x := (z,W ) and h := (z1,W1)− (z,W ). Then by Taylor-Lagrange's formula,
we have

(3.6) R(x+ h)−R(x)− dRx(h) =

∫ 1

0

(1− t)2

2
d2Rx+th(h, h)dt

and

d2Ry(h, h) = Rzz(y)h2
1 + 2RzW (y)h1h2 +RWW (y)h2

2

= 0 +O(z3 cot(cW )) +O(z3 cot2(cW ))
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(Here, Rzz := ∂2R
∂z2

, etc.). Since W ∈ Rz by assumption, we have z3 cot2(cW ) =

O(|z|1+2ν) = O(|z|2+δ) for some δ > 0. Therefore

|R(z1,W1)−R(z,W )− dRx(h)| = O
(
|z|2+δ

)
.

It now remains to compare dRx(h) and cz2 cot(cW ). First, note that

h = (−z2 +O(z3), z +O(zw)) = (−z2 +O(z3), z +O(z2 cot(cW )).

Therefore

dRx(h) = Rz(x)h1 +RW (x)h2

= −z2Rz(x) + zRW (x) +O(z3RW , z
2 cot(cW )RW )

= cz2 cot(cW ) +O(z3 cot(cW ), z3 cot2(cW ))

hence we have

|dRx(h)− cz2 cot(cW )| = O
(
|z|2+δ

)
.

�

De�nition 3.9. We de�ne Ã(z, w) := χp(z) ◦ ψιp(z) ◦ qz(w)− χz ◦ ψιz(w)− z.

Proposition 3.10 (Almost translation property). There exists δ > 0 (depending only
on the choice of ν) such that

|Ã(z, w)− Λz2| = O
(
|z|2+δ

)
for all (z, w) such that ψιz(w) ∈ Rz, where Λ := Θ + 1− 3b0,3

2

Proof. Let z1 := p(z), W := ψιz(W ) and W1 := ψιz1 ◦ qz(w). We have

Ã(z, w) = χz1 ◦ ψιz1 ◦ qz(w)− χz ◦ ψιz(w)− z
= ψιz1 ◦ qz(w)− ψιz(w)− z + (b0,3 − 1)(R(z1,W1)−R(z,W )).

By Lemma 3.8

|Ã(z, w)−A(z, w)− cz2(b0,3 − 1) cot(cW )| = O
(
|z|2+δ

)
On the other hand, by Proposition 3.4 we have

A(z, w) = zA0(w) +

(
Θ +

1

2
− b0,3

)
z2 +O(z2w, z3)

= (b0,3 − 1)zw +

(
Θ +

1

2
− b0,3

)
z2 +O(zw2, z2w, z3)

so using Lemma 3.7:

A(z, w) = (1− b0,3)cz2 cot(cW ) + z2

(
Θ + 1− 3b0,3

2

)
+O

(
zw2, z2w, z3, z3 cot(cW )

)
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Putting all of these estimates together, we get:

|Ã(z, w)− Λz2| = O
(
|zw2|, |z2w|, |z|3, |z|2+δ

)
Finally, note that since by assumption ψz(w) ∈ Rz, we have |w| = O (|z|ν). Moreover,
recall that ν > 1

2 , so that:

• |zw2| = O
(
|z|1+2ν

)
• |z2w| = O

(
|z|2+ν

)
�

Lemma 3.11. As W → 0 in R0, we have

(3.7) Fc(W ) =
1

c
log(cW )− 1

c

∫ π
2c

0
e−u ln sin(cu)du+ o(1)

Similarly, as W → π
c in R0, we have:

(3.8) Fc(W ) = e−
π
c

1

c
log (π − cW ) + +

1

c

∫ π
c

π
2c

e−u ln sin(cu)du+ o(1)

Proof. Recall that Fc(W ) =
∫W
π
2c
e−u cot(cu)du. An integration by parts gives:

Fc(W ) =
1

c
e−W log sin(cW ) +

1

c

∫ W

π
2c

e−u log sin(cu)du

from which it follows that as W → 0:

Fc(W ) =
1

c
log(cW ) + o(1)− 1

c

∫ π
2c

0
e−u ln sin(cu)du

and as W → π
c :

Fc(W ) = e−
π
c

1

c
log(π − cW ) +

1

c

∫ π
c

π
2c

e−u ln sin(cu)du+ o(1)

�

4. Proof of the main theorem

We begin this section by explaining how the map ψz, de�ned in the previous section,
transforms the complex plane.

Let Dz be the disk of radius 1
2 |ζ

+(z) − ζ−(z)| = c|z| + O(z2) centered at 1
2(ζ+(z) +

ζ−(z)). Let S(z,R) be the union of the two disks of radius R that both contain the
points ζ+(z), ζ−(z) on their boundary. The radius R will be a su�ciently small number,
to be �xed later. The de�nition of S(z,R) of course only makes sense when the distance
between ζ+(z) and ζ−(z) is less than 2R, which once R is �xed will be satis�ed for z
su�ciently small. Our choice of R will depend on the map q0, but not on z.

The line Lz through ζ+(z) and ζ−(z) cuts the complex plane into the left half plane

Hι
z and the right half plane Ho

z . We de�ne Sι/o(z,R) := S(z,R) ∩ Hι/o
z . The map ψz
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maps the disk Dz to the shaded strip [− π
4c ,

π
4c ]× iR. The image of S(z,R) is bounded by

two vertical lines, intersecting the real line in points of the form ∓ π
2c ±O(z), see Figure

2. Next we de�ne Pι/oR := D(∓R,R) and observe that Sι/o(z,R)
z→0−−−→ P ι/oR .

Figure 2

Key observation: There are positive real constants r0, R, s, t, δ such that:

(i) The invariant curves z 7→ (z, ζ±(z)) are graphs over the disk D(r0, r0) ⊂ Bp.
(ii) We have[

− π
2c

+ s|z|, π
2c
− s|z|

]
× iR ⊂ ψz(S(z,R)) ⊂

[
− π

2c
+ t|z|, π

2c
− t|z|

]
× iR

for all z ∈ D(r0, r0).
(iii) For every compact K ⊂ PιR there exists 0 < r′ < r0 such that

K ⊂ Sι(z,R) ⊂ Pι2R
for all z ∈ D(r′, r′),

(iv) |Ã(z, w) − Λz2| < |z2+δ| for all (z, w) ∈ D(r0, r0) × D(0, 4R) (see Proposition
3.10).

(v) the inverse q−1
0 (w) is well de�ned on D(0, 4R).

(vi) q0(Pι2R) ⊂ Pι2R and q−1
0 (Po2R) ⊂ Po2R

Remark 4.1. Recall that ψιz = ψz + π
2c , therefore (ii) implies ψιz(S(z,R)) ⊂ Rz for all

z ∈ D(r, r) assuming that r > 0 is su�ciently small (recall that Rz was introduced in
De�nition 3.5).

We are now ready to start with the proof:

Fixing a constant: We now �x these constants r0, R, s, t, δ and de�ne kn := [nν ]
for the constant ν ∈ (1

2 ,
2
3) already de�ned in De�nition 3.5.
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Notation: Given a point (z0, w0) ∈ Bp × Bq0 and an integer n > 0 we will write
εj := pn+j(z0) and wj := qεj ◦ qεj−1 ◦ . . . ◦ qε1(w0).

Fixing a compact: For the rest of this section we �x a compact subset K ′ ×K ⊂
Bp × Bq0 . Let n0 be su�ciently large integer so that pkn(K ′) ⊂ D(r0, r0) for all n > n0.
By taking even larger n0 if necessary we may assume that wkn ∈ P ιR and therefore by
(iii) above wkn ∈ Sι(εkn , R) for all (z0, w0) ∈ K ′ ×K and all n ≥ n0. Finally we �x a
point (z0, w0) ∈ K ′ ×K.

Remark 4.2. Unless otherwise stated, all the constants appearing in estimates depend
only on the compact K ′ ×K, but not on the point (z0, w0) nor the integer n.

4.1. Entering the eggbeater.

Lemma 4.3. We have φιq0(wkn) = φιq0(w0)+kn+o(1) and hence wkn = − 1
kn

+O
(

lnn
k2n

)
.

Proof. For 0 ≤ j ≤ kn we have

φιq0(wj+1) = φιq0(q0(wj) + bε2j +O(ε3j ))

= φιq0(wj) + 1 +O((φιq0)′(wj)ε
2
j )

= φιq0(wj) + 1 +O

(
ε2j
w2
j

)

= φιq0(wj) + 1 +O

(
k2
n

n2

)
Therefore by induction, φιq0(wkn) = φιq0(w0) + kn + O(k

3
n
n2 ), and k3n

n2 = o(1) by the choice
of kn. Final conclusion follows from the fact that

φιq0(w) = − 1

w
+ (1− b0,3) log(−w) + o(1).

�

Lemma 4.4. We have

ψιεkn (wkn) = − εkn
wkn

+
ε2kn

2w2
kn

+ o (εkn) .

Proof. This follows directly from the computation in the proof of Proposition 3.4. �

De�nition 4.5 (Approximate Fatou coordinate). Let Φz := χz ◦ ψιz.

Lemma 4.6 (Comparison with incoming Fatou coordinates). We have

1

εkn
Φεkn

(wkn) = φιq0(wkn) +
k2
n

2n
+ (1− b0,3) lnn+ Eι + o(1)

where Eι := (b0,3 − 1)
(

ln c−
∫ π

2c
0 e−u ln sin(cu)du

)
.

Proof. Recall that by Lemma 4.3 and Lemma 4.4 we have

wkn = − 1

kn
+O

(
lnn

k2
n

)
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and

ψιεkn (wkn) = − εkn
wkn

+
ε2kn

2w2
kn

+ o(εkn).

Next, we have:

1

εkn
Φεkn

(wkn) =
1

εkn
χεkn ◦ ψ

ι
εkn

(wkn)

=
W

εkn
− c(1− b0,3)eWFc(W ) , where W := ψιεkn (wkn)

= − 1

wkn
+
k2
n

2n
− c(1− b0,3)eWFc(W ) + o(1)

and by Lemma 3.11,

ceWFc(W ) = log

(
− εkn
wkn

)
+ ln c−

∫ π
2c

0
e−u ln sin(cu)du+ o(1)

= − log(−wkn)− lnn+ ln c−
∫ π

2c

0
e−u ln sin(cu)du+ o(1).

Putting all together we get

1

εkn
Φεkn

(wkn) = − 1

wkn
+ (1− b0,3) log(−wkn) +

k2
n

2n
+ (1− b0,3) lnn+ Eι + o(1)

= φιq0(wkn) +
k2
n

2n
+ (1− b0,3) lnn+ Eι + o(1).

�

4.2. Passing through the eggbeater.

De�nition 4.7. Let α0, β0 be as in (1.2) and de�ne Mn := b(α0 − 1)n+ β0 lnnc where
b·c is the �oor function. Let `n := be

π
c knc and ρn := {(α0 − 1)n + β0 lnn}, where {·}

denotes the fractional part. Finally we de�ne Wj := Φεj (wj)

Lemma 4.8. We have

Wkn +

Mn−`n−1∑
j=kn

εj + Λε2j =
π

c
+
Gn
n

+ o

(
1

n

)
where

Gn := −e−
π
c `n +

k2
n

2n
+ (1− b0,3)e−

π
c lnn− e−

π
c ρn + φιq0(w0) + C̃

and

C̃ := (1− a)e−
π
c
π

c
+ (1− e−

π
c )

(
Θ +

3

2
(1− b0,3) + (a− 1)− φιp(z0)

)
+ Eι.

Proof. First recall that by Lemma 4.3 and Lemma 4.6 we have:

Wkn =
1

n

(
φιq0(w0) + kn +

k2
n

2n
+ (1− b0,3) lnn+ Eι

)
+ o

(
1

n

)
.
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Next recall that

εj =
1

n+ j
−

(1− a) ln(n+ j) + φιp(z0)

(n+ j)2
+O

(
ln2 n

n3

)
and observe that by the Euler-MacLaurin formula we get

Mn−`n−1∑
j=kn

εj =

∫ Mn−`n

kn

εjdj +
1

2
(εkn − εMn−`n) + o

(
1

n

)

=

∫ Mn−`n

kn

εjdj +
1

2n
(1− e−π/c) + o

(
1

n

)
and

Mn−`n−1∑
j=kn

ε2j = εkn − εMn−`n + o

(
1

n

)
=

1

n
(1− e−

π
c ) + o

(
1

n

)
.

Furthermore we have∫ Mn−`n

kn

εjdj = ln

(
n+Mn − `n
n+ kn

)
+ ((1− a) + φιp(z0))

(
1

n+Mn − `n
− 1

n+ kn

)
+ (1− a)

(
ln(n+Mn − `n)

n+Mn − `n
− ln(n+ kn)

n+ kn

)
+ o

(
1

n

)
=
π

c
+ (b0,3 − a)(1− e−

π
c )

lnn

n
− e−

π
c

1

n
ρn −

kn
n
− e−

π
c
`n
n

+
1

n
(1− a)

(
e−

π
c − 1

)
+

1

n

(
e−

π
c − 1

)
φιp(z0) +

1

n
(1− a)e−

π
c
π

c
+ (1− a)(e−

π
c − 1)

lnn

n
+ o

(
1

n

)
=
π

c
+ (b0,3 − 1)(1− e−

π
c )

lnn

n
− kn

n
− e−

π
c
`n
n

+
1

n

(
(1− a+ φιp(z0))

(
e−

π
c − 1

)
+ (1− a)e−

π
c
π

c
− e−

π
c ρn

)
+ o

(
1

n

)
.

Putting all together we obtain

Wkn +

Mn−`n−1∑
j=kn

εj + Λε2j =
π

c
− e−

π
c
`n
n

+ (1− b0,3)e−
π
c

lnn

n
+

k2
n

2n2

+
1

n

(
φιq0(w0) + C̃ − e−

π
c ρn

)
+ o

(
1

n

)
�

Lemma 4.9. For kn ≤ j ≤Mn − `n, we have Wj ∈ Rεj and

Wj = Wkn +

j−1∑
i=kn

εi + Ã(εi, wi)

Proof. We prove this by induction on j.
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• Initialization: it comes from the fact that Wkn = kn
n + o(knn ) (Lemma 4.3 and

Lemma 4.4).
• Heredity: it follows immediately from Proposition 3.10 and the computation
above.

�

4.3. Exiting the eggbeater.

Lemma 4.10 (Comparison with outgoing Fatou coordinates). We have wMn−`n ∈ PoR,
and

1

εMn−`n

(
ΦεMn−`n (wMn−`n)− π

c

)
= φoq0(wMn−`n) + e−

π
c
`2n
2n

+ (1− b0,3) lnn+ Eo + o(1)

where Eo := (1− b0,3)
(
π
c − ln c− e

π
c

∫ π/c
π/2c e

−u ln sin(cu)du
)
.

Proof. By Lemma 4.8 and Lemma 4.9 we know that WMn−`N ∈ RεMn−`N and that

WMn−`N = π
c − e

−π
c
`n
n + k2n

2n2 + o( 1
n). Since wMn−`n = −cεMn−` cot(cWMn−`n) + O

(
1
n

)
we have wMn−`n ∼ 1

`n
hence for all su�ciently large n we have wMn−`n ∈ PoR. By the

same computation as in the incoming case, we have

ψoεMn−`n (wMn−`n) = − εMn−`n
wMn−`n

+
ε2Mn−`n

2w2
Mn−`n

+ o(εMn−`n)

= εMn−`n

(
− 1

wMn−`n
+ e−

π
c
`2n
2n

+ o(1)

)
Recall that φoq0(w) = − 1

w + (1− b0,3) log(w) + o(1).
Next, we have:

ΦεMn−`n (wMn−`n) = χεMn−`n ◦ ψ
ι
εMn−`n

(wMn−`n)

= χεMn−`n

(
ψoεMn−`n (wMn−`n) +

π

c

)
=
π

c
+W − cεMn−`n(1− b0,3)eW+π

c Fc

(
W +

π

c

)
where W := ψoεMn−`n (wMn−`n), and by Lemma 3.11

ceW+π
c Fc(W +

π

c
) = log

(
εMn−`n
wMn−`n

)
+ ln c+ e

π
c

∫ π
c

π
2c

e−u ln sin(cu)du+ o(1)

= − logwMn−`n − ln (e
π
c n) + ln c+ e

π
c

∫ π
c

π
2c

e−u ln sin(cu)du+ o(1)
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Putting all together we obtain

1

εMn−`n

(
ΦεMn−`n (wMn−`n)− π

c

)
=

= − 1

wMn−`n
+ (1− b0,3) logwMn−`n + e−

π
c
`2n
2n

+ (1− b0,3) lnn+ Eo + o(1)

= φoq0(wMn−`n) + e−
π
c
`2n
2n

+ (1− b0,3) lnn+ Eo + o(1)

�

Lemma 4.11. We have

φoq0(wMn) = φoq0(wMn−`n) + `n + o(1)

Proof. Recall that wMn−`n = O
(

1
`n

)
. For Mn − `n ≤ j ≤Mn we have

φoq0(wj+1) = φoq0(q0(wj) + bε2j +O(ε3j ))

= φoq0(wj) + 1 +O((φoq0)′(wj)ε
2
j )

= φoq0(wj) + 1 +O

(
ε2j
w2
j

)

= φoq0(wj) + 1 +O

(
`2n
n2

)
Therefore by induction, φoq0(wMn) = φoq0(wMn−`n) + `n + O

(
`3n
n2

)
, and `3n

n2 = o(1) since

`n ∼ nν with ν ∈
(

1
2 ,

2
3

)
. �

4.4. Conclusion. Finally we can prove the Main Theorem. We state here a technical,
equivalent formulation:

Theorem 4.12. We have

wMn = (φoq0)−1
(
e
π
c φιq0(w0)−

(
e
π
c − 1

)
φιp(z0)− ρn + Γ

)
+ o(1)

where

(4.1) Γ := (e
π
c − 1)

(
a− b0,3 + b3,0

2b
+ a+

1

2
(1− b0,3) + (b0,3 − 1) ln c

)
+ (b0,3 − a)

π

c

+ e
π
c (1− b0,3)

∫ π
c

0
e−u ln sin(cu)du

Proof. We have:

φoq0(wMn) = φoq0(wMn−`n) + `n + o(1)

=
1

εMn−`n

(
ΦεMn−`n (wMn−`n)− π

c

)
− e−

π
c
`2n
2n
− (1− b0,3) lnn− Eo + `n + o(1)

= e
π
c φιq0(w0)− ρn + e

π
c C̃ − Eo + o(1).
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where the �rst equality follows from Lemma 4.11, the second equality follows from Lemma
4.10 and the last equality follows from Lemma 4.8 and Lemma 4.9. Note that in this
computation we used the fact that 1

2n(e
π
c k2

n − e−
π
c `2n) = o(1).

Finally recall that

Θ = b0,3 +
a− b0,3 + b3,0

2b
,

Eι = (b0,3 − 1)

(
ln c−

∫ π
2c

0
e−u ln sin(cu)du

)
,

C̃ = (1− a)e−
π
c
π

c
+ (1− e−

π
c )

(
Θ +

3

2
(1− b0,3) + (a− 1)− φιp(z0)

)
+ Eι,

Eo = (1− b0,3)

(
π

c
− ln c− e

π
c

∫ π
c

π
2c

e−u ln sin(cu)du

)
.

A quick computation now gives

e
π
c C̃ − Eo = −

(
e
π
c − 1

)
φιp(z0) + Γ,

hence
φoq0(wMn) = e

π
c φιq0(w0)−

(
e
π
c − 1

)
φιp(z0)− ρn + Γ + o(1).

�

Remark 4.13. Note that Theorem 4.12 has been proved under the assumption that β0 ∈
R. Following essentially the same proof in the case where β0 ∈ C (only replacing the
de�nition of Mn and ρn in De�nition 4.7 by Mn := b(α0 − 1)n+ Re(β0) lnnc and ρn :=
{(α0 − 1)n+ Re(β0) lnn} ), one could prove that

wMn = (φoq0)−1
(
e
π
c φιq0(w0)−

(
e
π
c − 1

)
φιp(z0)− ρn + Γ + iIm(b0,3 − a) lnn

)
+ o(1).

It then seems likely that (zn+Mn , wMn) belongs to one of the two parabolic domains U±

from Theorem 1.2, which in turn would imply that (zn, w) belongs to the parabolic basin of
(0, 0) for all n large enough. This also seems to be supported by numerical experiments.

Proof of the Main Theorem from Theorem 4.12. It only remains to rephrase Theorem
4.12 in terms of admissible sequences. Let (nk)k≥0 be an (α0, β0)-admissible sequence.
By de�nition of Mn and ρn, we have

Mnk = b(α0 − 1)nk + β0 lnnkc,
and ρnk = {(α0 − 1)nk + β0 lnnk}. Therefore, by de�nition of an (α0, β0)-admissible
sequence, there exists a bounded sequence of integers (mk)k≥0 such that

nk+1 − nk = Mnk +mk,

and the phase sequence of (nk)k≥0 is given by

σk = nk+1 − α0nk − β0 lnnk = nk+1 − (Mnk + nk + ρnk)

= mk − ρnk .
By Theorem 4.12, we have

PMnk (pnk(z), w) =
(
pnk+Mnk (z),L(α0,Γ− ρnk ; z, w)

)
+ o(1)
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and therefore, by the functional equation satis�ed by L,
Pnk+1−nk(pnk(z), w) = PMnk

+mk(pnk(z), w)

=
(
pnk+Mnk

+mk(z),L(α0,Γ +mk − ρnk ; z, w)
)

+ o(1)

= (pnk+1(z),L(α0,Γ + σk; z, w)) + o(1)

which is the desired result. �

5. Wandering domains of rank 1

The aim of this section is to prove Theorem 1.6.

Proof of Theorem 1.6. By our assumption, if (σk)k∈N denotes the phase sequence associ-

ated to the (α0, β0)-admissible sequence (nk)k∈N, then σk := nk+1−α0nk−β0 lnnk
k→+∞−−−−→

θ, and hence by the Main Theorem we have Pnk+1−nk(pnk(z), w)
k→∞−−−→ (0,Lz(w)) where

Lz(w) := L(α0,Γ + θ; z, w).

Let E(W ) := φιq0 ◦ (φoq0)−1(W ) be the lifted horn map of q0. The map E is de�ned

on the open set Uq0 :=
(
ψoq0
)−1

(Bq0), which has at least two connected components, one
containing an upper half-plane and the other containing a lower half-plane. Moreover, it
commutes with the translation by 1: for all W ∈ Uq0 , E(W + 1) = E(W ) + 1.

Let us de�ne σ := Γ + θ, where Γ is the constant from the Main Theorem, and

H̃Z,σ(W ) := α0E(W ) + (1− α0)Z + σ

as in De�nition 1.12

Lemma 5.1. There exists a point (z0, w0) ∈ Bp ×Bq0 such that w0 is a super-attracting
�xed point of the map Lz0(w).

Proof. First observe that Lz is semi-conjugate to H̃Z,σ, where Z := φιp(z). Indeed, we

have Lz ◦ (φoq0)−1 = (φoq0)−1 ◦ H̃Z,σ, hence it su�ces to prove that the map H̃Z,σ has a
super-attracting �xed point for appropriate choice of Z ∈ C.

LetW0 be a critical point of E and observe that since E commutes with the translation
by 1, it follows that for every N ∈ N the point W0 +N is also a critical point of E .

Next, observe that

α0E(W0 +N)− (W0 +N) + σ

α0 − 1
=
α0E(W0)−W0 + σ

α0 − 1
+N,

hence for su�ciently large N0 ∈ N there exists z0 ∈ Bp such that

Z0 := φιp(z0) =
α0E(W0 +N0)− (W0 +N0) + σ

α0 − 1
.

It is then straightforward to check that W0 + N0 is a super-attracting �xed point of
H̃Z0,σ(W ).

�

Let (z0, w0) ∈ Bp × Bq0 such that w0 is a super-attracting �xed point of Lz0(w). Let
A := {(z, w) ∈ Bp × Bq0 | Lz(w) = w}. The analytic set A has pure dimension 1,
and since w0 is a super-attracting �xed point of Lz0(w), the Implicit Function Theorem
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implies that the point (z0, w0) is contained in a regular part of A. Therefore, there exists
a small disk ∆z0 centered at z0 and a holomorphic function η : ∆z0 → Bq0 that satis�es
η(z0) = w0 and h(∆z0) ⊂ A where h(z) := (z, η(z)). Moreover by restricting that disk if
necessary, we can assume that |L′z(η(z))| < 1

2 on ∆z0 .

Lemma 5.2. The map η : ∆z0 → C is non-constant.

Proof. Recall that we constructed Z0,W0 ∈ C such that H̃Z0,σ(W0) = W0, and Z0 =
φιp(z0), η(z0) = (φoq0)−1(W0). Again by the Implicit Function Theorem, there exists a

holomorphic map η̃ : ∆Z0 → C such that η̃(Z) is a �xed point of H̃Z,σ for all Z ∈ ∆Z0 ,
where ∆Z0 is a small disk centered at Z0. Moreover, we have η = (φoq0)−1 ◦ η̃ ◦ φιp. From
the expression of H̃Z,σ, it is not di�cult to �nd that η̃′(Z0) = 1 − α0 6= 0, therefore η̃
and also η are non-constant. �

By the Main Theorem, for each z ∈ ∆z0 there exist a disk Dz ⊂ Bq0 centered at η(z)
and k0 > 0 such that

(5.1) proj2(Pnk+1−nk(pnk(z)×Dz)) b Dz

for all k ≥ k0, where proj2 : C2 → C denotes the projection on the second coordinate.
Moreover, we can �nd a continuously varying family of disks {z} ×Dz ⊂ Bp × Bq0 and
a uniform constant k0 with respect to the parameter z ∈ ∆z0 for which (5.1) holds. Let
us de�ne an open set

(5.2) V :=
⋃

z∈∆z0

{pnk0 (z)} ×Dz.

and let U be a connected component of the open set P−nk0 (V ) containing a point
(z0, w

′) for which Pnk0 (z0, w
′) = (pnk0 (z0), w0). Observe that by the Main Theorem,

the sequence (Pnk)k≥0 converges uniformly on compacts in U to a holomorphic map
ϕ(z, w) := (0, η(z)) where η is as above. Moreover, since P is a skew-product, this
implies that the sequence of iterates (Pn)n≥0 is bounded on U and therefore that U is
contained in some Fatou component Ω ⊂ C2.

Lemma 5.3. The map η extends holomorphically to a map η : proj1(Ω) → Bq0, and
there exists a subsequence (Pmk)k≥0 that converges locally uniformly on Ω to the map
Φ : Ω→ {0} × Bq0 de�ned by Φ(z, w) = (0, η(z)).

Proof. Since (Pnk) is normal on Ω, we know that it has a convergent subsequence, let us
denote it by (Pmk). Moreover since P is a skew-product we know that Ω ⊂ Bp × C and
therefore any limit function of a convergent subsequence of (Pnk) must be of the form
Φ(z, w) = (0, κ(z, w)), and κ(z, w) = η(z) for all (z, w) ∈ U . By the identity principle, we
therefore have ∂κ

∂w = 0 on Ω, and so κ gives a holomorphic continuation of η on proj1(Ω),
which we still denote by η. Finally, let us argue that η : proj1(Ω)→ Bq0 .

First, observe that if (z, w) ∈ Ω, then any ω-limit point of (z, w) has bounded orbit
under P . This implies that η takes values in K(q0), the �lled-in Julia set of q0. Moreover,
by Lemma 5.2, η is non-constant and therefore open; and by de�nition, η(∆z0) ⊂ Bq0 .
So η must take values in Bq0 .

�
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Since E(W ) = W −πi(1− b0,3) + o(1) as |Im(W )| → +∞ (see [7], Appendix), we have

(5.3) H̃Z,σ(W ) = α0W + (1− α0)Z + C + o(1) as |Im(W )| → +∞

for some constant C ∈ C. Let H̃σ(Z,W ) := (Z, H̃Z,σ(W )) be the lifted horn map of
P , with the notations of the introduction, and recall that it commutes with the map
T (Z,W ) = (Z + 1,W + 1). This map is well de�ned on C×Uq0 . The set of �xed points
of H̃σ can be explicitly written as

(5.4) FixH̃σ :=

{(
α0E(W )−W

α0 − 1
+

σ

α0 − 1
,W

)
|W ∈ Uq0

}
.

Let us de�ne ψ(Z,W ) = (Z −W, e2πiW ) and Ũ := ψ(C × Uq0) ⊂ C × C∗. Observe
that there is a small punctured disk ∆∗ such that C × ∆∗ ⊂ Ũ and that there exists
a holomorphic map Ψ : Ũ → C × C∗ such that Ψ ◦ ψ = ψ ◦ H̃σ. (This map Ψ is
holomorphically conjugated to the horn map Hσ of P , see De�nition 1.12). It extends
holomorphically over C × {0} with Φ(X, 0) = (α0X + α0πi(1 − b0,3) − σ, 0). We still
denote by Ψ this extended map.

Lemma 5.4. Ω is a wandering domain.

Proof. Let Φ(z, w) = (0, η(z)) be the limit function as in lemma above and de�ne Λ :=
proj1(Ω) ⊂ Bp. Observe that η(Λ) = proj2(Φ(Ω)) and that Σ := {(z, η(z)) | z ∈ Λ} is
connected.

Let FixΨ be the analytic variety of �xed points of Ψ and observe that FixΨ is closed
in the domain of de�nition of Ψ. Moreover, observe that

(5.5) ψ

(
α0E(W )−W

α0 − 1
+

σ

α0 − 1
,W

)
=

(
α0(E(W )−W )

α0 − 1
+

σ

α0 − 1
, e2πiW

)
,

and hence

(5.6) ψ

(
α0E(W )−W

α0 − 1
+

σ

α0 − 1
,W

)
Im(W )→+∞−−−−−−−−→

(
−α0πi(1− b) + σ

α0 − 1
, 0

)
.

Since FixΨ is closed, it follows that
(
−α0πi(1−b)+σ

α0−1 , 0
)
∈ FixΨ.

Let Bz(w) := α0φ
ι
q0(w) + (1−α0)φιp(z) +σ. Observe that Lz = (φoq0)−1 ◦Bz, and that

if Z := φιp(z), then H̃Z,σ = Bz ◦ (φoq0)−1. In other words, Bz also semi-conjugates Lz and
H̃Z,σ. We let Ξ(z, w) := (φιp(z), Bz(w)), and let

Σ′ := Ξ(Σ) ⊂ FixH̃σ
be the "lift" of Σ. Since Ξ is continuous and Σ is connected, so is Σ′.

Let us assume that Ω is not wandering. Up to replacing Ω with P `(Ω) we may assume
that it is periodic, i.e. Pm(Ω) = Ω. Observe that this implies that Σ′ is forward invariant
under the translation Tm. Let γ : I → Σ′ be a smooth curve such that γ(0) = (Z0,W0)
and γ(1) = (Z0 + m,W0 + m) (this is possible since Σ′ is connected), and such that
ψ(γ(I)) is a Jordan curve.

Now observe that by (5.4), FixH̃ is a holomorphic graph above Uq0 and therefore is
conformally equivalent to an upper half-plane; and by (5.5) and (5.6), its image under
ψ is conformally equivalent to a punctured disk. After the addition of the �xed point
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−α0πi(1−b)+σ

α0−1 , 0
)
, we therefore see that FixΨ is conformally equivalent to a disk. The

curve ψ(γ) is a Jordan curve around
(
−α0πi(1−b)+σ

α0−1 , 0
)
in that disk. Now let us consider

the holomorphic map det dΨ : FixΨ → C. We have | det dΨ| < 1 on ψ(γ), since by
construction the eigenvalues of dF on γ are 1 and another one which lies in the unit disk.

But we have computed that det dΨ
(
−α0πi(1−b)+σ

α0−1 , 0
)

= α0 > 1, which contradicts the

maximum principle.
�

This completes the proof of Theorem 1.6.
�

6. Wandering domains for higher periods

6.1. Simply connected hyperbolic components. In this section we assume that
α0 ∈ N∗ and q0(w) = w + w2. We let ĥ denote the classical horn map of q0, and recall
that

(6.1) e2iπ(1−α0)Z+2iπσĥ(e2iπW )α0 = e2iπH̃Z,σ(W )

We let h := ĥα0 and λ := e2iπ(1−α0)Z+2iπσ ∈ C∗, and consider the family (hλ)λ∈C∗ ,
de�ned by hλ := λh. Observe that by the choice of q0, the maps hλ have exactly 3
singular values:

(1) 0 and ∞, which are asymptotic values that are also superattracting �xed points

(2) one free critical value vλ := λv, where v := e2iπφιq0 (− 1
2

).

In particular, if hλ has an attracting cycle di�erent from 0 and ∞, then it must capture
vλ.

De�nition 6.1. A hyperbolic component of period m in the family (hλ)λ∈C∗ is a con-
nected component of the set of λ ∈ C∗ such that hλ has an attracting cycle of period m
di�erent from 0 and ∞.

Note that by [5, Theorem E], hyperbolic components as they are de�ned here are also
stability components. In order to prove that the Fatou components that we construct
are indeed wandering, we will use the following result, which also has intrinsic interest:

Theorem 6.2. Hyperbolic components in the family (hλ)λ∈C∗ are simply connected.

Before proving Theorem 6.2, we introduce some further notations:

De�nition 6.3. We let Pm := {(λ, z) ∈ C∗ × C∗ : z = hmλ (z)}, and ρ̃ : Pm → C be the
map de�ned by ρ̃(λ, z) = (hmλ )′(z).

Let U be a hyperbolic component of period m and D ⊂ C the unit disk. Then
U = proj1(Π), where Π is a connected component of ρ̃−1(D) and proj1 : C2 → C is the
projection on the �rst coordinate. Since for every λ ∈ C∗, hλ has only one free singular
value, it may have at most one attracting cycle di�erent from 0 and∞; therefore if (λ, z1)
and (λ, z2) are in a same �ber of the map proj1 : Π→ U , then z1 and z2 must be periodic
points of the same attracting cycle. This means that the function ρ̃ : Π → D descends
to a well-de�ned holomorphic function ρ : U → D satisfying ρ̃ = ρ ◦ proj1.
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Figure 3. Parameter space of (hλ)λ∈C∗ . Hyperbolic components are in
black. Red and blue correspond to parameters λ for which vλ is captured
by 0 or ∞ respectively, and white to λ such that vλ eventually exits the
domain of hλ. Observe that for all |λ| large enough, vλ is captured by ∞
(blue). Right: a zoom on a copy of the Mandelbrot set (bottom center of
the left �gure).

Lemma 6.4. Let U0 := U\ρ−1({0}). The map ρ : U0 → D∗ is locally invertible.

Proof. We will prove this using a classical surgery argument, originally due to Douady-
Hubbard for the case of the quadratic family ([11]). Let λ0 ∈ U0, and let V be a simply
connected open subset of D∗ containing ρ(λ0). Using a standard surgery procedure, we
construct for any t ∈ V a quasiconformal homeomorphism gt such that gt ◦ hλ0 ◦ g

−1
t is

holomorphic, and gt(z0) is a periodic point of period m and multiplier t. We refer to [6,
Proposition 6.7], for the details (see also e.g. [15, Theorem 6.4]).

We let φ : V → Teich(hλ0) be the holomorphic map induced by t 7→ µt, where µt is
the Beltrami form associated to gt and Teich(hλ0) is the dynamical Teichmüller space of
hλ0 . For a de�nition of the dynamical Teichmüller space, see [24], [4]. Let V̂ ⊂ U0 be
a simply connected domain containing λ0. Since for all λ ∈ V̂ the free critical value vλ
remains captured by the attracting cycle, the family (hλ)λ∈V̂ is J-stable by [5, Theorem
E]. In fact, since there are no non-persistent singular relations for the family (hλ)λ∈V̂ , by
[24, Theorem 7.4] (stated for rational maps, but whose proof carries over verbatim in this
setting), the map hλ0 is in fact structurally stable on P1: there is a second holomorphic
family ĝλ of quasiconformal homeomorphisms ĝλ : P1 → P1 such that hλ := ĝλ ◦hλ0 ◦ ĝ

−1
λ

for all λ ∈ V̂ , and ĝλ0 = Id.
We let φ̂ : V̂ → Teich(hλ0) denote the map induced by λ 7→ µ̂λ, where µ̂λ is the

Beltrami form associated to ĝλ. Let ξ := d
dλ |λ=λ0

ĝλ, and observe that since ĝλ(vλ0) =

vλ = λv, we have ξ(vλ0) 6= 0. By [4, Proposition 5], the derivative φ̂′(λ0) is therefore
non-zero. Therefore, up to restricting V , we may assume that φ(V ) ⊂ φ̂(V̂ ) and that
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there exists a well-de�ned inverse branch φ̂−1 : φ(V ) → V̂ . Let c : V → V̂ be the map
de�ned by c := φ̂−1 ◦ φ. Then c is a holomorphic local inverse of ρ, which maps ρ(λ0) to
λ0; the Lemma is proved. �

Lemma 6.5. The map ρ : U0 → D∗ is a covering map of �nite degree.

Proof of Lemma 6.5. We start by claiming that Π is relatively compact in Pm. Indeed,
U = proj1(Π) is relatively compact in C∗ because if |λ| is small (respectively large)
enough, vλ is captured by the super-attracting �xed point 0 (respectively∞). Moreover,
by [5, Theorem A], the map proj1 : Pm → C∗ is proper, because the only two asymptotic
values in the family (hλ)λ∈C∗ are persistently �xed. Therefore Π is relatively compact in
Pm. Since ρ̃ is analytic (hence continuous) on Pm, and since the set Π0 is a connected
component of ρ̃−1(D∗), this proves that ρ̃ : Π0 → D∗ is proper. Consequently, so is
ρ : U0 → D∗.

By Lemma 6.4, the map ρ : U0 → D∗ is also locally invertible; therefore it is a �nite
degree covering map. �

Proof of Theorem 6.2. By the lemma above, ρ : U0 → D∗ is a �nite degree covering map.
This implies that there exists λ0 ∈ U such that U0 = U\{λ0}, and that U0 is isomorphic
to a punctured disk and U to a disk. �

6.2. Proof of Theorem 1.11. We state here is a slightly more precise statement of
Theorem 1.11:

Theorem 6.6. To each hyperbolic component U of the family (hλ)λ∈C∗, we can associate
a wandering Fatou component ΩU of P . Moreover, if U1 6= U2, then ΩU1 and ΩU2 are in
di�erent grand orbits of P .

Since α0 is an integer we know already that there exists an α0-admissible sequence
nk and σ ∈ C, such that Pnk+1−nk(pnk(z), w)→ L(α0, σ; z, w) uniformly on compacts in
Bp × Bq0 . Let (λ0, x0) ∈ C∗ × C∗ be such that x0 is a super-attracting periodic point of
exact period m for hλ0 . Let (z0, w0) ∈ Bp × Bq0 be such that e2iπ(1−α0)φιp(z0) = λ0 and
e2iπφιq0 (w0) = x0. Then w0 is an attracting �xed point of L(α0, σ; z0, ·).

Applying the Main Theorem as in Section 5, we know that (zn, w0) belongs to the
Fatou set of P for large enough n, where zn := pn(z). We let n0 be large enough, and
Ω = Ω(zn0 ,w0) denote the Fatou component containing (zn0 , w0). We also know (again,
by applying inductively the Main Theorem as in Section 5), than there is an increasing
sequence of integers (nk) such that Pnk−n0

|Ω (z, w)→ (0, η(z)), where η(z) is an attracting
periodic point of period m of L(α0, σ; z, ·), with η(zn0) = w0.

Lemma 6.7. The Fatou component Ω(zn0 ,w0) is wandering.

Proof. The proof is similar to the one in Section 5, and we use some of the same notations.
We assume for a contradiction that Ω is not wandering: then P k+`(Ω) = P k(Ω), for some
k ∈ N and ` ∈ N∗. Up to replacing Ω by P k(Ω), we may assume k = 0.

There exists some continuous curve joining (zn0 , w0) and P `(zn0 , w0) inside Ω. Using
the convergence of Pnk−n0 to (0, η), we obtain a curve joining η(zn0) and η(zn0+`) inside
Σ := η(Λ), where Λ := proj1(Ω). We let Σ′ be as in Section 5: Σ′ is an open subset of
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Perm(H̃σ) := {(Z,W ) ∈ C2 : H̃m
σ (Z,W )}: then there is a curve in Σ′ joining (Z0,W0)

and (Z0 + `,W0 + `), where Z0 := φιp(zn0) and W0 := α0φ
ι
q0(w0) + (1− α0)Z0.

Finally, we consider the image of this curve under the map

(6.2) e : (Z,W ) 7→ (e2iπ(1−α0)Z , e2iπW ).

It now becomes a closed loop in Π := e(Σ′), which we denote by γ := (γ1, γ2). By con-
struction, the loop γ2 is non-contractible in C∗; however, it is contained in the hyperbolic
component U = proj1(Π). But this contradicts Theorem 6.2. �

Lemma 6.8. If (zi, wi) (i = 1, 2) are such that λi = e2iπ(1−α0)φιp(zi) belong to two di�erent
hyperbolic components Ui, then the wandering Fatou components Ωi := Ω(zi,n′

i
,wi) are not

in the same grand orbit.

Proof. The idea of the proof is similar. Let us consider two wandering Fatou components
Ωi := Ω

(pn
′
i (zi),wi)

constructed above. Recall that (zi, wi) are such that wi is a super-

attracting periodic point of L(α0, σ; zi, ·), and that (pn
′
i(zi), wi) ∈ Ωi. Let us denote by

`i the periods of wi.
Assume by contraposition that Ω1 and Ω2 are in the same grand orbit of Fatou com-

ponents for P : then there exists mi ∈ N such that Pm1(Ω1) = Pm2(Ω2) =: Ω. Moreover,

there is an increasing sequence of integers (nk)k≥0 such that P
nk−n′i
|Ωi converge to the

maps (z, w) 7→ (0, ηi(z)), where for all z ∈ Λi := proj1(Ωi), ηi(zi) are periodic points of
respective periods `i of the maps Lzi := L(α0, σ; zi, ·). (This sequence (nk) is obtained
by taking an α0-admissible sequence, and then extracting a subsequence by taking only
one term every lcm(`1, `2)). By normality, it is easy to see that the multipliers of those
�xed points cannot be repelling: ρi(z) := (L`iz )′(ηi(z)) ∈ D for all z ∈ Λi. Since non-
constant holomorphic functions are open and ρi(zi) = 0 ∈ D, we must therefore in fact
have ρi(z) ∈ D for all z ∈ Λi.

Next, we claim that there exists ξ : Λ := proj1(Ω) → C such that ηi = qNi0 ◦ ξ ◦ pmi

for some Ni ∈ N. Indeed, since Pnk−n
′
i

|Ωi → (0, ηi) on Ωi, there exists functions ξi : Λ→ C
such that Pnk−n

′
i−mi → (0, ξi) on Ω, and

ηi = ξi ◦ pmi .

Assume without loss of generality that N0 := n′1 +m1 − (n′2 +m2) ≥ 0. Then

(0, ξ2) = lim
k
Pnk−n

′
2−m2 = lim

k
Pnk−n

′
1−m1+N0 = PN0 ◦ (0, ξ1)

so that qN0
0 ◦ ξ2 = ξ1. So we can take ξ := ξ2, N1 := 0 and N2 := N0.

Recall now that Ξ(z, w) := (φιp(z), α0φ
ι
q0(w) + (1 − α0)φιp(z) + σ), Σi := {(z, η(z)) :

z ∈ Λi}, and Σ′i := Ξ(Σi). Let γ = (γ1, γ2) : [0, 1] → Ω be a continuous curve joining
Pm1(pn

′
1(z1), w1) and Pm2(pn

′
2(z2), w2) in Ω. Let (Zi,Wi) := Ξ(pn

′
i(zi), wi). Note that

for all k, ` ∈ N and (z, w) ∈ Bp × Bq0 , Ξ(pk(z), q`0(w)) − Ξ(z, w) ∈ Z2. In particular,
γ̃(t) := Ξ(γ1(t), ξ(γ1(t))) gives a continuous curve satisfying the following properties:

(1) γ̃(0)− Ξ(z1, η1(z1)) ∈ Z2

(2) γ̃(1)− Ξ(z2, η2(z2)) ∈ Z2
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(3) for all t ∈ [0, 1], γ̃(t) ∈ Per`(H̃σ), where ` := lcm(`1, `2), H̃σ(Z,W ) is the lifted

horn map de�ned in (1.6), and
(

∂
∂W H̃`

Z,σ

)
(γ̃(t)) ∈ D.

(Property 3 comes from the previous observation that ρi(z) ∈ D for all z ∈ Λi.)
Finally, we consider a curve (γ̂1, γ̂2) := e ◦ γ̃, were e is given by equation (6.2). Then

γ̂1 is a continuous curve joining λ1 and λ2, inside a hyperbolic component of period
(dividing) ` for the family (hλ)λ∈C∗ , which is a contradiction. Thus Lemma 6.8 and
Theorem 6.6 are proved. �

Finally, to obtain Theorem 1.11 from Theorem 6.6, we just need to know that there
are countably many hyperbolic components in the family (hλ)λ∈C∗ . Since we have proved
that the multiplier map is a conformal uniformization of any hyperbolic component on
the unit disk, it is enough to prove that there are countably many λ ∈ C∗ such that hλ
has a super-attracting periodic point (di�erent from 0 or ∞). But this follows from e.g.
[[5], Proposition 5.1].

7. Admissible sequences and Pisot numbers

We will give in this section the proof of Theorem 1.10.

Lemma 7.1. For every (α, β)-admissible sequence (nk)k≥0 there exist a real number
ζ > 0 and a bounded sequence of real numbers (dk)k≥0 such that

nk = ζαk − kβ lnα

α− 1
+ dk, ∀k ≥ 0.

Moreover, if we let ρk := nk+1 − αnk − kβ lnα, then

ρk = σk + β ln ζ + o(1)

and

ζ = n0 +
β lnα

(α− 1)2
+

1

α

∞∑
j=0

ρj
αj

and

dk = − β lnα

(α− 1)2
− 1

α

∞∑
j=0

ρj+k
αj

.

Proof. First we study the asymptotic behaviour of the (α, β)-admissible sequences.

Claim 1: For every (α, β)-admissible sequence (nk)k≥0 there exist constants ζ, C ≥ 0
such that

∣∣nk − ζαk∣∣ ≤ Ck for all k > 0.

Proof of Claim 1. Let us de�ne uk := nk
αk

and observe that uk = uk−1 + β
αk

lnuk−1 +
β(k−1) lnα

αk
+
σk−1

αk
where (σk)k≥0 denotes the phase sequence of (nk)k≥0. Since the sequence

of phases is bounded and α > 1 it is easy to see that there exists D > 0 such that
|uk| < Dk for all k > 0, hence the sequence uk converges to some positive real number
ζ. It follows that

ζ = u0 +
∞∑
j=0

(uj+1 − uj) = n0 +
∞∑
j=0

β

αj+1
lnuj +

jβ lnα

αj+1
+

σj
αj+1
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where the sum converges absolutely. Finally observe that

nk = αkuk = ζαk − 1

α

∞∑
j=0

β

αj
lnuj+k +

(j + k)β lnα

αj
+
σj+k
αj

and that there exists C > 0 such that∣∣∣∣∣∣ 1α
∞∑
j=0

β

αj
lnuj+k +

(j + k)β lnα

αj
+
σj+k
αj

∣∣∣∣∣∣ < Ck, ∀k ≥ 0.

�

Claim 2: We have ρk = σk + β ln ζ + o(1).

Proof of Claim 2. Observe that by the previous lemma, we have

ρk = nk+1 − αnk − kβ lnα

= σk + β lnnk − kβ lnα

= σk + β lnuk = σk + β ln ζ + o(1)

�

Claim 3: We have

ζ = n0 +
β lnα

(α− 1)2
+

1

α

∞∑
j=0

ρj
αj
, dk = − β lnα

(α− 1)2
− 1

α

∞∑
j=0

ρj+k
αj

.

Proof of Claim 3. Recall that ρk = σk+β lnuk. From the proof of Claim 1 it now follows
that

ζ = n0 +
∞∑
j=0

β

αj+1
lnuj +

jβ lnα

αj+1
+

σj
αj+1

= n0 +
1

α

∞∑
j=0

jβ lnα

αj
+
ρj
αj

= n0 +
β lnα

(α− 1)2
+

1

α

∞∑
j=0

ρj
αj

and

dk = k
β lnα

α− 1
+ nk − ζαk

= k
β lnα

α− 1
− 1

α

∞∑
j=0

β

αj
lnuj+k +

(j + k)β lnα

αj
+
σj+k
αj

= k
β lnα

α− 1
− 1

α

∞∑
j=0

(j + k)β lnα

αj
+
ρj+k
αj

= − β lnα

(α− 1)2
− 1

α

∞∑
j=0

ρj+k
αj
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�

This completes the proof of the proposition. �

Remark 7.2. Note that by Lemma 7.1, the phase sequence (σk)k≥0 of a (α, β)−admissible
sequence converges to a cycle if and only if the sequence (ρk)k≥0 converges to a cycle of
the same period. Hence the phase sequence (σk)k≥0 converges to a cycle if and only if the
sequence (dk)k≥0 converges to a cycle of the same period.

Corollary 7.3. If (nk)k≥0 is an α−admissible sequence whose phase sequence converges
to zero, then α has the Pisot property.

Proof. Since (nk)k≥0 is an α−admissible sequence, β = 0 and ρk = σk (using the notation
from Lemma 7.1). Moreover, since (σk)k≥0 converges to zero the same holds for the
sequence (dk)k≥0, and hence we have ‖ζαk‖ → 0. �

Lemma 7.4. Let (nk)k≥0 be an (α, β)-admissible sequence and (σk)k≥0 its phase se-
quence. Then (σk)k≥0 converges to a cycle of period ` if and only if mk := nk+` − nk is
α-admissible sequence and whose phase sequence converges to `β lnα.

Proof. Observe that

mk+1 − αmk = nk+1+` − nk+1 − α(nk+` − nk)
= (nk+1+` − αnk+`)− (nk+1 − αnk)

= σ`+k − σk + β ln
nk+`

nk
= σ`+k − σk + `β lnα+ o(1).

�

Corollary 7.5. If (nk)k≥0 is α-admissible with converging phase sequences, then mk :=
nk+1 − nk is α-admissible and has phase converging to zero.

Proof. This follows from the previous lemma with β = 0. �

Lemma 7.6. If α has the Pisot property, then there exists an α-admissible sequence
whose phase sequence converges to 0.

Proof. Since α has the Pisot property there is ζ > 0 such that ‖ζαk‖ → 0. Now de�ne
nk := [ζαk] and observe that nk+1 − αnk = −‖ζαk+1‖+ α‖ζαk‖ → 0. �

Lemma 7.7. Let (nk), (mk) be two α-admissible sequences, and let j, j1, j2 ∈ Z. Then:
(1) nk+j is again an α-admissible sequence, and σ(nk+j) = σ(nk)
(2) if j1nk + j2mk is strictly increasing, then it is an α-admissible sequence, and

σ(j1nk + j2mk) = j1σ(nk) + j2σ(mk)
(3) if (mk) is α-admissible and εk ∈ `∞, then nk := mk + εk is α-admissible, and

σ(nk) = σ(mk) + εk+1 − αεk.

Proof. This is a direct computation. �

Observe that Corollary 7.3, Corollary 7.5, Lemma 7.6 and Lemma 7.7 imply the fol-
lowing result which settles claim (1) of Theorem 1.10.
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Corollary 7.8. Let α > 1 and m ∈ N∗ arbitrary. The following are equivalent:

(1) α has the Pisot property,
(2) there exists an α-admissible sequence whose phase sequence converge,
(3) there exists an α-admissible sequence whose phase sequence converge to a cycle

of exact period m.

Let us mention that for a very special type of α-admissible sequences a similar con-
clusions were already made by Dubickas, see [12].

Finally the claim (2) of Theorem 1.10 follows from Lemma 7.4, Corollary 7.8 and the
following remark.

Remark 7.9. Let (nk)k≥0 be an (α, β)-admissible sequence and denote θ = β lnα
α−1 and

mk = nk + bkθc. Observe that by Lemma 7.1 we have

nk+1 − αnk − β lnnk = nk+1 − αnk − kβ lnα− β ln ζ + o(1)

= mk+1 − αmk + {(k + 1)θ} − α{kθ} − θ − β ln ζ + o(1).

It follows that the phase sequence of (nk)k≥0 converges to a cycle if and only if the
sequence (mk)k≥0 is α-admissible and the sequence mk+1 − αmk + {(k + 1)θ} − α{kθ}
converges to a cycle of the same period as σ(nk).

Hence if we take (mk)k≥0 to be an α-admissible the sequence whose phase sequence
converges to zero (note that such always exists since α has the Pisot property) and if

θ = k1
k2
∈ Q then clearly the sequence nk := mk − bkθc is an (α, β)-admissible sequence

whose phase sequence converges to a cycle of period k2.

Note that the sequence ({(k + 1)θ} − α{kθ})k≥0 is uniformly distributed modulo 1 if
and only if θ is an irrational number, therefore it is reasonable to consider the following
question.

Question 7.10. Let α > 1 have the Pisot property. From the previous remark we already
know that θ ∈ Q is a su�cient condition for the existence of an α-admissible sequence
(nk)k≥0 such that the sequence nk+1−αnk + {(k+ 1)θ}−α{kθ} converges to a cycle. Is
this condition also necessary?

8. Proof of Theorem 1.14

Let P1, P2 be two skew-products that are topologically conjugated in a neighborhood
of the origin, that is, there is a homeomorphism h : U → V with h ◦P1 = P2 ◦h and U, V
are open neighborhoods of (0, 0). We will assume without loss of generality that U, V
are bounded in C2. The map h is of the form

h(z, w) = (f(z), g(z, w)),

and f conjugates locally p1 to p2: f ◦ p1 = p2 ◦ f. We will write gz(w) := g(z, w). We will
also denote by Li, αi, βi for i ∈ {1, 2} the quantities appearing in the Main Theorem, and
(nik)k∈N two (αi, βi)-admissible sequences de�ned by nik+1 := bαinik +βi lnnikc, where b·c
is the �oor function and ni0 = n0 is chosen large enough that both sequences are strictly
increasing, and let σik denote their phase sequences. We let U0 := U ∩ {z = 0}, and we
assume without loss of generality that U0 is a disk centered at w = 0.

In what follows we write qi(w) := proj2 ◦ Pi(0, w) for i ∈ {1, 2}.
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Lemma 8.1. Let z ∈ Bp1, w ∈ Bq1 ∩ U0, and for any n ∈ N, let zn := pn1 (z). Then
there exists m ∈ N such that for all k large enough and all 0 ≤ j ≤ n1

k+1 − n1
k − m,

P j1 (zn1
k
, w) ∈ U .

Proof. First, note that since limn→∞ zn = 0, zj+nk belongs to any arbitrary neighborhood
for j ≥ 0 and k large enough. Therefore, if we let wj denote the second component of
P j1 (zn1

k
, w), it is enough to prove that for k and m large enough, wj remains in U0 for

all 0 ≤ j ≤ n1
k+1 − n1

k −m. For 0 ≤ j ≤ tk := b(n1
k)
νc, this follows from Lemma 4.3.

For tk ≤ j ≤ n1
k+1 − n1

k − bα1tkc , this follows from Lemma 4.9 (recall that ν is a �xed
constant in (1

2 ,
2
3)). Finally, the existence of m > 0 (independant from n1

k) such that
for all n1

k+1 − n1
k − bα1tkc ≤ j ≤ n1

k+1 − n1
k −m we have wj ∈ U0 follows from Lemma

4.10. �

Let us now prove Proposition 1.15.

Proposition 8.2. The real numbers α and β are topological invariants, i.e. α1 = α2

and β1 = β2.

Proof. Let z ∈ Bp ∩Dom(f) and w ∈ Bq1 ∩ U0. By Lemma 8.1, we have

(8.1) h ◦ P j1 (p
n1
k

1 (z), w) = P j2 ◦ h(p
n1
k

1 (z), w)

for all 0 ≤ j ≤ n1
k+1 − n1

k −m. In particular, both sides of the equation belong to V .
Let Mk := b(α2− 1)n1

k +β2 lnn1
kc, and let ρk := {(α2− 1)n1

k +β2 lnn1
k}. Chose R > 0

large enough that V ⊂ D(0, R)2, and choose (z, w) ∈ U so that

|L2(α2,Γ2 − ρk; f(z), g0(w))| > R

for arbitrarily large values of k. This is always possible: indeed, let ρ ∈ [0, 1) be an
accumulation point of the sequence sk. From the functional equation

L2(α2,Γ2 − ρ; p2(z), q2(w)) = q2 ◦ L2(α2,Γ2 − ρ; z, w),

it follows that (z, w) 7→ L2(α2,Γ2−ρ; z, w) takes arbitrarily large values on U . Then any
(z, w) ∈ U such that |L2(α2,Γ2 − ρ; z, w)| > R works.

Next, we observe that it follows from the Theorem 4.12 that

PMk
2 ◦ h(p

n1
k

1 (z), w) = PMk
2

(
p
n1
k

2 (f(z)), g0(w) + o(1)
)

= (0,L2(α2,Γ2 − ρk; f(z), g0(w)) + o(1).

Therefore, by (8.1) and our choice of R, z and w, we must have Mk > n1
k+1− n1

k −m for
arbitrarily large values of k. Therefore α2 ≥ α1; but then by symmetry, α2 = α1. Then,
using again the fact that Mk > n1

k+1− n1
k −m, we �nd β2 ≥ β1, and therefore we �nally

have, again by symmetry, β1 = β2. �

We are now ready to prove Theorem 1.14.

Proof of Theorem 1.14. By Proposition 1.15, we have n1
k = n2

k =: nk, σ1
k = σ2

k =: σk and
α1 = α2 =: α, so by (8.1) and the Main Theorem, we have

h (o(1),L1(α,Γ1 + σk −m; z, w) + o(1)) = (o(1),L2(α,Γ2 + σk −m; f(z), g0(w)) + o(1)
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for all k large enough, z ∈ Bp, and w ∈ U0 ∩Bq0 . Therefore, for any accumulation point
σ of the sequence (σk)k≥0, we have:

(8.2) g0 (L1(α,Γ1 + σ −m; z, w)) = L2(α,Γ2 + σ −m; f(z), g0(w))

Let us write for simplicity Li(z, w) := Li(α,Γi + σ −m; z, w). Observe that since f and
g0 conjugate p1 to p2 and q1 to q2 respectively, there exists homeomorphisms f̃ : C→ C
and g̃0 : C→ C commuting with the translation by 1 such that:

(8.3) g̃0 ◦ φo1 = φo2 ◦ g0,

and

(8.4) f̃ ◦ φιp1 = φιp2 ◦ f,

where φoi denotes the outgoing Fatou coordinate of qi.
For z, w as above, let Z := φιp1(z) and W := φι1(w). Let us compute:

g̃0 ◦ H̃1
Z,σ1(W ) = φo2 ◦ g0 ◦ (φo1)−1 ◦ H̃1

Z,σ1(W )

(by (1.7)) = φo2 ◦ g0 ◦ L1(z, (φo1)−1(W ))

(by (8.2)) = φo2 ◦ L2(f(z), g0 ◦ (φo1)−1(W ))

= αφι2 ◦ g0 ◦ (φo1)−1(W ) + (1− α)φιp2(f(z)) + σ2

= αφι2 ◦ (φo2)−1 ◦ g̃0(W ) + (1− α)̃f(Z) + σ2

= H̃2
f̃(Z),σ2

(g̃0(W ))

where σi = σ + Γi −m.
Therefore, if we let G(Z,W ) = (̃f(Z), g̃0(W )) we have proved that

G ◦ H̃1
σ1(Z,W ) = H̃2

σ2 ◦G(Z,W ).

This relation holds for all z ∈ Bp1 and for all w ∈ Bq1 ∩ U0; therefore it holds for all
Z ∈ C and all W ∈ C with Re(W ) large enough.

But since the lifted horn maps H̃ i
σi commute with the translation of vector (1, 1), this

conjugation descends to a conjugation of the horn maps on C2/Z. �

Corollary 8.3. If P1 and P2 are topologically conjugated near (0, 0), then the number
of critical points of qi in Bqi is the same. In particular, there is no k ∈ N such that the
local topological conjugacy class of maps of the form (1.1) depend only the k-jet of P at
the origin.

Proof. For any Z ∈ C, the number of critical values of H̃Z,σ in {0 < ReW ≤ 1} is exactly
equal to the number of critical points of q0 in Bq0 . The former is clearly preserved under
the topological conjugacy G, therefore so is the latter.

For the second assertion, it su�ces to observe that this number cannot depend on any
k-jet of q0 at w = 0. �
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9. Proof of Corollary 1.17

Finally, we will prove Corollary 1.17 in this Section.
Let L(i) denote the extended Lavaurs maps associated to both parabolic �xed points

(0, wi), and let L(i)
z (w) := L(αi,Γi; z, w). Let Mz := L(2)

z ◦ L(1)
z . We denote by Bi the

parabolic basins of wi for q0, so that (z, w) 7→ Mz(w) is de�ned on Bp × B1. We start
by recalling the notion of islands, named after Alhlfors famous Five Islands theorem.

De�nition 9.1. Let f : U → P1 be a holomorphic map, where U ⊂ P1 is a domain. Let
D1 ⊂ P1 be a Jordan domain. We say that D is an island for f over D1 if f : D → D1

is a conformal isomorphism.

Lemma 9.2. Let f(z) = z+z2 +O(z3) be a polynomial map with a parabolic �xed point,
and let φιf : Bf → C and ψof : C→ C denote its incoming Fatou coordinate and outgoing
Fatou parametrization respectively. Then

(1) For every Jordan domain D1 ⊂ C such that (φιf )−1(D1) doesn't intersect critical
orbits of f , for every open set Ω intersecting ∂Bf , φιf has an island D b Ω over
D1

(2) For every Jordan domain D1 ⊂ C that doesn't intersect the postcritical set of f ,
ψof has an island D over D1.

Proof. Let D0 ⊂ C be a Jordan domain, and let Ω be an open set intersecting ∂Bf .
Let Dk := D0 + k. It is well-known that φιf : Bf → C is a branched cover whose

critical points are the pre-critical orbits of f in Bf ; therefore, by the assumptions on D0,
Dk is simply connected and doesn't contain any critical value of φιf , so φ

ι
f has an island

U0 above Dk.
By assumption, U0 doesn't meet any critical orbits of f , and it is simply connected,

so we may de�ne univalent inverses branches of f−k for all k, and for k large enough,
at least one such branch gk of f−k will map U0 compactly into Ω (by normality and the
equidistribution of preimages). Let Uk := gk(U0). We then have:

φιf (U0) = φιf ◦ fk(Uk) = φιf (Uk) + k = D0 + k

so that φιf (Uk) = D0. The domain Uk is the desired island above D0.
The second item follows immediately from the other well-known fact that

ψof : C\(ψof )−1(Pf )→ C\Pf
is a covering map, where Pf denotes the post-critical set of f .

�

Lemma 9.3. There exists z0 ∈ Bp such thatMz0 has a super-attracting �xed point w0.

Proof. The di�culty is that we cannot apply Montel's theorem, as the domain of Mn
z

shrinks as n → +∞. Instead, we will follow closely the proof of the Shooting Lemma
from [5]. Let φιi (with i = 1, 2) denote the incoming Fatou coordinates of wi for q0, and let
ψi denote the outgoing Fatou parametrizations associated to wi for q0. Let Z := φιp(z),
Ai,Z(W ) := α0W + (1− α0)Z + Γi, so that

(9.1) Mz = ψ2 ◦A2,Z ◦ φι2 ◦ ψ1 ◦A1,Z ◦ φι1.
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Let c ∈ B1 be a critical point for φι1, and let x ∈ ψ−1
2 ({c}). Let γ(Z) := A1,Z ◦ φι1(c),

and let gZ := A2,Z ◦φι2 ◦ψ1. If we can �nd Z ∈ C such that gZ ◦ γ(Z) = x, then this will
mean thatMz(c) = c, where φιp(z) = Z, which will prove the Lemma.

Let U0 := ψ−1
1 (B2). Since ψi : C→ C is entire, U0 ⊂ C is an open set with non-empty

boundary. From the expression of γ, if we �x any W0 ∈ ∂U0, we can �nd explicitly some
Z0 ∈ C such that γ(Z0) = W0.

Let us observe that gZ = gZ0 + (1−α2)(Z−Z0). Therefore, letting h(Z) := x+ (α2−
1)(Z − Z0), the equation gZ ◦ γ(Z) = x is equivalent to

(9.2) gZ0 ◦ γ(Z) = h(Z).

Let D be a disk centered at x such that D contains no critical values of gZ0 . (This is
possible because the set of critical values of gZ is discrete, in fact �nite in C/Z, and we
may assume that x is not one of them). Let ε > 0 be small enough that h(D(Z0, ε)) b D.
Let Ω := γ(D(Z0, ε)): Ω is an open neighborhood of W0 ∈ ∂U0. By Lemma 9.2, there
exists D1 b Ω ∩ U0 such that gZ0 : D1 → D is a conformal isomorphism. In particular,
gZ0 ◦ γ : V → D is a conformal isomorphism, where V := γ−1(D1) is a disk that
is compactly contained in D(Z0, ε). By the de�nition of ε and V , we therefore have
h(V ) b gZ0 ◦ γ(V ) = D, and D,V are disks with smooth boundaries. It then follows
from the Argument Principle that there exists Z ∈ V satisfying (9.2), and the Lemma is
proved.

�

Proof of Corollary 1.17. We consider an inductive sequence of integers de�ned by nk+1 =
α1nk if k is even and nk+1 = α2nk if k is odd.

By the Main Theorem applied twice, we have

Pnk+2−nk(znk , w) = (znk+2
,Mz(w)) + o(1)

with local uniform convergence for (z, w) su�ciently close to the point (z0, w0) given by
Lemma 9.3.

Since w0 is a super-attracting �xed point for Mz0 , there exists r > 0 such that
Mz0(D(w0, r)) b D(w0,

r
2), and by continuity there exists η > 0 such that for all z ∈

D(z0, η) we haveMz(D(w0, r)) b D(w0, r).
Let V be a connected component of P−n0(pn0(D(z0, η)) × D(w0, r)). For n0 large

enough and (nk) satisfying the induction relation above, we have, for any k ∈ N and
(z, w) ∈ V :

(9.3) Pn2k(z, w) ∈ Bp × D(w0, r).

In particular, V ⊂ K(P ), and therefore V is contained in the Fatou set of P . Let Ω
be the Fatou component of P containing V .

Finally, let us prove that Ω satis�es the historicity property. Observe that

(9.4) lim
k→+∞

1

n2k+1 − n2k

n2k+1∑
j=n2k

δP j(z,w) = (0, w1)
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and

(9.5) lim
k→+∞

1

n2k+2 − n2k+1

n2k+2∑
j=n2k+1

δP j(z,w) = (0, w2).

This follows from the fact that it takes n2k+1 − n2k iterations to "pass through the
eggbeater" associated to (0, w1), and n2k+2 − n2k to pass through the one associated to
(0, w2) (more precisely, this follows from Lemma 4.9). Let (z, w) ∈ V , and let us consider
en = en(z, w) := 1

n

∑n
j=0 δP j(z,w).

By (9.4), we have

en2k+1
= en2k

n2k

n2k+1
+ (1− n2k

n2k+1
)δ(0,w1) + o(1)

=
1

α1
en2k

+ (1− 1

α1
)δ(0,w1) + o(1)

and similarly, using (9.5),

en2k
=

1

α2
en2k−1

+ (1− 1

α2
)δ(0,w2) + o(1).

Putting last two equations together, we �nd:

(9.6) e2k =
α1α2 − α2

α1α2 − 1
δ(0,w1) +

α2 − 1

α1α2 − 1
δ(0,w2) + o(1)

and

(9.7) e2k+1 =
α1 − 1

α1α2 − 1
δ(0,w1) +

α1α2 − α1

α1α2 − 1
δ(0,w2) + o(1).

�
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