Journal Articles Journal of Applied Geophysics Year : 2021

Studying petrophysical properties of micritic limestones using machine learning methods

Minh-Ngoc Vu
  • Function : Author
Bao-Viet Tran
  • Function : Author
Thi-Thu-Nga Nguyen
  • Function : Author
Thoi-Trung Nguyen
  • Function : Author

Abstract

It is important in geophysical applications to relate the compressional and shear ultrasonic wave velocities of micritic limestone to its porosity, volume fraction and density of micrite grains as well as the effective confining pressure. In this paper, this difficulty task is successfully realized by using the most relevant machine learning methods: The artificial neural network method, the support vector machine method and the extreme gradient boosting method (XGB). A relevant dataset available in literature is considered to train and test the models. It is observed that the XGB method significantly outperform the other methods in term of accuracy and training time. It allow obtaining a very high R-squared value of 0.96 and a very small relative root mean squared error of 3% while predicting the sonic velocities from other petrophysical properties. The robustness of the models is also confirmed by studying the sensitivity of the random splittings between the training and the testing sets (C) 2020 Elsevier B.V. All rights reserved.
No file

Dates and versions

hal-03633065 , version 1 (06-04-2022)

Identifiers

Cite

Tuan Nguyen-Sy, Minh-Ngoc Vu, Anh-Dung Tran-Le, Bao-Viet Tran, Thi-Thu-Nga Nguyen, et al.. Studying petrophysical properties of micritic limestones using machine learning methods. Journal of Applied Geophysics, 2021, 184, ⟨10.1016/j.jappgeo.2020.104226⟩. ⟨hal-03633065⟩

Collections

U-PICARDIE LTI
31 View
0 Download

Altmetric

Share

More